Advertisement

Uveitis pp 143-162 | Cite as

Diagnostic Testing in Uveitis

  • Ashlin Joye
  • John GonzalesEmail author
Chapter
Part of the Current Practices in Ophthalmology book series (CUPROP)

Abstract

Introduction: The diagnostic workup upon the discovery of uveitis is challenging even for experienced ophthalmologists. This chapter gives a basic strategic overview when investigating the underlying cause of uveitis.

Diagnostic Strategy: There is no perfect diagnostic algorithm in uveitis. Rather, a detailed history and clinical exam provides clues that guide a more directed evaluation for an underlying cause, limiting the use of low positive predictive value (PPV) testing. Classifying the type of uveitis (laterality, granulomatous vs. nongranulomatous, location of inflammation) is an important step in developing an efficient diagnostic approach. Age, gender, race, and travel history are other important considerations.

Extraocular Imaging: Non-ocular imaging can be useful when determining a cause of uveitis. Chest radiography is frequently ordered during the initial workup in cases of unknown uveitis to evaluate for signs of tuberculosis and sarcoidosis. Chest X-ray is a safe and inexpensive first-line method, while chest computed tomography (CT) is more sensitive and specific in certain patient groups.

Infectious Testing: Samples of ocular fluid can be used to investigate specific pathogens in cases where infectious uveitis cannot be excluded. Polymerase chain reaction (PCR) is a directed method for which specific pathogens are investigated. Metagenomic deep sequencing is a novel unbiased sequencing technique capable of interrogating many pathogens at once that offers possible utility in the future. Tuberculosis and syphilis can mimic many types of uveitis and their testing should therefore be included in most initial uveitis workups.

Noninfectious Testing: Uveitis is frequently noninfectious in nature. Autoantibody testing, including antinuclear antibody (ANA) and rheumatoid factor (RF), is generally low yield. Human leukocyte antigen (HLA) testing can be useful in classifying certain uveitic entities, in particular birdshot chorioretinopathy and seronegative spondyloarthropathies. Urine beta-2 microglobulin and serum creatinine are important when evaluating a young patient for tubulointerstitial nephritis and uveitis syndrome (TINU). Tissue biopsy paired with histopathology, cytopathology, and immunohistochemistry are useful techniques when evaluating a patient for entities such as ocular sarcoidosis and primary vitreoretinal lymphoma.

Keywords

Uveitis Laboratory testing in uveitis Imaging in uveitis Strategic approach to uveitis Uveitis diagnostics 

References

  1. 1.
    Rosenbaum JT. An algorithm for the systemic evaluation of patients with uveitis: guidelines for the consultant. Semin Arthritis Rheum. 1990;19(4):248–57.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Smith JR, Rosenbaum JT. Management of uveitis: a rheumatologic perspective. Arthritis Rheum. 2002;46(2):309–18.PubMedCrossRefGoogle Scholar
  3. 3.
    Rathinam SR, Babu M. Algorithmic approach in the diagnosis of uveitis. Indian J Ophthalmol. 2013;61(6):255–62.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Dunn JP. Uveitis. Prim Care. 2015;42(3):305–23.PubMedCrossRefGoogle Scholar
  5. 5.
    Lee CS, Randhawa S, Lee AY, Lam DL, Van Gelder RN. Patterns of laboratory testing utilization among uveitis specialists. Am J Ophthalmol. 2016;170:161–7.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Hadjadj J, Dechartres A, Chapron T, et al. Relevance of diagnostic investigations in patients with uveitis: retrospective cohort study on 300 patients. Autoimmun Rev. 2017;16(5):504–11.PubMedCrossRefGoogle Scholar
  7. 7.
    Seve P, Cacoub P, Bodaghi B, et al. Uveitis: diagnostic work-up. A literature review and recommendations from an expert committee. Autoimmun Rev. 2017;16(12):1254–64.PubMedCrossRefGoogle Scholar
  8. 8.
    Rosenbaum JT, Wernick R. The utility of routine screening of patients with uveitis for systemic lupus erythematosus or tuberculosis. A Bayesian analysis. Arch Ophthalmol. 1990;108(9):1291–3.PubMedCrossRefGoogle Scholar
  9. 9.
    de Parisot A, Kodjikian L, Errera MH, et al. Randomized controlled trial evaluating a standardized strategy for uveitis etiologic diagnosis (ULISSE). Am J Ophthalmol. 2017;178:176–85.PubMedCrossRefGoogle Scholar
  10. 10.
    Febvay C, Kodjikian L, Maucort-Boulch D, et al. Clinical features and diagnostic evaluation of 83 biopsy-proven sarcoid uveitis cases. Br J Ophthalmol. 2015;99(10):1372–6.PubMedCrossRefGoogle Scholar
  11. 11.
    Ganesh SK, Roopleen, Biswas J, Veena N. Role of high-resolution computerized tomography (HRCT) of the chest in granulomatous uveitis: a tertiary uveitis clinic experience from India. Ocul Immunol Inflamm. 2011;19(1):51–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Kaiser PK, Lowder CY, Sullivan P, et al. Chest computerized tomography in the evaluation of uveitis in elderly women. Am J Ophthalmol. 2002;133(4):499–505.PubMedCrossRefGoogle Scholar
  13. 13.
    Wroblewski KJ, Hidayat AA, Neafie RC, Rao NA, Zapor M. Ocular tuberculosis: a clinicopathologic and molecular study. Ophthalmology. 2011;118(4):772–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Gil H, Fery-Blanco C, Schwartz C, et al. Contribution of cerebral magnetic resonance imaging to etiological investigation of uveitis. Rev Med Interne. 2014;35(12):790–3.PubMedCrossRefGoogle Scholar
  15. 15.
    Petrushkin H, Kidd D, Pavesio C. Intermediate uveitis and multiple sclerosis: to scan or not to scan. Br J Ophthalmol. 2015;99(12):1591–3.PubMedCrossRefGoogle Scholar
  16. 16.
    Algahtani H, Shirah B, Algahtani R, Alkahtani A, Alwadie S. Vogt Koyanagi Harada syndrome mimicking multiple sclerosis: a case report and review of the literature. Mult Scler Relat Disord. 2017;12:44–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Keles S, Ogul H, Pinar LC, Kantarci M. Teaching neuroimages: cerebral white matter involvement in a patient with Vogt-Koyanagi-Harada syndrome. Neurology. 2013;81(11):e85–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Mohamed C, Najib K, Essaadouni L. Radiological findings in Behcet disease. Pan Afr Med J. 2015;20:51.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Chan CC, Rubenstein JL, Coupland SE, et al. Primary vitreoretinal lymphoma: a report from an International Primary Central Nervous System Lymphoma Collaborative Group symposium. Oncologist. 2011;16(11):1589–99.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Sen HN, Bodaghi B, Hoang PL, Nussenblatt R. Primary intraocular lymphoma: diagnosis and differential diagnosis. Ocul Immunol Inflamm. 2009;17(3):133–41.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Anwar Z, Galor A, Albini TA, Miller D, Perez V, Davis JL. The diagnostic utility of anterior chamber paracentesis with polymerase chain reaction in anterior uveitis. Am J Ophthalmol. 2013;155(5):781–6.PubMedCrossRefGoogle Scholar
  22. 22.
    Chronopoulos A, Roquelaure D, Souteyrand G, Seebach JD, Schutz JS, Thumann G. Aqueous humor polymerase chain reaction in uveitis—utility and safety. BMC Ophthalmol. 2016;16(1):189.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    De Groot-Mijnes JD, Rothova A, Van Loon AM, et al. Polymerase chain reaction and Goldmann-Witmer coefficient analysis are complimentary for the diagnosis of infectious uveitis. Am J Ophthalmol. 2006;141(2):313–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Errera MH, Goldschmidt P, Batellier L, et al. Real-time polymerase chain reaction and intraocular antibody production for the diagnosis of viral versus toxoplasmic infectious posterior uveitis. Graefes Arch Clin Exp Ophthalmol. 2011;249(12):1837–46.PubMedCrossRefGoogle Scholar
  25. 25.
    Rothova A, de Boer JH, Ten Dam-van Loon NH, et al. Usefulness of aqueous humor analysis for the diagnosis of posterior uveitis. Ophthalmology. 2008;115(2):306–11.PubMedCrossRefGoogle Scholar
  26. 26.
    Sugita S, Ogawa M, Shimizu N, et al. Use of a comprehensive polymerase chain reaction system for diagnosis of ocular infectious diseases. Ophthalmology. 2013;120(9):1761–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Barza M, Pavan PR, Doft BH, et al. Evaluation of microbiological diagnostic techniques in postoperative endophthalmitis in the endophthalmitis vitrectomy study. Arch Ophthalmol. 1997;115(9):1142–50.PubMedCrossRefGoogle Scholar
  28. 28.
    Groen-Hakan F, Babu K, Tugal-Tutkun I, et al. Challenges of diagnosing viral anterior uveitis. Ocul Immunol Inflamm. 2017;25(5):710–20.PubMedCrossRefGoogle Scholar
  29. 29.
    Relvas LJM, Antoun J, de Groot-Mijnes JDF, et al. Diagnosis of cytomegalovirus anterior uveitis in two European referral centers. Ocul Immunol Inflamm. 2018;26(1):116–21.PubMedCrossRefGoogle Scholar
  30. 30.
    Doan T, Acharya NR, Pinsky BA, et al. Metagenomic DNA sequencing for the diagnosis of intraocular infections. Ophthalmology. 2017;124(8):1247–8.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Doan T, Wilson MR, Crawford ED, et al. Illuminating uveitis: metagenomic deep sequencing identifies common and rare pathogens. Genome Med. 2016;8(1):90.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Feng Y, Diao N, Shao L, et al. Interferon-gamma release assay performance in pulmonary and extrapulmonary tuberculosis. PLoS One. 2012;7(3):e32652.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Ang M, Htoon HM, Chee SP. Diagnosis of tuberculous uveitis: clinical application of an interferon-gamma release assay. Ophthalmology. 2009;116(7):1391–6.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Ang M, Wong W, Ngan CC, Chee SP. Interferon-gamma release assay as a diagnostic test for tuberculosis-associated uveitis. Eye (Lond). 2012;26(5):658–65.CrossRefGoogle Scholar
  35. 35.
    Ang M, Wong WL, Li X, Chee SP. Interferon gamma release assay for the diagnosis of uveitis associated with tuberculosis: a Bayesian evaluation in the absence of a gold standard. Br J Ophthalmol. 2013;97(8):1062–7.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Ang M, Kiew SY, Wong WL, Chee SP. Discordance of two interferon-gamma release assays and tuberculin skin test in patients with uveitis. Br J Ophthalmol. 2014;98(12):1649–53.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Liu LL, Lin LR, Tong ML, et al. Incidence and risk factors for the prozone phenomenon in serologic testing for syphilis in a large cohort. Clin Infect Dis. 2014;59(3):384–9.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Davis JL. Ocular syphilis. Curr Opin Ophthalmol. 2014;25(6):513–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Dai T, Wu X, Zhou S, Wang Q, Li D. Clinical manifestations and cerebrospinal fluid status in ocular syphilis in HIV-negative patients. BMC Infect Dis. 2016;16:245.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Reekie I, Reddy Y. Use of lumbar punctures in the management of ocular syphilis. Semin Ophthalmol. 2018;33:271–4.PubMedGoogle Scholar
  41. 41.
    CDC. Clinical advisory: ocular syphilis in the United States. 2016; https://www.cdc.gov/std/syphilis/clinicaladvisoryos2015.htm. Accessed Feb 9, 2018.
  42. 42.
    Brydak-Godowska J, Kopacz D, Borkowski PK, et al. Seroprevalence of Bartonella species in patients with ocular inflammation. Adv Exp Med Biol. 2017;1020:33–42.PubMedCrossRefGoogle Scholar
  43. 43.
    Papadia M, Aldigeri R, Herbort CP. The role of serology in active ocular toxoplasmosis. Int Ophthalmol. 2011;31(6):461–5.PubMedCrossRefGoogle Scholar
  44. 44.
    Bernard A, Kodjikian L, Abukhashabh A, et al. Diagnosis of Lyme-associated uveitis: value of serological testing in a tertiary centre. Br J Ophthalmol. 2018;102(3):369–72.PubMedCrossRefGoogle Scholar
  45. 45.
    Madsen KB, Wallmenius K, Fridman A, Pahlson C, Nilsson K. Seroprevalence against rickettsia and Borrelia species in patients with uveitis: a prospective survey. J Ophthalmol. 2017;2017:9247465.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Murray P. Serum autoantibodies and uveitis. Br J Ophthalmol. 1986;70(4):266–8.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Gallagher K, Viswanathan A, Okhravi N. Association of systemic lupus erythematosus with uveitis. JAMA Ophthalmol. 2015;133(10):1190–3.PubMedCrossRefGoogle Scholar
  48. 48.
    Lin P, Bhullar SS, Tessler HH, Goldstein DA. Immunologic markers as potential predictors of systemic autoimmune disease in patients with idiopathic scleritis. Am J Ophthalmol. 2008;145(3):463–71.PubMedCrossRefGoogle Scholar
  49. 49.
    Wladis EJ, Pappa C, Cavaliere LF. Anticyclic-citrullinated protein antibodies in the diagnosis of ophthalmic inflammatory disease. Ophthal Plast Reconstr Surg. 2011;27(1):e1–2.PubMedCrossRefGoogle Scholar
  50. 50.
    Lim MK, Sheen DH, Lee YJ, Mun YR, Park M, Shim SC. Anti-cyclic citrullinated peptide antibodies distinguish hepatitis B virus (HBV)-associated arthropathy from concomitant rheumatoid arthritis in patients with chronic HBV infection. J Rheumatol. 2009;36(4):712–6.PubMedCrossRefGoogle Scholar
  51. 51.
    Nolle B, Coners H, Duncker G. ANCA in ocular inflammatory disorders. Adv Exp Med Biol. 1993;336:305–7.PubMedCrossRefGoogle Scholar
  52. 52.
    Grange L, Dalal M, Nussenblatt RB, Sen HN. Autoimmune retinopathy. Am J Ophthalmol. 2014;157(2):266–72,e26.1PubMedCrossRefGoogle Scholar
  53. 53.
    Braithwaite T, Holder GE, Lee RW, Plant GT, Tufail A. Diagnostic features of the autoimmune retinopathies. Autoimmun Rev. 2014;13(4–5):534–8.PubMedCrossRefGoogle Scholar
  54. 54.
    Shimazaki K, Jirawuthiworavong GV, Heckenlively JR, Gordon LK. Frequency of anti-retinal antibodies in normal human serum. J Neuroophthalmol. 2008;28(1):5–11.PubMedCrossRefGoogle Scholar
  55. 55.
    Choo SY. The HLA system: genetics, immunology, clinical testing, and clinical implications. Yonsei Med J. 2007;48(1):11–23.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Zamecki KJ, Jabs DA. HLA typing in uveitis: use and misuse. Am J Ophthalmol. 2010;149(2):189–93, e182.PubMedCrossRefGoogle Scholar
  57. 57.
    Szpak Y, Vieville JC, Tabary T, et al. Spontaneous retinopathy in HLA-A29 transgenic mice. Proc Natl Acad Sci U S A. 2001;98(5):2572–6.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Donvito B, Monnet D, Tabary T, et al. A new HLA extended haplotype containing the A∗2910 allele in birdshot retinochoroidopathy: susceptibility narrowed to the HLA molecule itself. Invest Ophthalmol Vis Sci. 2010;51(5):2525–8.PubMedCrossRefGoogle Scholar
  59. 59.
    Kuiper J, Rothova A, de Boer J, Radstake T. The immunopathogenesis of birdshot chorioretinopathy; a bird of many feathers. Prog Retin Eye Res. 2015;44:99–110.PubMedCrossRefGoogle Scholar
  60. 60.
    Nussenblatt RB, Mittal KK, Ryan S, Green WR, Maumenee AE. Birdshot retinochoroidopathy associated with HLA-A29 antigen and immune responsiveness to retinal S-antigen. Am J Ophthalmol. 1982;94(2):147–58.PubMedCrossRefGoogle Scholar
  61. 61.
    Levinson RD, Rajalingam R, Park MS, et al. Human leukocyte antigen A29 subtypes associated with birdshot retinochoroidopathy. Am J Ophthalmol. 2004;138(4):631–4.PubMedCrossRefGoogle Scholar
  62. 62.
    Donvito B, Monnet D, Tabary T, et al. Different HLA class IA region complotypes for HLA-A29.2 and -A29.1 antigens, identical in birdshot retinochoroidopathy patients or healthy individuals. Invest Ophthalmol Vis Sci. 2005;46(9):3227–32.PubMedCrossRefGoogle Scholar
  63. 63.
    Vitale AT. Birdshot retinochoroidopathy. J Ophthalmic Vis Res. 2014;9(3):350–61.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Minos E, Barry RJ, Southworth S, et al. Birdshot chorioretinopathy: current knowledge and new concepts in pathophysiology, diagnosis, monitoring and treatment. Orphanet J Rare Dis. 2016;11(1):61.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Herbort CP Jr, Pavesio C, LeHoang P, et al. Why birdshot retinochoroiditis should rather be called ‘HLA-A29 uveitis’? Br J Ophthalmol. 2017;101(7):851–5.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Valls Pascual E, Fontanilla Ortega P, Vicens Bernabeu E, Martinez-Costa L, Blanco AR. Clinical characteristics, treatment and ocular complications of HLA-B27-related anterior uveitis and HLA-B27-non related anterior uveitis. Reumatol Clin. 2016;12(5):244–7.PubMedCrossRefGoogle Scholar
  67. 67.
    Chang JH, McCluskey PJ, Wakefield D. Acute anterior uveitis and HLA-B27. Surv Ophthalmol. 2005;50(4):364–88.PubMedCrossRefGoogle Scholar
  68. 68.
    Wakefield D, Yates W, Amjadi S, McCluskey P. HLA-B27 anterior uveitis: immunology and immunopathology. Ocul Immunol Inflamm. 2016;24(4):450–9.PubMedCrossRefGoogle Scholar
  69. 69.
    Reveille JD, Hirsch R, Dillon CF, Carroll MD, Weisman MH. The prevalence of HLA-B27 in the US: data from the US National Health and nutrition examination survey, 2009. Arthritis Rheum. 2012;64(5):1407–11.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Robinson PC, Claushuis TA, Cortes A, et al. Genetic dissection of acute anterior uveitis reveals similarities and differences in associations observed with ankylosing spondylitis. Arthritis Rheumatol. 2015;67(1):140–51.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Paovic J, Paovic P, Sredovic V. Behcet’s disease: systemic and ocular manifestations. Biomed Res Int. 2013;2013:247345.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Klaeger AJ, Tran VT, Hiroz CA, Morisod L, Herbort CP. Use of ultrasound biomicroscopy, indocyanine green angiography and HLA-B51 testing as adjunct methods in the appraisal of Behcet’s uveitis. Int Ophthalmol. 2004;25(1):57–63.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Levinson RD, Park MS, Rikkers SM, et al. Strong associations between specific HLA-DQ and HLA-DR alleles and the tubulointerstitial nephritis and uveitis syndrome. Invest Ophthalmol Vis Sci. 2003;44(2):653–7.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Reddy AK, Hwang YS, Mandelcorn ED, Davis JL. HLA-DR, DQ class II DNA typing in pediatric panuveitis and tubulointerstitial nephritis and uveitis. Am J Ophthalmol. 2014;157(3):678–86, e671-672.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Hettinga YM, Scheerlinck LM, Lilien MR, Rothova A, de Boer JH. The value of measuring urinary beta2-microglobulin and serum creatinine for detecting tubulointerstitial nephritis and uveitis syndrome in young patients with uveitis. JAMA Ophthalmol. 2015;133(2):140–5.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Sahin O, Ziaei A, Karaismailoglu E, Taheri N. The serum angiotensin converting enzyme and lysozyme levels in patients with ocular involvement of autoimmune and infectious diseases. BMC Ophthalmol. 2016;16:19.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Herbort CP, Rao NA, Mochizuki M, members of Scientific Committee of First International Workshop on Ocular S. International criteria for the diagnosis of ocular sarcoidosis: results of the first international workshop on ocular Sarcoidosis (IWOS). Ocul Immunol Inflamm. 2009;17(3):160–9.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Chan CC, Sen HN. Current concepts in diagnosing and managing primary vitreoretinal (intraocular) lymphoma. Discov Med. 2013;15(81):93–100.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Gonzales JA, Chan CC. Biopsy techniques and yields in diagnosing primary intraocular lymphoma. Int Ophthalmol. 2007;27(4):241–50.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Rajagopal R, Harbour JW. Diagnostic testing and treatment choices in primary vitreoretinal lymphoma. Retina. 2011;31(3):435–40.PubMedCrossRefGoogle Scholar
  81. 81.
    Raja H, Salomao DR, Viswanatha DS, Pulido JS. Prevalence of Myd88 L265p mutation in histologically proven, diffuse large B-cell vitreoretinal lymphoma. Retina. 2016;36(3):624–8.PubMedCrossRefGoogle Scholar
  82. 82.
    Bonzheim I, Giese S, Deuter C, et al. High frequency of MYD88 mutations in vitreoretinal B-cell lymphoma: a valuable tool to improve diagnostic yield of vitreous aspirates. Blood. 2015;126(1):76–9.PubMedCrossRefGoogle Scholar
  83. 83.
    Cani AK, Hovelson DH, Demirci H, Johnson MW, Tomlins SA, Rao RC. Next generation sequencing of vitreoretinal lymphomas from small-volume intraocular liquid biopsies: new routes to targeted therapies. Oncotarget. 2017;8(5):7989–98.PubMedCrossRefGoogle Scholar
  84. 84.
    Gonzales J, Doan T, Shantha JG, et al. Metagenomic deep sequencing of aqueous fluid detects intraocular lymphomas. Br J Ophthalmol. 2018;102(1):6–8.PubMedCrossRefGoogle Scholar
  85. 85.
    Tsai JH, Sukavatcharin S, Rao NA. Utility of lumbar puncture in diagnosis of Vogt-Koyanagi-Harada disease. Int Ophthalmol. 2007;27(2–3):189–94.PubMedCrossRefGoogle Scholar
  86. 86.
    Kira J. Vogt-Koyanagi-Harada disease and polymorphonuclear leukocytes pleocytosis in cerebrospinal fluid. Intern Med. 2006;45(14):839–40.PubMedCrossRefGoogle Scholar
  87. 87.
    Livrea P, Simone IL, Trojano M, Pisicchio L, Logroscino G, Rosato A. Cerebrospinal fluid (CSF) parameters and clinical course of multiple sclerosis. Riv Neurol. 1987;57(3):189–96.PubMedGoogle Scholar
  88. 88.
    Pohl D, Rostasy K, Reiber H, Hanefeld F. CSF characteristics in early-onset multiple sclerosis. Neurology. 2004;63(10):1966–7.PubMedCrossRefGoogle Scholar
  89. 89.
    Saruhan-Direskeneli G, Yentur SP, Mutlu M, et al. Intrathecal oligoclonal IgG bands are infrequently found in neuro-Behcet’s disease. Clin Exp Rheumatol. 2013;31(3 Suppl 77):25–7.PubMedGoogle Scholar
  90. 90.
    McLean BN, Miller D, Thompson EJ. Oligoclonal banding of IgG in CSF, blood-brain barrier function, and MRI findings in patients with sarcoidosis, systemic lupus erythematosus, and Behcet’s disease involving the nervous system. J Neurol Neurosurg Psychiatry. 1995;58(5):548–54.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Scott TF, Seay AR, Goust JM. Pattern and concentration of IgG in cerebrospinal fluid in neurosarcoidosis. Neurology. 1989;39(12):1637–9.PubMedCrossRefGoogle Scholar
  92. 92.
    Borucki SJ, Nguyen BV, Ladoulis CT, McKendall RR. Cerebrospinal fluid immunoglobulin abnormalities in neurosarcoidosis. Arch Neurol. 1989;46(3):270–3.PubMedCrossRefGoogle Scholar
  93. 93.
    Tong ML, Lin LR, Liu LL, et al. Analysis of 3 algorithms for syphilis serodiagnosis and implications for clinical management. Clin Infect Dis. 2014;58(8):1116–24.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Francis I. Proctor FoundationUniversity of California, San FranciscoSan FranciscoUSA
  2. 2.Department of Ophthalmology, Francis I. Proctor FoundationUniversity of California, San FranciscoSan FranciscoUSA

Personalised recommendations