Advertisement

The Effects of Unequal Diffusion Coefficients on Spatiotemporal Pattern Formation in Prey Harvested Reaction-Diffusion Systems

  • Lakshmi Narayan GuinEmail author
Conference paper
  • 38 Downloads
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 302)

Abstract

In this investigation, we explore the spatiotemporal dynamics of reaction-diffusion predator-prey systems with Holling type II functional response. For partial differential equation, we consider the diffusion-driven instability of the coexistence equilibrium solution through spatiotemporal patterns. We find the conditions for Turing bifurcation of the system in a two-dimensional spatial domain by making use of the linear stability analysis and the bifurcation analysis. By choosing the ecological system parameter as the bifurcation parameter, we show that the system experiences a sequence of spatiotemporal patterns. The results of numerical simulations unveil that there are various spatial patterns including typical Turing patterns such as hot spots, spots-stripes mixture and stripes pattern through Turing instability. Our results show that the ecological system parameter plays a vital function in the proposed reaction-diffusion predator-prey models. Numerical design has been finally carried out through graphical representations of those outcomes towards the end in order to recognize the spatiotemporal behaviour of the system under study. All the outcomes are predictable to be of use in the study of the dynamic complexity of flora and fauna.

Keywords

Reaction-diffusion equations Prey refuge Prey harvesting Turing instability Spatiotemporal pattern 

AMS

35B36 35G31 35K55 37C75 37H20 70Kxx 82B26 

Notes

Acknowledgements

The author confers thank to the anonymous referee for the very helpful ideas and statements which led to developments of our original manuscript. Also, the author gratefully acknowledges the financial support in part from Special Assistance Programme (SAP-III) sponsored by the University Grants Commission (UGC), New Delhi, India (Grant No. F.510/3/DRS-III/2015 (SAP-I)).

References

  1. 1.
    Bazykin, A.D., Khibnik, A.I., Krauskopf, B.: Nonlinear Dynamics of Interacting Populations, vol. 11. World Scientific Publishing Company Incorporated. Singapore (1998)CrossRefGoogle Scholar
  2. 2.
    Chen, L., Chen, F., Chen, L.: Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a constant prey refuge. Nonlinear Anal.: Real World Appl. 11, 246–252 (2010)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Collings, J.B.: Bifurcation and stability analysis of a temperature-dependent mite predator-prey interaction model incorporating a prey refuge. Bull Math Biol 57, 63–76 (1995)CrossRefGoogle Scholar
  4. 4.
    Duque, C., Lizana, M.: On the dynamics of a predator-prey model with nonconstant death rate and diffusion. Nonlinear Anal: Real World Appl 12, 2198–2210 (2011)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Feng, P.: On a diffusive predator-prey model with nonlinear harvesting. Math Biosci Eng 11, 807–821 (2014)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Guin, L.N., Baek, H.: Comparative analysis between prey-dependent and ratio-dependent predator-prey systems relating to patterning phenomenon. Math Comput Simul 146, 100–117 (2018)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Guin, L.N., Mandal, P.K.: Effect of prey refuge on spatiotemporal dynamics of reaction-diffusion system. Comput. Math. Appl. 68, 1325–1340 (2014a)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Guin, L.N., Mandal, P.K.: Spatial pattern in a diffusive predator-prey model with sigmoid ratio-dependent functional response. Int. J. Biomath. 7, 1450047 (2014b)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Guin, L.N., Mandal, P.K.: Spatiotemporal dynamics of reaction-diffusion models of interacting populations. Appl. Math. Model. 38, 4417–4427 (2014c)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Guin, L.N., Haque, M., Mandal, P.K.: The spatial patterns through diffusion-driven instability in a predator-prey model. Appl. Math. Model. 36, 1825–1841 (2012)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Guin, L.N., Chakravarty, S., Mandal, P.K.: Existence of spatial patterns in reaction-diffusion systems incorporating a prey refuge. Nonlinear Anal.: Model. Control 20, 509–527 (2015)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Guin, L.N., Mondal, B., Chakravarty, S.: Existence of spatiotemporal patterns in the reaction-diffusion predator-prey model incorporating prey refuge. Int. J. Biomath. 9, 1650085 (2016)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Guin, L.N., Mondal, B., Chakravarty, S.: Spatiotemporal patterns of a pursuit-evasion generalist predator-prey model with prey harvesting. J. Appl. Nonlinear Dyn. 7, 165–177 (2018)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Hassell, M.P.: The Dynamics of Arthropod Predator-Prey Systems. Princeton University Press (1978)Google Scholar
  15. 15.
    Huang, J., Gong, Y., Ruan, S.: Bifurcation analysis in a predator-prey model with constant-yield predator harvesting. Discr. Contin. Dyn. Syst.-Ser. B 18, 2101–2121 (2013)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Ko, W., Ryu, K.: Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a prey refuge. J. Differ. Equ. 231, 534–550 (2006)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Ma, Z., Li, W., Zhao, Y., Wang, W., Zhang, H., Li, Z.: Effects of prey refuges on a predator-prey model with a class of functional responses: the role of refuges. Math. Biosci. 218, 73–79 (2009)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Makinde, O.D.: Solving ratio-dependent predator-prey system with constant effort harvesting using adomian decomposition method. Appl. Math. Comput. 186, 17–22 (2007)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Murray, J.D.: Mathematical Biology II: Spatial Models and Biomedical Applications (2002)Google Scholar
  20. 20.
    Okubo, A., Levin, S.A.: Diffusion and Ecological Problems: Modern Perspective (2001)Google Scholar
  21. 21.
    Okubo, A.: Diffusion and Ecological Problems: Mathematical Models (1980)Google Scholar
  22. 22.
    Pallini, A., Janssen, A., Sabelis, M.W., et al.: Predators induce interspecific herbivore competition for food in refuge space. Ecol. Lett. 1, 171–177 (1998)CrossRefGoogle Scholar
  23. 23.
    Sih, A.: Prey refuges and predator-prey stability. Theor. Popul. Biol. 31, 1–12 (1987)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Sun, G.Q., Sarwardi, S., Pal, P.J., Rahaman, S.: The spatial patterns through diffusion-driven instability in modified Leslie-Gower and Holling-type II predator-prey model. J. Biol. Syst. 18, 593–603 (2010)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Turing, A.M.: The chemical basis of morphogenesis, philosophical transactions of the royal society of London. Biol. Sci. 237, 37–72 (1952)Google Scholar
  26. 26.
    Xiao, D., Jennings, L.S.: Bifurcations of a ratio-dependent predator-prey system with constant rate harvesting. SIAM J. Appl. Math. 65, 737–753 (2005)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of MathematicsVisva-BharatiSantiniketanIndia

Personalised recommendations