Transverse Vibrations of an Axially Travelling String

  • Shashendra Kumar SahooEmail author
  • H. C. Das
  • L. N. Panda
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)


In this paper, the transverse vibration of axially travelling string is analysed. The axial velocity of the string is periodically varying about an average value. Applying direct perturbation method (MMS), an analytical solution is found. An analysis of principal parametric resonances is carried out when changing frequency of the axial velocity is zero, close to zero and twice the natural frequency. Mathematical analysis is carried out to determine the stability and instability zones. The results show that instability occurs when changing frequency of the axial velocity is close to two times the natural frequency, whereas no instability occurs when changing frequency is close to zero. A case study of bandsaw is discussed. The stability and instability zones are plotted for the first five natural frequencies.


Axially travelling string Method of multiple scales (MMS) Parametric resonance Stability 



Cross-sectional area of the string


Length of the string


Mass density of the string


Tension force in the string


Initial tension force in the string


Pulley support parameter


Dimensionless mean velocity of the string

\( y = \frac{{y^{*} }}{L} \)

Dimensionless transverse displacement of the string

\( x = \frac{{x^{*} }}{L} \)

Dimensionless spatial variable

\( t = (1/{\text{L}})\sqrt {(P_{0} /\rho A} )t^{ * } \)

Dimensionless time

\( \Omega ^{*} = \frac{1}{L}\sqrt {\frac{{P_{0} }}{\rho A}}\Omega \)

Dimensional frequency of velocity variation

\( v = v^{*} /\sqrt {P_{0} /\rho A} \)

Dimensionless axial velocity of the string


Dimensionless parameter <<1


Detuning parameter


Mode shapes of the travelling string


Natural frequency of the travelling string


  1. 1.
    Swope RD, Ames WF (1963) Vibrations of a moving thread line. J Franklin Inst 275:36–55CrossRefGoogle Scholar
  2. 2.
    Mote CDJ (1965) A study of band-saw vibrations. J Franklin Inst 279(6):431–444CrossRefGoogle Scholar
  3. 3.
    Ulsoy AG, Mote CDJ (1980) Analysis of band-saw vibration. Wood Sci 13:1–10Google Scholar
  4. 4.
    Mote CDJ (1966) On the nonlinear oscillation of an axially moving string. J Appl Mech 33:463–464CrossRefGoogle Scholar
  5. 5.
    Thurman AL, Mote CDJ (1969) Free, periodic, nonlinear oscillation of an axially moving strip. J Appl Mech 36:83–91CrossRefGoogle Scholar
  6. 6.
    Wickert JA, Mote CDJ (1990) Classical vibration analysis of axially moving continua. J Appl Mech ASME 57:738–744CrossRefGoogle Scholar
  7. 7.
    Wickert JA (1994) Response solutions for the vibration of a travelling string on an elastic foundation. J Vib Acoust 116:137–199CrossRefGoogle Scholar
  8. 8.
    Wicket JA (1992) Non-linear vibration of a travelling tensioned beam. Int J Non-Linear Mech 27:503–517CrossRefGoogle Scholar
  9. 9.
    Pakdemirli M, Ulsoy AG, Ceranoglu A (1994) Transverse vibration of an axially accelerating string. J Sound Vib 169(2):179–196CrossRefGoogle Scholar
  10. 10.
    Pakdemirli M, Ulsoy AG (1997) Stability analysis of an axially accelerating string. J Sound Vib 203:815–832CrossRefGoogle Scholar
  11. 11.
    Chen L-Q, Zu JW, Wu J, Yang X-D (2004) Transverse vibration of an axially accelerating viscoelastic string with geometric nonlinearity. J Eng Math 48:171–182CrossRefGoogle Scholar
  12. 12.
    Kesimili A, Ozkaya E, Bagdatli SM (2015) Nonlinear vibrations of spring supported axially moving string. Nonlinear Dyn 81:1523–1534MathSciNetCrossRefGoogle Scholar
  13. 13.
    Ghayesh MH (2009) Stability characteristics of an axially accelerating string supported by an elastic foundation. Mech Mach Theory 44:1964–1979CrossRefGoogle Scholar
  14. 14.
    Ghayesh MH (2008) Nonlinear transversal vibration and stability of an axially moving string supported by a partial viscoelastic guide. J Sound Vib 314:757–774Google Scholar
  15. 15.
    Ghayesh MH, Moradian N (2011) Nonlinear dynamic response of axially moving, stretched viscoelasic string. Arch Appl Mech 81:781–799CrossRefGoogle Scholar
  16. 16.
    Oz HR, Pakdermili M (1999) Vibrations of axially moving beam with time-dependent velocity. J Sound Vib 227(2):239–257Google Scholar
  17. 17.
    Oz HR, Pakdermili M, Boyaci H (2001) Non-linear vibrations of an axially moving beam with time-dependent velocity. Int J Non-linear Mech 36:107–115CrossRefGoogle Scholar
  18. 18.
    Ghayesh MH (2012) Stability and bifurcations of an axially moving beam with an intermediate spring support. Nonlinear Dyn 69:193–210MathSciNetCrossRefGoogle Scholar
  19. 19.
    Ghayesh MH, Ambali M, Paidouissis MP (2012) Nonlinear vibrations and stability of an axially moving beam with an intermediate spring support: two-dimensional analysis. Nonlinear Dyn 70(1):335–354MathSciNetCrossRefGoogle Scholar
  20. 20.
    Sahoo B, Panda LN, Pohit G (2013) Parametric and internal resonances of an axially moving beam with time dependent velocity. Model Simul Eng 18 p. Article ID 919517Google Scholar
  21. 21.
    Chakraborty G, Mallik AK, Hatwal H (1999) Non-linear vibration of a travelling beam. Int J Non-Linear Mech 34:655–670CrossRefGoogle Scholar
  22. 22.
    Chakraborty G, Mallick AK (1999) Non-linear vibration of travelling beam having an intermediate guide. Nonlinear Dyn 20:247–265CrossRefGoogle Scholar
  23. 23.
    Mao X-Y, Ding H, Chen L-Q (2019) Internal resonance of a super critically axially moving beam subjected to the pulsating speed. Nonlinear Dyn 95:631–651CrossRefGoogle Scholar
  24. 24.
    Panda LN, Kar RC (2007) Nonlinear dynamics of a pipe conveying pulsating fluid with parametric and internal resonances. Nonlinear Dyn 49:9–30CrossRefGoogle Scholar
  25. 25.
    Panda LN, Kar RC (2008) Nonlinear dynamics of a pipe conveying pulsating fluid with combination, principal parametric and internal resonances. J Sound Vib 309:375–406CrossRefGoogle Scholar
  26. 26.
    Oz HR (2001) Non-linear vibrations and stability analysis of tensioned pipes conveying fluid with variable velocity. Int J Non-Linear Mech 36(1):1031–1039CrossRefGoogle Scholar
  27. 27.
    Oz HR, Boyaci H (2000) Transverse vibrations of tensioned pipe conveying fluid with time-dependent velocity. J Sound Vib 236(2):259–276CrossRefGoogle Scholar
  28. 28.
    Ghayesh MH, Paidouissis MP, Modarres-Sadeghi Y (2011) Three-dimensional dynamics of a fluid conveying cantilevered pipe with an additional spring support and an end mass. J Sound Vib 330:2869–2899CrossRefGoogle Scholar
  29. 29.
    Ghayesh MH, Paidouissis MP, Ambali Marco (2013) Nonlinear dynamics of cantilevered extensible pipes conveying fluid. J Sound Vib 332:6405–6418CrossRefGoogle Scholar
  30. 30.
    Zhou S, Yu T-J, Yang X-D, Zhang W (2017) Global dynamics of pipes conveying pulsating fluid in the supercritical regime. Int J Appl Mech 9:1750029 (29 p)CrossRefGoogle Scholar
  31. 31.
    Javadi M, Noorian MA, Irani S (2019) Stability analysis of pipes conveying fluid with fractional viscoelastic model. Mechanica 1–12Google Scholar
  32. 32.
    Nayfeh AH (1998) Nonlinear interactions. Wiley, New YorkGoogle Scholar
  33. 33.
    Nayfeh AH, Mook DT (1979) Nonlinear oscillations. Wiley, New YorkzbMATHGoogle Scholar
  34. 34.
    Nayfeh AH (1981) Introduction to perturbation techniques. Wiley, New YorkzbMATHGoogle Scholar
  35. 35.
    Nayfeh AH, Balachandran B (1995) Applied nonlinear dynamics: analytical computational and experimental methods. Wiley-Interscience, New YorkCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Shashendra Kumar Sahoo
    • 1
    Email author
  • H. C. Das
    • 2
  • L. N. Panda
    • 3
  1. 1.Department of Mechanical EngineeringInstitute of Technical Education and Research, SIKSHA ‘O’ ANUSANDHAN Deemed to be UniversityBhubaneswarIndia
  2. 2.Department of Mechanical EngineeringN.I.TShillongIndia
  3. 3.Department of Mechanical EngineeringC.E.T, BPUTBhubaneswarIndia

Personalised recommendations