Advertisement

Certain Properties of Konhauser Polynomial via Generalized Mittag-Leffler Function

  • J. C. Prajapati
  • N. K. Ajudia
  • Shilpi Jain
  • Anjali Goswami
  • Praveen AgarwalEmail author
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 303)

Abstract

The principal aim of this paper is to establish several new properties of generalized Mittag-Leffler function via Konhauser polynomials. Properties like mixed recurrence relations, Differential equations, pure recurrence relations, finite summation formulae, and Laplace transform have been obtained.

Keywords

Konhauser polynomials Generalized Mittag-Leffler function Laguerre polynomials Laplace transform 

AMS(2010) Subject Classification

33E12 33C45 33C47 

Notes

Acknowledgements

This work was supported to third author [S Jain] by the Science & Engineering Research Board (SERB), India (No: MTR/2017/000194) and fifth author’s [P Agarwal] research grant is supported by the Department of Science & Technology(DST), India (No: INT/RUS/RFBR/P-308) and Science & Engineering Research Board (SERB), India (No: TAR/2018/000001).

References

  1. 1.
    Bin-Saad, M.G., New, A.: Class of Hermite-Konhauser polynomials together with differential equations. Kyungpook Math. J. 50, 237–253 (2010)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Karande, B.K., Patil, K.R.: Note on Konhauser Biorthogonal polynomials. Indian J. pure appl. Math. 12(2), 222–225 (1981)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Karande, B.K., Thakare, N.K.: Some Results for Konhauser-Biorthogonal polynomials and dual series equations. Indian J. Pure Appl. Math. 7(6), 635–646 (1976)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Kilbas, A.A., Saigo, M., Saxsena, R.K.: Generalized Mittag-Leffler function and generalized fractional calculus operators. Integral Transforms Spec. Funct. 15(1), 31–49 (2004)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Konhauser, J.D.E.: Biorthogomal polynomials suggested by the laguerre polynomials. Pacific J. Math. 21(2), 303–314 (1967)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Prabhakar, T.R.: On a set of polynomials suggested by laguerre polynomials. Pacific J. Math. 35(1), 213–219 (1970)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Prajapati, J.C., Ajudia, N.K., Agarwal, P.: Some results due to Konhauser polynomials of first kind and laguerre polynomials. Appl. Math. Comput. 247, 639–650 (2014)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Rainville, E.D.: Special Functions. The Macmillan Company, New York (1960)zbMATHGoogle Scholar
  9. 9.
    Shukla, A.K., Prajapati, J.C.: On a generalization of Mittag-Leffler function and its properties. J. Math. Anal. Appl. 336(2), 779–811 (2007)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Srivastava, H.M.: On the Konhauser sets of Biorthogonal polynomials suggested by the laguerre polynomials. Pacific J. Math. 49(2), 489–492 (1973)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Srivastava, H.M.: A Note on the Konhauser Sets of Biorthogonal polynomials suggested by the laguerre polynomials. Pacific J. Math. 90(1), 197–200 (1980)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Srivastava, H.M.: Some Biorthogonal polynomials suggested by the Laguerre polynomials. Pacific J. Math. 98(1), 235–250 (1982)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • J. C. Prajapati
    • 1
  • N. K. Ajudia
    • 2
  • Shilpi Jain
    • 3
  • Anjali Goswami
    • 4
  • Praveen Agarwal
    • 5
    • 6
    • 7
    Email author
  1. 1.Department of MathematicsSardar Patel UniversityVallabh VidyanagarIndia
  2. 2.H & H B Kotak Institute of Science, Saurashtra UniversityRajkotIndia
  3. 3.Department of MathematicsPoornima College of EngineeringJaipurIndia
  4. 4.College of Science and Theoretical Studies, Main Branch Riyadh, FemaleSaudi Electronic UniversityRiyadhSaudi Arabia
  5. 5.Department of MathematicsAnand International College of EngineeringJaipurIndia
  6. 6.Department of MathematicsHarish Chandra Research InstituteJhunsiIndia
  7. 7.International Center for Basic and Applied SciencesJaipurIndia

Personalised recommendations