Advertisement

Chitosan-Based Systems for Gene Delivery

  • Divya Sharma
  • Sanjay Arora
  • Bruna dos Santos Rodrigues
  • Sushant Lakkadwala
  • Amrita Banerjee
  • Jagdish SinghEmail author
Chapter
  • 45 Downloads

Abstract

Conventional methods for gene delivery with non-viral or viral delivery carriers are beset with various disadvantages such as immune reactions, low transfection efficiency, and toxicity. Innumerable methods are under investigation to help improve the development of biodegradable polymers with low cytotoxicity, transcellular transport ability, favorable physicochemical properties, ease of modification by targeting ligands, and high transfection efficiency. Chitosan is a biodegradable polymer that has attained a lot of attention as a gene delivery vector due to its ease of modification, high transfection efficiency, and exceptional biocompatibility. Chitosan being cationic in nature can form polyelectrolyte complexes with negatively charged DNA allowing nucleic acid condensation along with protection from nucleases, which is widely beneficial in gene therapies. Moreover, factors such as pH, degree of acetylation, N/P ratio, and surface modifications can be suitably investigated to improve transfection efficiency of chitosan-based vectors. Various chitosan-based gene delivery systems developed in the past decade including chitosan-based polyplexes, nanoparticles, and DNA vaccines have been discussed in this chapter. The goal of this book chapter is to review recent advancements in gene therapy with major focus on chitosan and its applications as a gene delivery vector.

Keywords

Non-viral vectors Gene therapy DNA vaccine Chitosan-based nanoparticles 

Notes

Acknowledgments

We would like to acknowledge the funding support from the National Institutes of Health (NIH) grant # RO1AG051574.

References

  1. Agirre M, Zarate J, Puras G, Ojeda E, Pedraz JL (2015) Improving transfection efficiency of ultrapure oligochitosan/DNA polyplexes by medium acidification. Drug Deliv 22:100–110PubMedCrossRefGoogle Scholar
  2. Ahmad M, Manzoor K, Ikram S (2018) Applications of nanocomposite materials in drug delivery. Woodhead Publishing, Cambridge, MA, pp 27–38.  https://doi.org/10.1016/B978-0-12-813741-3.00002-9 CrossRefGoogle Scholar
  3. Aiuti A et al (2009) Gene therapy for immunodeficiency due to adenosine deaminase deficiency. N Engl J Med 360:447–458PubMedCrossRefGoogle Scholar
  4. Aiuti A et al (2013) Lentiviral hematopoietic stem cell gene therapy in patients with wiskott-Aldrich syndrome. Science (80-) 341:1233151CrossRefGoogle Scholar
  5. Alameh M et al (2018) SiRNA delivery with chitosan: influence of chitosan molecular weight, degree of deacetylation, and amine to phosphate ratio on in vitro silencing efficiency, hemocompatibility, biodistribution, and in vivo efficacy. Biomacromolecules 19:112–131PubMedCrossRefGoogle Scholar
  6. Al-dosari MS, Gao X (2009) Nonviral gene delivery: principle, limitations, and recent progress. AAPS J 11:671–681PubMedPubMedCentralCrossRefGoogle Scholar
  7. Alton EWFW et al (2013) A randomised, double-blind, placebo-controlled phase IIB clinical trial of repeated application of gene therapy in patients with cystic fibrosis. Thorax 68:1075–1077PubMedCrossRefGoogle Scholar
  8. Aspden TJ et al (1997) Chitosan as a nasal delivery system: the effect of chitosan solutions on in vitro and in vivo mucociliary transport rates in human turbinates and volunteers. J Pharm Sci.  https://doi.org/10.1021/js960182o PubMedCrossRefGoogle Scholar
  9. Badding MA, Vaughan EE, Dean DA (2012) Transcription factor plasmid binding modulates microtubule interactions and intracellular trafficking during gene transfer. Gene Ther.  https://doi.org/10.1038/gt.2011.96 PubMedPubMedCentralCrossRefGoogle Scholar
  10. Badding MA, Lapek JD, Friedman AE, Dean DA (2013) Proteomic and functional analyses of protein-DNA complexes during gene transfer. Mol Ther.  https://doi.org/10.1038/mt.2012.231 PubMedCrossRefGoogle Scholar
  11. Baghdan E et al (2018) Lipid coated chitosan-DNA nanoparticles for enhanced gene delivery. Int J Pharm 535:473–479PubMedCrossRefGoogle Scholar
  12. Bao S, Thrall BD, Gies RA, Miller DL (1998) In vivo transfection of melanoma cells by lithotripter shock waves. Cancer ResGoogle Scholar
  13. Bashyal S, Noh G, Keum T, Choi YW, Lee S (2016) Cell penetrating peptides as an innovative approach for drug delivery; then, present and the future. J Pharm Investig 46:205–220CrossRefGoogle Scholar
  14. Bekeredjian R, Grayburn PA, Shohet RV (2005) Use of ultrasound contrast agents for gene or drug delivery in cardiovascular medicine. J Am Coll Cardiol.  https://doi.org/10.1016/j.jacc.2004.08.067 PubMedCrossRefGoogle Scholar
  15. Bett AJ, Haddara W, Prevec L, Graham FL (1994) An efficient and flexible system for construction of adenovirus vectors with insertions or deletions in early regions 1 and 3. Proc Natl Acad Sci U S A 91:8802–8806PubMedPubMedCentralCrossRefGoogle Scholar
  16. Blaese RM et al (1995) T lymphocyte-directed gene therapy for ADA- SCID: initial trial results after 4 years. Science (80-) 270:475–480CrossRefGoogle Scholar
  17. Boonthum C et al (2018) Gonadotropin-releasing hormone-modified chitosan as a safe and efficient gene delivery vector for spermatogonia cells. Reprod Domest Anim 53:23–28PubMedCrossRefGoogle Scholar
  18. Boussif O et al (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci.  https://doi.org/10.1073/pnas.92.16.7297 CrossRefGoogle Scholar
  19. Brentjens RJ et al (2013) CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med 5:177ra38PubMedPubMedCentralCrossRefGoogle Scholar
  20. Breunig M, Lungwitz U, Liebl R, Goepferich A (2007) Breaking up the correlation between efficacy and toxicity for nonviral gene delivery. Proc Natl Acad Sci.  https://doi.org/10.1073/pnas.0703882104 CrossRefGoogle Scholar
  21. Breunig M et al (2008) Mechanistic investigation of poly(ethylene imine)-based siRNA delivery: disulfide bonds boost intracellular release of the cargo. J Control Release.  https://doi.org/10.1016/j.jconrel.2008.05.016 PubMedCrossRefGoogle Scholar
  22. Buchbinder SP et al (2008) Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the step study): a double-blind, randomised, placebo-controlled, test-of-concept trial. Lancet.  https://doi.org/10.1016/S0140-6736(08)61591-3 CrossRefGoogle Scholar
  23. Burton EA, Bai Q, Goins WF, Glorioso JC (2002) Replication-defective genomic herpes simplex vectors: design and production. Curr Opin Biotechnol 13:424–428PubMedCrossRefGoogle Scholar
  24. Buschmann MD et al (2013) Chitosans for delivery of nucleic acids. Adv Drug Deliv Rev.  https://doi.org/10.1016/j.addr.2013.07.005 PubMedCrossRefGoogle Scholar
  25. Buys MG, Plessis L, Marais A, Kotzé A, Hamman J (2013) Direct compression of chitosan: process and formulation factors to improve powder flow and tablet performance. Curr Drug Deliv 10:348–356PubMedCrossRefGoogle Scholar
  26. Cao W et al (2005) Effects of the degree of deacetylation on the physicochemical properties and Schwann cell affinity of chitosan films. J Biomater Appl 20:157–177CrossRefGoogle Scholar
  27. Carpentier AC et al (2012) Effect of alipogene tiparvovec (aav1-lpls447x) on postprandial chylomicron metabolism in lipoprotein lipase-deficient patients. J Clin Endocrinol Metab 97:1635–1644PubMedCrossRefGoogle Scholar
  28. Cassaday RD et al (2007) A phase I study of immunization using particle-mediated epidermal delivery of genes for gp100 and GM-CSF into uninvolved skin of melanoma patients. Clin Cancer Res.  https://doi.org/10.1158/1078-0432.CCR-06-2039 PubMedCrossRefGoogle Scholar
  29. Cauchie HM (2002) Chitin production by arthropods in the hydrosphere. Hydrobiologia.  https://doi.org/10.1023/A:1015615819301 CrossRefGoogle Scholar
  30. Cavazzana-Calvo M et al (2010) Transfusion independence and HMGA2 activation after gene therapy of human β-thalassaemia. Nature 467:318–322PubMedPubMedCentralCrossRefGoogle Scholar
  31. Chang KL, Higuchi Y, Kawakami S, Yamashita F, Hashida M (2011) Development of lysine-histidine dendron modified chitosan for improving transfection efficiency in HEK293 cells. J Control Release 156:195–202PubMedCrossRefGoogle Scholar
  32. Chatelet C, Damour O, Domard A (2001) Influence of the degree of acetylation on some biological properties of chitosan films. Biomaterials 22:261–268PubMedCrossRefGoogle Scholar
  33. Chen S et al (2006) Efficient gene delivery to pancreatic islets with ultrasonic microbubble destruction technology. Proc Natl Acad Sci.  https://doi.org/10.1073/pnas.0602921103 CrossRefGoogle Scholar
  34. Chen J, Guo Z, Tian H, Chen X (2016) Production and clinical development of nanoparticles for gene delivery. Mol Ther – Methods Clin Dev 3:16023PubMedPubMedCentralCrossRefGoogle Scholar
  35. Cheung RCF, Ng TB, Wong JH, Chan WY (2015) Chitosan: an update on potential biomedical and pharmaceutical applications. Mar Drugs 13:5156–5186PubMedPubMedCentralCrossRefGoogle Scholar
  36. Chiu SJ, Ueno NT, Lee RJ (2004) Tumor-targeted gene delivery via anti-HER2 antibody (trastuzumab, Herceptin®) conjugated polyethylenimine. J Control Release.  https://doi.org/10.1016/j.jconrel.2004.03.019 PubMedCrossRefGoogle Scholar
  37. Choate KA, Khavari PA (1997) Direct cutaneous gene delivery in a human genetic skin disease. Hum Gene Ther.  https://doi.org/10.1089/hum.1997.8.14-1659 PubMedCrossRefGoogle Scholar
  38. Chung MJ, Park JK, Park YI (2012) Anti-inflammatory effects of low-molecular weight chitosan oligosaccharides in IgE–antigen complex-stimulated RBL-2H3 cells and asthma model mice. Int Immunopharmacol 12:453–459PubMedCrossRefGoogle Scholar
  39. Cifuentes-Rius A et al (2017) In vivo fate of carbon nanotubes with different physicochemical properties for gene delivery applications. ACS Appl Mater Interfaces 9:11461–11471PubMedCrossRefGoogle Scholar
  40. Coll J-L et al (1999) In vivo delivery to tumors of DNA complexed with linear Polyethylenimine. Hum Gene Ther.  https://doi.org/10.1089/10430349950017662 PubMedCrossRefGoogle Scholar
  41. Collins M, Thrasher A (2015) Gene therapy: progress and predictions. Proc R Soc B Biol Sci 282:20143003CrossRefGoogle Scholar
  42. Coma V, Deschamps A, Martial-Gros A (2003) Bioactive packaging materials from edible chitosan polymer – antimicrobial activity assessment on dairy-related contaminants. J Food Sci.  https://doi.org/10.1111/j.1365-2621.2003.tb05806.x CrossRefGoogle Scholar
  43. Corbet C et al (2016) Delivery of siRNA targeting tumor metabolism using non-covalent PEGylated chitosan nanoparticles: identification of an optimal combination of ligand structure, linker and grafting method. J Control Release.  https://doi.org/10.1016/j.jconrel.2015.12.020 PubMedCrossRefGoogle Scholar
  44. Corsi K, Chellat F, Yahia L, Fernandes JC (2003) Mesenchymal stem cells, MG63 and HEK293 transfection using chitosan-DNA nanoparticles. Biomaterials.  https://doi.org/10.1016/S0142-9612(02)00507-0 PubMedCrossRefGoogle Scholar
  45. Danthinne X, Imperiale MJ (2000) Production of first generation adenovirus vectors: a review. Gene Ther 7:1707–1714PubMedCrossRefGoogle Scholar
  46. Daya S, Berns KI (2008) Gene therapy using adeno-associated virus vectors. Clin Microbiol Rev 21:583–593PubMedPubMedCentralCrossRefGoogle Scholar
  47. De Figueiredo IR, Freire JM, Flores L, Veiga AS, Castanho MARB (2014) Cell-penetrating peptides: a tool for effective delivery in gene-targeted therapies. IUBMB Life 66:182–194PubMedCrossRefGoogle Scholar
  48. Dean DA (1997) Import of plasmid DNA into the nucleus is sequence specific. Exp Cell Res.  https://doi.org/10.1006/excr.1996.3427 PubMedCrossRefGoogle Scholar
  49. Deng R-H, Qiu B, Zhou P-H (2018) Chitosan/hyaluronic acid/plasmid-DNA nanoparticles encoding interleukin-1 receptor antagonist attenuate inflammation in synoviocytes induced by interleukin-1 beta. J Mater Sci Mater Med 29:155PubMedPubMedCentralCrossRefGoogle Scholar
  50. DePolo NJ et al (2000) VSV-G pseudotyped lentiviral vector particles produced in human cells are inactivated by human serum. Mol Ther 2:218–222PubMedCrossRefGoogle Scholar
  51. Deptuch T, Dams-Kozlowska H (2017) Silk materials functionalized via genetic engineering for biomedical applications. Materials (Basel) 10:1–21CrossRefGoogle Scholar
  52. Diebold Y et al (2007) Ocular drug delivery by liposome-chitosan nanoparticle complexes (LCS-NP). Biomaterials.  https://doi.org/10.1016/j.biomaterials.2006.11.028 PubMedCrossRefGoogle Scholar
  53. Ding Y et al (2014) Gold nanoparticles for nucleic acid delivery. Mol Ther 22:1075–1083PubMedPubMedCentralCrossRefGoogle Scholar
  54. Dizaj SM, Jafari S, Khosroushahi AY (2014) A sight on the current nanoparticle-based gene delivery vectors. Nanoscale Res Lett 9:1–9CrossRefGoogle Scholar
  55. Dodane V, Amin Khan M, Merwin JR (1999) Effect of chitosan on epithelial permeability and structure. Int J Pharm 182:21–32CrossRefGoogle Scholar
  56. dos Santos Rodrigues B, Oue H, Banerjee A, Kanekiyo T, Singh J (2018) Dual functionalized liposome-mediated gene delivery across triple co-culture blood brain barrier model and specific in vivo neuronal transfection. J Control Release 286:264–278PubMedCrossRefGoogle Scholar
  57. Dowty ME, Williams P, Zhang G, Hagstrom JE, Wolff JA (1995) Plasmid DNA entry into postmitotic nuclei of primary rat myotubes. PNAS.  https://doi.org/10.1073/pnas.92.10.4572 CrossRefGoogle Scholar
  58. Drape RJ et al (2006) Epidermal DNA vaccine for influenza is immunogenic in humans. Vaccine.  https://doi.org/10.1016/j.vaccine.2005.08.012 PubMedCrossRefGoogle Scholar
  59. El-Hefian EA, Elgannoudi ES, Mainal A, Yahaya AH (2010) Characterization of chitosan in acetic acid: rheological and thermal studies. Turk J Chem 34:47–56Google Scholar
  60. Epstein AL (2009) Progress and prospects: biological properties and technological advances of herpes simplex virus type 1-based amplicon vectors. Gene Ther 16:709–715PubMedCrossRefGoogle Scholar
  61. Fang N, Chan V, Mao HQ, Leong KW (2001) Interactions of phospholipid bilayer with chitosan: effect of molecular weight and pH. Biomacromolecules.  https://doi.org/10.1021/bm015548s PubMedCrossRefGoogle Scholar
  62. Felgner PL et al (1987) Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci.  https://doi.org/10.1073/pnas.84.21.7413 CrossRefGoogle Scholar
  63. Flotte TR (2004) Gene therapy progress and prospects: recombinant adeno-associated virus (rAAV) vectors. Gene Ther 11:805–810PubMedCrossRefGoogle Scholar
  64. Fraley R, Subramani S, Berg P, Papahadjopoulos D (1980) Introduction of liposome-encapsulated SV40 DNA into cells. J Biol Chem.  https://doi.org/10.1016/j.carbpol.2010.11.047 CrossRefGoogle Scholar
  65. Funkhouser JD, Aronson NN (2007) Chitinase family GH18: evolutionary insights from the genomic history of a diverse protein family. BMC Evol Biol 7:1–16CrossRefGoogle Scholar
  66. Gao S et al (2003) Galactosylated low molecular weight chitosan as DNA carrier for hepatocyte-targeting. Int J Pharm.  https://doi.org/10.1016/S0378-5173(03)00082-6 PubMedCrossRefGoogle Scholar
  67. Gao Y et al (2008) Arginine-chitosan/DNA self-assemble nanoparticles for gene delivery: in vitro characteristics and transfection efficiency. Int J Pharm.  https://doi.org/10.1016/j.ijpharm.2008.03.037 PubMedCrossRefGoogle Scholar
  68. Glasspool-Malone J, Malone RW (1999) Marked enhancement of direct respiratory tissue transfection by Aurintricarboxylic acid. Hum Gene Ther.  https://doi.org/10.1089/10430349950017707 PubMedCrossRefGoogle Scholar
  69. Gonçalves GAR, Paiva RMA (2017) Gene therapy: advances, challenges and perspectives. Einstein (São Paulo) 15:369–375CrossRefGoogle Scholar
  70. Goula D et al (1998) Polyethylenimine-based intravenous delivery of transgenes to mouse lung. Gene Ther.  https://doi.org/10.1038/sj.gt.3300717 PubMedCrossRefGoogle Scholar
  71. Guidotti G, Brambilla L, Rossi DC-PP (2017) From basic research to clinics. Trends Pharmacol Sci 38:406–424PubMedCrossRefGoogle Scholar
  72. Guliyeva U, Oner F, Ozsoy S, Haziroglu R (2006) Chitosan microparticles containing plasmid DNA as potential oral gene delivery system. Eur J Pharm Biopharm 62:17–25PubMedCrossRefGoogle Scholar
  73. Gupta S et al (2018) Novel combination BMP7 and HGF gene therapy instigates selective myofibroblast apoptosis and reduces corneal haze in vivo. Investig Ophthalmol Vis Sci 59:1045–1057CrossRefGoogle Scholar
  74. Gurunathan S, Klinman DM, Seder RA (2000) DNA vaccines: immunology, application, and optimization. Annu Rev Immunol 18:927–974PubMedCrossRefGoogle Scholar
  75. Habib NA et al (1996) Preliminary report: the short-term effects of direct p53 DNA injection in primary hepatocellular carcinomas. Cancer Detect Prev 20:103–107PubMedGoogle Scholar
  76. Hacein-Bey-Abina S et al (2008) Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest 118:3132–3142PubMedPubMedCentralCrossRefGoogle Scholar
  77. Hafner A, Dürrigl M, Pepić I, Filipović-Grčić J (2011) Short- and long-term stability of lyophilised melatonin-loaded lecithin/chitosan nanoparticles. Chem Pharm Bull (Tokyo) 59:1117–1123CrossRefGoogle Scholar
  78. Hao QZ, Hen JC, Cai-xia HE, Ang GT (2009) N-P ratio significantly influences the transfection efficiency and cytotoxicity of a PEI-chitosan-DNA complex.pdf. Biol Pharm Bull 32:706–710CrossRefGoogle Scholar
  79. Hardee CL, Arévalo-Soliz LM, Hornstein BD, Zechiedrich L (2017) Advances in non-viral DNA vectors for gene therapy. Genes (Basel) 8Google Scholar
  80. Harding SE (2010) Some observations on the effects of bioprocessing on biopolymer stability. J Drug Target 18:732–740PubMedCrossRefGoogle Scholar
  81. Harish Prashanth KV, Tharanathan RN (2007) Chitin/chitosan: modifications and their unlimited application potential-an overview. Trends Food Sci Technol.  https://doi.org/10.1016/j.tifs.2006.10.022 CrossRefGoogle Scholar
  82. Heller LC, Ugen K, Heller R (2005) Electroporation for targeted gene transfer. Expert Opin Drug Deliv 2:255–268PubMedCrossRefGoogle Scholar
  83. Hermonat PL, Muzyczka N (1984) Use of adeno-associated virus as a mammalian DNA cloning vector: transduction of neomycin resistance into mammalian tissue culture cells. Proc Natl Acad Sci U S A 81:6466–6470PubMedPubMedCentralCrossRefGoogle Scholar
  84. Hersey P, Gallagher S (2014) Intralesional immunotherapy for melanoma. J Surg Oncol.  https://doi.org/10.1002/jso.23494 PubMedCrossRefGoogle Scholar
  85. Herweijer H, Wolff JA (2003) Progress and prospects: naked DNA gene transfer and therapy. Gene Ther 10:453–458PubMedCrossRefGoogle Scholar
  86. Hickman MA et al (1994) Gene expression following direct injection of DNA into liver 915. Hum Gene Ther.  https://doi.org/10.1089/hum.1994.5.12-1477 PubMedCrossRefGoogle Scholar
  87. Hill AVS et al (2010) Prime-boost vectored malaria vaccines: Progress and prospects. Hum Vaccin 6:78–83PubMedCrossRefGoogle Scholar
  88. Hirano S et al (1991) Enhancement of serum lysozyme activity by injecting a mixture of chitosan oligosaccharides intravenously in rabbits. Agric Biol Chem 55:2623–2625Google Scholar
  89. Hood JD et al (2002) Tumor regression by targeted gene delivery to the neovasculature. Science (80-).  https://doi.org/10.1126/science.1070200 PubMedCrossRefGoogle Scholar
  90. Hou CC et al (2005) Ultrasound-microbubble-mediated gene transfer of inducible Smad7 blocks transforming growth factor-β signaling and fibrosis in rat remnant kidney. Am J Pathol.  https://doi.org/10.1016/S0002-9440(10)62297-3 PubMedPubMedCentralCrossRefGoogle Scholar
  91. Howard KA et al (2009) Chitosan/siRNA nanoparticle–mediated TNF-α knockdown in peritoneal macrophages for anti-inflammatory treatment in a murine arthritis model. Mol Ther 17:162–168PubMedCrossRefGoogle Scholar
  92. Hu J et al (2016) A biodegradable polyethylenimine-based vector modified by trifunctional peptide R18 for enhancing gene transfection efficiency in vivo. PLoS One 11:1–21Google Scholar
  93. Huang M, Fong CW, Khor E, Lim LY (2005) Transfection efficiency of chitosan vectors: effect of polymer molecular weight and degree of deacetylation. J Control Release 106:391–406PubMedCrossRefGoogle Scholar
  94. Huber PE, Jenne J, Debus J, Wannenmacher MF, Pfisterer P (1999) A comparison of shock wave and sinusoidal-focused ultrasound-induced localized transfection of HeLa cells. Ultrasound Med Biol.  https://doi.org/10.1016/S0301-5629(99)00099-X CrossRefGoogle Scholar
  95. Hynynen K, McDannold N, Martin H, Jolesz FA, Vykhodtseva N (2003) The threshold for brain damage in rabbits induced by bursts of ultrasound in the presence of an ultrasound contrast agent (Optison®). Ultrasound Med Biol.  https://doi.org/10.1016/S0301-5629(02)00741-X CrossRefGoogle Scholar
  96. Ibraheem D, Elaissari A, Fessi H (2014) Gene therapy and DNA delivery systems. Int J Pharm 459:70–83PubMedCrossRefGoogle Scholar
  97. Illum L (1998) Chitosan and its use as a pharmaceutical excipient. Pharm Res.  https://doi.org/10.1023/A:1011929016601 CrossRefGoogle Scholar
  98. Issa MM et al (2006) Targeted gene delivery with trisaccharide-substituted chitosan oligomers in vitro and after lung administration in vivo. J Control Release.  https://doi.org/10.1016/j.jconrel.2006.06.029 PubMedCrossRefGoogle Scholar
  99. Jayakumar R et al (2010) Chitosan conjugated DNA nanoparticles in gene therapy. Carbohydr Polym 79:1–8CrossRefGoogle Scholar
  100. Jayant RD et al (2016) Current status of non-viral gene therapy for CNS disorders HHS public access. Expert Opin Drug Deliv 13:1433–1445PubMedPubMedCentralCrossRefGoogle Scholar
  101. Jean M et al (2009) Chitosan-plasmid nanoparticle formulations for IM and SC delivery of recombinant FGF-2 and PDGF-BB or generation of antibodies. Gene Ther 16:1097–1110PubMedCrossRefGoogle Scholar
  102. Ji J et al (2014) Chemical modifications of chitosan and its applications. Polym-Plast Technol Eng 53:1494–1505CrossRefGoogle Scholar
  103. Jiang HL et al (2008) Galactosylated poly(ethylene glycol)-chitosan-graft-polyethylenimine as a gene carrier for hepatocyte-targeting. J Control Release.  https://doi.org/10.1016/j.jconrel.2008.07.029 PubMedCrossRefGoogle Scholar
  104. Jiang H-L, Cui P-F, Xie R-L, Cho C-S (2014) Chapter six: chemical modification of chitosan for efficient gene therapy. In: Marine carbohydrates: fundamentals and applications, part B, vol 73. Elsevier Inc., Saint LouisGoogle Scholar
  105. Jin L, Zeng X, Liu M, Deng Y, He N (2014) Current progress in gene delivery technology based on chemical methods and nano-carriers. Theranostics.  https://doi.org/10.7150/thno.6914 PubMedPubMedCentralCrossRefGoogle Scholar
  106. Jin H et al (2016) Folate-chitosan nanoparticles loaded with ursolic acid confer anti-breast cancer activities in vitro and in vivo. Sci Rep.  https://doi.org/10.1038/srep30782
  107. Jones C, Crane D, Lemercinier X, Bolgiano B, Yost S (1996) Physicochemical studies of the structure and stability of poly-saccharide-protein conjugate vaccines. Dev Biol Stand 87:143–151PubMedGoogle Scholar
  108. JONES RA et al (2003) Poly(2-alkylacrylic acid) polymers deliver molecules to the cytosol by pH-sensitive disruption of endosomal vesicles. Biochem J.  https://doi.org/10.1042/bj20021945 PubMedPubMedCentralCrossRefGoogle Scholar
  109. Kadiyala I, Loo Y, Roy K, Rice J, Leong KW (2010) Transport of chitosan-DNA nanoparticles in human intestinal M-cell model versus normal intestinal enterocytes. Eur J Pharm Sci.  https://doi.org/10.1016/j.ejps.2009.11.002 PubMedCrossRefPubMedCentralGoogle Scholar
  110. Kalos M et al (2011) T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med 3:95ra73PubMedPubMedCentralCrossRefGoogle Scholar
  111. Kam HM, Khor E, Lim LY (1999) Storage of partially deacetylated chitosan films. J Biomed Mater Res 48:881–888PubMedCrossRefPubMedCentralGoogle Scholar
  112. Kamimura K, Suda T, Zhang G, Liu D (2011) Advances in gene delivery systems. Pharm Med 25:293–306CrossRefGoogle Scholar
  113. Katas H, Alpar HO (2006) Development and characterisation of chitosan nanoparticles for siRNA delivery. J Control Release.  https://doi.org/10.1016/j.jconrel.2006.07.021 PubMedCrossRefPubMedCentralGoogle Scholar
  114. Kato Y, Onishi H, Machida Y (2003) Application of chitin and chitosan derivatives in the pharmaceutical field. Curr Pharm Biotechnol.  https://doi.org/10.2174/1389201033489748 PubMedCrossRefPubMedCentralGoogle Scholar
  115. Kawabata K, Takakura Y, Hashida M (1995) The fate of plasmid DNA after intravenous injection in mice: involvement of scavenger receptors in its hepatic uptake. Pharm Res.  https://doi.org/10.1023/A:1016248701505 PubMedCrossRefPubMedCentralGoogle Scholar
  116. Kean T, Thanou M (2010) Biodegradation, biodistribution and toxicity of chitosan. Adv Drug Deliv Rev.  https://doi.org/10.1016/j.addr.2009.09.004 PubMedCrossRefPubMedCentralGoogle Scholar
  117. Kean T, Thanou M (2011) Renewable resources for functional polymers and biomaterials: polysaccharides, proteins and polyesters, pp 327–361.  https://doi.org/10.1039/9781849733519-00292 CrossRefGoogle Scholar
  118. Khalil IA (2006) Uptake pathways and subsequent intracellular trafficking in nonviral gene delivery. Pharmacol Rev.  https://doi.org/10.1124/pr.58.1.8 PubMedCrossRefPubMedCentralGoogle Scholar
  119. Khatri K, Goyal AK, Gupta PN, Mishra N, Vyas SP (2008) Plasmid DNA loaded chitosan nanoparticles for nasal mucosal immunization against hepatitis B. Int J Pharm 354:235–241PubMedCrossRefGoogle Scholar
  120. Kiang T, Wen J, Lim HW, Leong KW (2004) The effect of the degree of chitosan deacetylation on the efficiency of gene transfection. Biomaterials.  https://doi.org/10.1016/j.biomaterials.2003.12.036 PubMedCrossRefGoogle Scholar
  121. Kim TH, Ihm JE, Choi YJ, Nah JW, Cho CS (2003) Efficient gene delivery by urocanic acid-modified chitosan. J Control Release.  https://doi.org/10.1016/j.jconrel.2003.08.017 PubMedCrossRefGoogle Scholar
  122. Kim TG et al (2004) Gene transfer into human hepatoma cells by receptor-associated protein/polylysine conjugates. Bioconjug Chem 15:326–332PubMedCrossRefGoogle Scholar
  123. Kim Y-M, Park S-C, Jang M-K (2017) Targeted gene delivery of polyethyleneimine-grafted chitosan with RGD dendrimer peptide in α v β 3 integrin-overexpressing tumor cells. Carbohydr Polym 174:1059–1068PubMedPubMedCentralCrossRefGoogle Scholar
  124. Klein TM, Sanford JC, Wolf ED, Wu R (1987) High-velocity microprojectiles for delivering nucleic acids into living cells. Nature.  https://doi.org/10.1038/327070a0 CrossRefGoogle Scholar
  125. Knapczyk J (1992) Antimycotic buccal and vaginal tablets with chitosan. Int J Pharm 88:9–14CrossRefGoogle Scholar
  126. Kong HJ et al (2005) Non-viral gene delivery regulated by stiffness of cell adhesion substrates. Nat Mater 4:460–464PubMedCrossRefGoogle Scholar
  127. Konstan MW et al (2004) Compacted DNA nanoparticles administered to the nasal mucosa of cystic fibrosis subjects are safe and demonstrate partial to complete cystic fibrosis transmembrane regulator reconstitution. Hum Gene Ther.  https://doi.org/10.1089/hum.2004.15.ft-2 CrossRefGoogle Scholar
  128. Köping-Höggård M et al (2001) Chitosan as a nonviral gene delivery system. Structure-property relationships and characteristics compared with polyethylenimine in vitro and after lung administration in vivo. Gene Ther 8:1108–1121PubMedCrossRefGoogle Scholar
  129. Kritchenkov AS, Stanislav A, Skorik YA (2017) Chitosan and its derivatives: vectors in gene therapy. Russ Chem Rev 86:231CrossRefGoogle Scholar
  130. Kumar SR, Markusic DM, Biswas M, High KA, Herzog RW (2016) Clinical development of gene therapy: results and lessons from recent successes. Mol Ther – Methods Clin Dev 3:16034PubMedPubMedCentralCrossRefGoogle Scholar
  131. Kwon OJ, Kang E, Choi JW, Kim SW, Yun CO (2013) Therapeutic targeting of chitosan-PEG-folate-complexed oncolytic adenovirus for active and systemic cancer gene therapy. J Control Release 169:257–265PubMedCrossRefPubMedCentralGoogle Scholar
  132. Laemmli UK (1975) Characterization of DNA condensates induced by poly(ethylene oxide) and polylysine. Proc Natl Acad Sci.  https://doi.org/10.1073/pnas.72.11.4288 CrossRefGoogle Scholar
  133. Lai WF, Lin MCM (2009) Nucleic acid delivery with chitosan and its derivatives. J Control Release.  https://doi.org/10.1016/j.jconrel.2008.11.021 PubMedCrossRefPubMedCentralGoogle Scholar
  134. Lavertu M, Méthot S, Tran-Khanh N, Buschmann MD (2006) High efficiency gene transfer using chitosan/DNA nanoparticles with specific combinations of molecular weight and degree of deacetylation. Biomaterials 27:4815–4824PubMedCrossRefPubMedCentralGoogle Scholar
  135. Layek B, Lipp L, Singh J (2015a) APC targeted micelle for enhanced intradermal delivery of hepatitis B DNA vaccine. J Control Release 207:143–153PubMedCrossRefPubMedCentralGoogle Scholar
  136. Layek B, Singh J (2013) Amino acid grafted chitosan for high performance gene delivery: comparison of amino acid hydrophobicity on vector and polyplex characteristics. Biomacromolecules 14:485–494PubMedCrossRefPubMedCentralGoogle Scholar
  137. Layek B, Lipp L, Singh J (2015b) Cell penetrating peptide conjugated chitosan for enhanced delivery of nucleic acid. Int J Mol Sci 16:28912–28930PubMedPubMedCentralCrossRefGoogle Scholar
  138. Lee MK et al (2005) The use of chitosan as a condensing agent to enhance emulsion-mediated gene transfer. Biomaterials.  https://doi.org/10.1016/j.biomaterials.2004.07.008 PubMedCrossRefPubMedCentralGoogle Scholar
  139. Lee D et al (2007) Thiolated chitosan/DNA nanocomplexes exhibit enhanced and sustained gene delivery. Pharm Res.  https://doi.org/10.1007/s11095-006-9136-9 PubMedCrossRefPubMedCentralGoogle Scholar
  140. Lee SJ et al (2014) TNF-alpha gene silencing using polymerized siRNA/thiolated glycol chitosan nanoparticles for rheumatoid arthritis. Mol Ther 22:397–408PubMedCrossRefPubMedCentralGoogle Scholar
  141. Leong KW et al (1998) DNA-polycation nanospheres as non-viral gene delivery vehicles. J Control Release.  https://doi.org/10.1016/S0168-3659(97)00252-6 PubMedCrossRefPubMedCentralGoogle Scholar
  142. Liu Q, Muruve DA (2003) Molecular basis of the inflammatory response to adenovirus vectors. Gene Ther 10:935–940PubMedCrossRefPubMedCentralGoogle Scholar
  143. Liu W et al (2005) An investigation on the physicochemical properties of chitosan/DNA polyelectrolyte complexes. Biomaterials.  https://doi.org/10.1016/j.biomaterials.2004.07.038 PubMedCrossRefPubMedCentralGoogle Scholar
  144. Lizardi-Mendoza J, Argüelles Monal WM, Goycoolea Valencia FM (2016) Chitosan in the preservation of agricultural commodities.  https://doi.org/10.1016/B978-0-12-802735-6.00001-X CrossRefGoogle Scholar
  145. Look J et al (2015) Ligand-modified human serum albumin nanoparticles for enhanced gene delivery. Mol Pharm 12:3202–3213PubMedCrossRefPubMedCentralGoogle Scholar
  146. López FA, Mercê ALR, Alguacil FJ, López-Delgado A (2008) A kinetic study on the thermal behaviour of chitosan. J Therm Anal Calorim 91:633–639CrossRefGoogle Scholar
  147. Lu C et al (2012) Phase I clinical trial of systemically administered TUSC2(FUS1)-nanoparticles mediating functional gene transfer in humans. PLoS One 7:e34833PubMedPubMedCentralCrossRefGoogle Scholar
  148. Lu H, Dai Y, Lv L, Zhao H (2014) Chitosan-graft-polyethylenimine/DNA nanoparticles as novel non-viral gene delivery vectors targeting osteoarthritis. PLoS One 9PubMedPubMedCentralCrossRefGoogle Scholar
  149. Lv H, Zhang S, Wang B, Cui S, Yan J (2006) Toxicity of cationic lipids and cationic polymers in gene delivery. J Control Release.  https://doi.org/10.1016/j.jconrel.2006.04.014 PubMedCrossRefPubMedCentralGoogle Scholar
  150. Ma PL, Lavertu M, Winnik M, Buschmann MD (2009) New insights into chitosan – DNA interactions using isothermal titration microcalorimetry. Biomacromolecules:1490–1499.  https://doi.org/10.1021/bm900097s PubMedCrossRefPubMedCentralGoogle Scholar
  151. MacLaughlin FC et al (1998) Chitosan and depolymerized chitosan oligomers as condensing carriers for in vivo plasmid delivery. J Control Release 56:259–272PubMedCrossRefPubMedCentralGoogle Scholar
  152. Majidi S et al (2016) Magnetic nanoparticles: applications in gene delivery and gene therapy. Artif Cells Nanomed Biotechnol 44:1186–1193PubMedCrossRefPubMedCentralGoogle Scholar
  153. Malhotra M, Tomaro-Duchesneau C, Prakash S (2013) Synthesis of TAT peptide-tagged PEGylated chitosan nanoparticles for siRNA delivery targeting neurodegenerative diseases. Biomaterials.  https://doi.org/10.1016/j.biomaterials.2012.10.013 PubMedCrossRefPubMedCentralGoogle Scholar
  154. Mandke R, Singh J (2012) Cationic nanomicelles for delivery of plasmids encoding Interleukin-4 and Interleukin-10 for prevention of autoimmune diabetes in mice. Pharm Res 29:883–897PubMedCrossRefPubMedCentralGoogle Scholar
  155. Mann R, Mulligan RC, Baltimore D (1983) Construction of a retrovirus packaging mutant and its use to produce helper-free defective retrovirus. Cell 33:153–159PubMedCrossRefPubMedCentralGoogle Scholar
  156. Manno CS et al (2006) Successful transduction of liver in hemophilia by AAV-factor IX and limitations imposed by the host immune response. Nat Med.  https://doi.org/10.1038/nm1358 PubMedCrossRefPubMedCentralGoogle Scholar
  157. Mansouri S et al (2004) Chitosan-DNA nanoparticles as non-viral vectors in gene therapy: strategies to improve transfection efficacy. Eur J Pharm Biopharm.  https://doi.org/10.1016/S0939-6411(03)00155-3 PubMedCrossRefPubMedCentralGoogle Scholar
  158. Mao HQ et al (2001) Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency. J Control Release.  https://doi.org/10.1016/S0168-3659(00)00361-8 PubMedCrossRefPubMedCentralGoogle Scholar
  159. Mao S, Sun W, Kissel T (2010) Chitosan-based formulations for delivery of DNA and siRNA. Adv Drug Deliv Rev.  https://doi.org/10.1016/j.addr.2009.08.004 PubMedCrossRefPubMedCentralGoogle Scholar
  160. Marshall E (1999) Gene therapy death prompts review of adenovirus vector. Science (80-) 286:2244–2245CrossRefGoogle Scholar
  161. Martien R, Loretz B, Thaler M, Majzoob S, Bernkop-Schnürch A (2007) Chitosan-thioglycolic acid conjugate: an alternative carrier for oral nonviral gene delivery? J Biomed Mater Res, Part A.  https://doi.org/10.1002/jbm.a.31135 CrossRefGoogle Scholar
  162. Matea CT et al (2017) Quantum dots in imaging drug delivery and sensor applications. Int J Nanomedicine 12:5421–5431PubMedPubMedCentralCrossRefGoogle Scholar
  163. McKiernan PJ, Cunningham O, Greene CM, Cryan SA (2013) Targeting miRNA-based medicines to cystic fibrosis airway epithelial cells using nanotechnology. Int J Nanomedicine.  https://doi.org/10.2147/IJN.S47551
  164. McNeela EA et al (2000) A mucosal vaccine against diphtheria: formulation of cross reacting material (CRM(197)) of diphtheria toxin with chitosan enhances local and systemic antibody and Th2 responses following nasal delivery. Vaccine 19:1188–1198PubMedCrossRefPubMedCentralGoogle Scholar
  165. Mease PJ et al (2009) Local delivery of a recombinant adenoassociated vector containing a tumour necrosis factor α antagonist gene in inflammatory arthritis: a phase 1 dose-escalation safety and tolerability study. Ann Rheum Dis.  https://doi.org/10.1136/ard.2008.089375
  166. Mendes R, Fernandes AR, Baptista PV (2017) Gold nanoparticle approach to the selective delivery of gene silencing in cancer-the case for combined delivery? Genes (Basel) 8Google Scholar
  167. Messai I et al (2005) Poly(D,L-lactic acid) and chitosan complexes: interactions with plasmid DNA. Colloids Surf A Physicochem Eng Asp.  https://doi.org/10.1016/j.colsurfa.2004.12.023 CrossRefGoogle Scholar
  168. Miller DL, Song J (2003) Tumor growth reduction and DNA transfer by cavitation-enhanced high-intensity focused ultrasound in vivo. Ultrasound Med Biol.  https://doi.org/10.1016/S0301-5629(03)00031-0 CrossRefGoogle Scholar
  169. Milletti F (2012) Cell-penetrating peptides: classes, origin, and current landscape. Drug Discov Today 17:850–860PubMedCrossRefPubMedCentralGoogle Scholar
  170. Moss RB et al (2007) Repeated aerosolized AAV-CFTR for treatment of cystic fibrosis: a randomized placebo-controlled phase 2B trial. Hum Gene Ther.  https://doi.org/10.1089/hum.2007.022 PubMedCrossRefPubMedCentralGoogle Scholar
  171. Motiei M, Kashanian S, Lucia LA, Khazaei M (2017) Intrinsic parameters for the synthesis and tuned properties of amphiphilic chitosan drug delivery nanocarriers. J Control Release.  https://doi.org/10.1016/j.jconrel.2017.06.010 PubMedCrossRefPubMedCentralGoogle Scholar
  172. Mucha M, Pawlak A (2002) Complex study on chitosan degradability. Polimery/Polymers 47:509–516Google Scholar
  173. Müller P et al (2016) Magnet-bead based MicroRNA delivery system to modify CD133+stem cells. Stem Cells Int 2016:90–99CrossRefGoogle Scholar
  174. Mumper RJ, Wang J, Claspell JM, Rolland A (1995) Novel polymeric condensing carriers for gene delivery. Proc Intern Symp Control Rel Bioact Mater 22:178–179Google Scholar
  175. Mumper RJ et al (1996) Polyvinyl derivatives as novel interactive polymers for controlled gene delivery to muscle. Pharm Res.  https://doi.org/10.1023/A:1016039330870 PubMedCrossRefGoogle Scholar
  176. Munk M et al (2017) Using carbon nanotubes to deliver genes to hard-to-transfect mammalian primary fibroblast cells. Biomed Phys Eng Express 3CrossRefGoogle Scholar
  177. Muzzarelli R et al (1990) Antimicrobial properties of N-carboxybutyl chitosan. Antimicrob Agents Chemother 34:2019–2023PubMedPubMedCentralCrossRefGoogle Scholar
  178. Naldini L (2015) Gene therapy returns to centre stage. Nature 526:351–360PubMedCrossRefGoogle Scholar
  179. Naldini L et al (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science (80-) 272:263–267CrossRefGoogle Scholar
  180. Nayerossadat N, Ali P, Maedeh T (2012) Viral and nonviral delivery systems for gene delivery. Adv Biomed Res 1:27PubMedPubMedCentralCrossRefGoogle Scholar
  181. Nguyen HK et al (2000) Evaluation of polyether-polyethyleneimine graft copolymers as gene transfer agents. Gene Ther.  https://doi.org/10.1038/sj.gt.3301052 PubMedCrossRefGoogle Scholar
  182. Nguyen TTB, Hein S, Ng CH, Stevens WF (2008) Molecular stability of chitosan in acid solutions stored at various conditions. J Appl Polym Sci 107:2588–2593CrossRefGoogle Scholar
  183. Nielsen TO (1997) Human germline gene therapy. McGill J Med 3:126–132Google Scholar
  184. Nilsen-Nygaard J et al (2015) Chitosan: gels and interfacial properties. Polymers (Basel) 7:552–579CrossRefGoogle Scholar
  185. Nimesh S, Thibault MM, Lavertu M, Buschmann MD (2010) Enhanced gene delivery mediated by low molecular weight chitosan/DNA complexes: effect of pH and serum. Mol Biotechnol.  https://doi.org/10.1007/s12033-010-9286-1 PubMedPubMedCentralCrossRefGoogle Scholar
  186. Nishikawa M, Huang L (2001) Nonviral vectors in the new millennium: delivery barriers in gene transfer. Hum Gene Ther 12:861–870PubMedCrossRefGoogle Scholar
  187. Noh SM et al (2010) Pegylated poly-l-arginine derivatives of chitosan for effective delivery of siRNA. J Control Release 145:159–164CrossRefGoogle Scholar
  188. Numata K, Subramanian B, Currie HA, Kaplan DL (2009) Bioengineered silk protein-based gene delivery systems. Biomaterials 30:5775–5784PubMedPubMedCentralCrossRefGoogle Scholar
  189. O’Brien J, Lummis SCR (2002) An improved method of preparing microcarriers for biolistic transfection. Brain Res Protocol.  https://doi.org/10.1016/S1385-299X(02)00175-7 PubMedCrossRefGoogle Scholar
  190. Ogawa K, Yui T, Okuyama K (2004) Three D structures of chitosan. Int J Biol Macromol.  https://doi.org/10.1016/j.ijbiomac.2003.11.002 PubMedCrossRefGoogle Scholar
  191. Okuyama K et al (2000) Structural diversity of chitosan and its complexes. Carbohydr Polym.  https://doi.org/10.1016/S0144-8617(99)00142-3 CrossRefGoogle Scholar
  192. Olins DE, Olins AL, von Hippel PH (1967) Model nucleoprotein complexes: studies on the interaction of cationic homopolypeptides with DNA. J Mol Biol.  https://doi.org/10.1016/0022-2836(67)90324-5 PubMedCrossRefGoogle Scholar
  193. Onishi H, Machida Y (1999) Biodegradation and distribution of water-soluble chitosan in mice. Biomaterials 20:175–182PubMedCrossRefGoogle Scholar
  194. Park SW et al (2001) Intracardiac echocardiographic guidance and monitoring during percutaneous endomyocardial gene injection in porcine heart. Hum Gene Ther.  https://doi.org/10.1089/104303401750195863 PubMedCrossRefGoogle Scholar
  195. Park JH, Saravanakumar G, Kim K, Kwon IC (2010) Targeted delivery of low molecular drugs using chitosan and its derivatives. Adv Drug Deliv Rev.  https://doi.org/10.1016/j.addr.2009.10.003 PubMedCrossRefGoogle Scholar
  196. Patel BJ, Vignesh NK, Hortelano G (2016) Chitosan DNA nanoparticles for oral gene delivery. World J Med Genet 6:22CrossRefGoogle Scholar
  197. Peng SF et al (2011) Mechanisms of cellular uptake and intracellular trafficking with chitosan/DNA/poly(γ-glutamic acid) complexes as a gene delivery vector. Biomaterials.  https://doi.org/10.1016/j.biomaterials.2010.08.081 PubMedCrossRefGoogle Scholar
  198. Petersen H et al (2002) Polyethylenimine-graft-poly(ethylene glycol) copolymers: influence of copolymer block structure on DNA complexation and biological activities as gene delivery system. Bioconjug Chem.  https://doi.org/10.1021/bc025529v PubMedCrossRefGoogle Scholar
  199. Phase 1/2a DTA-H19 in Patients With Unresectable Pancreatic Cancer – Full Text View – ClinicalTrials.gov. Available at: https://clinicaltrials.gov/ct2/show/NCT00711997. Accessed: 25th January 2019
  200. Phase 1/2a Study of DTA-H19 in Advanced Stage Ovarian Cancer – Full Text View – ClinicalTrials.gov. Available at: https://clinicaltrials.gov/ct2/show/NCT00826150. Accessed: 25th January 2019
  201. Phase 2b, Trial of Intravesical DTA-H19/PEI in Patients With Intermediate-Risk Superficial Bladder Cancer – Full Text View – ClinicalTrials.gov. Available at: https://clinicaltrials.gov/ct2/show/NCT00595088. Accessed: 25th January 2019
  202. Pichon C, Billiet L, Midoux P (2010) Chemical vectors for gene delivery: uptake and intracellular trafficking. Curr Opin Biotechnol.  https://doi.org/10.1016/j.copbio.2010.07.003 PubMedCrossRefGoogle Scholar
  203. Qin Y et al (2011) Liposome formulated with TAT-modified cholesterol for improving brain delivery and therapeutic efficacy on brain glioma in animals. Int J Pharm 420:304–312PubMedCrossRefGoogle Scholar
  204. Raftery R, O’Brien FJ, Cryan SA (2013) Chitosan for gene delivery and orthopedic tissue engineering applications. Molecules.  https://doi.org/10.3390/molecules18055611 PubMedPubMedCentralCrossRefGoogle Scholar
  205. Ragelle H, Vandermeulen G, Préat V (2013) Chitosan-based siRNA delivery systems. J Control Release 172:207–218PubMedCrossRefGoogle Scholar
  206. Ragelle H et al (2015) Intracellular siRNA delivery dynamics of integrin-targeted, PEGylated chitosan-poly(ethylene imine) hybrid nanoparticles: a mechanistic insight. J Control Release 211:1–9PubMedCrossRefGoogle Scholar
  207. Rao SB, Sharma CP (1997) Use of chitosan as a biomaterial: studies on its safety and hemostatic potential. J Biomed Mater Res.  https://doi.org/10.1002/(SICI)1097-4636(199701)34:1<21::AID-JBM4>3.0.CO;2-P
  208. Raper SE et al (2003) Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab 80:148–158PubMedCrossRefGoogle Scholar
  209. Ratko TA, Cummings JP, Blebea J, Matuszewski KA (2003) Clinical gene therapy for nonmalignant disease. Am J Med 115:560–569PubMedCrossRefGoogle Scholar
  210. Regnström K, Ragnarsson EGE, Fryknäs M, Köping-Höggård M, Artursson P (2006) Gene expression profiles in mouse lung tissue after administration of two cationic polymers used for nonviral gene delivery. Pharm Res.  https://doi.org/10.1007/s11095-006-9563-7 PubMedCrossRefGoogle Scholar
  211. Revi D, Paul W, Anilkumar TV, Sharma CP (2014) Chitosan scaffold co-cultured with keratinocyte and fibroblast heals full thickness skin wounds in rabbit. J Biomed Mater Res, Part A 102:3273–3281CrossRefGoogle Scholar
  212. Riley M, Vermerris W (2017) Recent advances in nanomaterials for gene delivery—a review. Nano 7:94Google Scholar
  213. Rodriguez A, Del A, Angeles M (2013) Non-viral delivery systems in gene therapy. In: Martin F (ed) Gene therapy - tools and potential applications. InTechOpen, London, pp 3–33.  https://doi.org/10.5772/52704 CrossRefGoogle Scholar
  214. Roller S, Covill N (1999) The antifungal properties of chitosan in laboratory media and apple juice. Int J Food Microbiol.  https://doi.org/10.1016/S0168-1605(99)00006-9 PubMedCrossRefGoogle Scholar
  215. Romano G, Micheli P, Pacilio C, Giordano A (2000) Latest developments in gene transfer technology: achievements, perspectives, and controversies over therapeutic applications. Stem Cells 18:19–39PubMedCrossRefGoogle Scholar
  216. Romøren K, Pedersen S, Smistad G, Evensen Ø, Thu BJ (2003) The influence of formulation variables on in vitro transfection efficiency and physicochemical properties of chitosan-based polyplexes. Int J Pharm.  https://doi.org/10.1016/S0378-5173(03)00301-6 PubMedCrossRefGoogle Scholar
  217. Rosenberg SA et al (1990) Gene transfer into humans — immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction. N Engl J Med 323:570–578PubMedCrossRefGoogle Scholar
  218. Roth JA, Cristiano RJ (1997) Gene therapy for cancer: what have we done and where are we going? J Natl Cancer Inst 89:21–39PubMedCrossRefGoogle Scholar
  219. Roy K, Mao HQ, Huang SK, Leong KW (1999) Oral gene delivery with chitosan--DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nat Med 5:387–391CrossRefGoogle Scholar
  220. Rudzinski WE, Palacios A, Ahmed A, Lane MA, Aminabhavi TM (2016) Targeted delivery of small interfering RNA to colon cancer cells using chitosan and PEGylated chitosan nanoparticles. Carbohydr Polym 147:323–332CrossRefGoogle Scholar
  221. Ryu N et al (2018) Effective PEI-mediated delivery of CRISPR-Cas9 complex for targeted gene therapy. Nanomed Nanotechnol Biol Med 14:2095–2102CrossRefGoogle Scholar
  222. Sadeghpour H et al (2018) Double domain polyethylenimine-based nanoparticles for integrin receptor mediated delivery of plasmid DNA. Sci Rep 8:1–12CrossRefGoogle Scholar
  223. Sahay G, Alakhova DY, Kabanov AV (2010) Endocytosis of nanomedicines. J Control Release.  https://doi.org/10.1016/j.jconrel.2010.01.036 PubMedPubMedCentralCrossRefGoogle Scholar
  224. Şalva E et al (2012) Local delivery of chitosan/VEGF siRNA nanoplexes reduces angiogenesis and growth of breast cancer In Vivo. Nucleic Acid Ther 22:40–48PubMedCrossRefGoogle Scholar
  225. Sanchez-Ramos J et al (2018) Chitosan-Mangafodipir nanoparticles designed for intranasal delivery of siRNA and DNA to brain. J Drug Deliv Sci Technol 43:453–460PubMedCrossRefGoogle Scholar
  226. Sashiwa H, Aiba SI (2004) Chemically modified chitin and chitosan as biomaterials. Prog Polym Sci 29:887–908CrossRefGoogle Scholar
  227. Sau S et al (2018) Multifunctional nanoparticles for cancer immunotherapy: a groundbreaking approach for reprogramming malfunctioned tumor environment. J Control Release 274:24–34PubMedPubMedCentralCrossRefGoogle Scholar
  228. Sawaengsak C et al (2014) Intranasal chitosan-DNA vaccines that protect across influenza virus subtypes. Int J Pharm 473:113–125PubMedCrossRefGoogle Scholar
  229. Scallan CD, Tingley DW, Lindbloom JD, Toomey JS, Tucker SN (2013) An adenovirus-based vaccine with a double-stranded RNA adjuvant protects mice and ferrets against H5N1 avian influenza in oral delivery models. Clin Vaccine Immunol.  https://doi.org/10.1128/CVI.00552-12 PubMedCrossRefGoogle Scholar
  230. Scherer F et al (2002) Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Ther 9:102–109PubMedCrossRefPubMedCentralGoogle Scholar
  231. Schuetz YB, Gurny R, Jordan O (2008) A novel thermoresponsive hydrogel based on chitosan. Eur J Pharm Biopharm 68:19–25PubMedCrossRefPubMedCentralGoogle Scholar
  232. Sharma D, Singh J (2017) Synthesis and characterization of fatty acid grafted chitosan polymer and their nanomicelles for nonviral gene delivery applications. Bioconjug Chem 28:2772–2783PubMedPubMedCentralCrossRefGoogle Scholar
  233. Sharma A et al (2011) Polyethylenimine-conjugated gold nanoparticles: gene transfer potential and low toxicity in the cornea. Nanomed Nanotechnol Biol Med 7:505–513CrossRefGoogle Scholar
  234. Sharma G et al (2013) Cell penetrating peptide tethered bi-ligand liposomes for delivery to brain in vivo: biodistribution and transfection. J Control Release 167:1–10PubMedCrossRefPubMedCentralGoogle Scholar
  235. Shen ZP, Brayman AA, Chen L, Miao CH (2008) Ultrasound with microbubbles enhances gene expression of plasmid DNA in the liver via intraportal delivery. Gene Ther.  https://doi.org/10.1038/gt.2008.51 PubMedPubMedCentralCrossRefGoogle Scholar
  236. Shi B et al (2017) Challenges in DNA delivery and recent advances in multifunctional polymeric DNA delivery systems. Biomacromolecules 18:2231–2246PubMedCrossRefPubMedCentralGoogle Scholar
  237. Shi Q et al (2018) In vivo therapeutic efficacy of TNFα silencing by folate-PEG-chitosan-DEAE/siRNA nanoparticles in arthritic mice. Int J Nanomedicine 13:387–402PubMedPubMedCentralCrossRefGoogle Scholar
  238. Shu XZ, Zhu KJ (2002) The influence of multivalent phosphate structure on the properties of ionically cross-linked chitosan films for controlled drug release. Eur J Pharm Biopharm.  https://doi.org/10.1016/S0939-6411(02)00052-8 PubMedCrossRefPubMedCentralGoogle Scholar
  239. Simon MJ, Gao S, Kang WH, Banta S, Morrison B (2009) TAT-mediated intracellular protein delivery to primary brain cells is dependent on glycosaminoglycan expression. Biotechnol Bioeng 104:10–19PubMedPubMedCentralCrossRefGoogle Scholar
  240. Smaill F et al (2013) A human type 5 adenovirus-based tuberculosis vaccine induces robust T cell responses in humans despite preexisting anti-adenovirus immunity. Sci Transl Med.  https://doi.org/10.1126/scitranslmed.3006843 PubMedCrossRefPubMedCentralGoogle Scholar
  241. Song L et al (2018) Novel polyethyleneimine-R8-heparin nanogel for high-efficiency gene delivery in vitro and in vivo. Drug Deliv 25:122–131PubMedCrossRefGoogle Scholar
  242. Sonoda S et al (2006) Gene transfer to corneal epithelium and keratocytes mediated by ultrasound with microbubbles. Investig Ophthalmol Vis Sci.  https://doi.org/10.1167/iovs.05-0889 CrossRefGoogle Scholar
  243. Strand SP, Danielsen S, Christensen BE, Vårum KM (2005) Influence of chitosan structure on the formation and stability of DNA-chitosan polyelectrolyte complexes. Biomacromolecules 6:3357–3366PubMedCrossRefGoogle Scholar
  244. Stroes ES et al (2008) Intramuscular administration of AAV1-lipoprotein lipaseS447X lowers triglycerides in lipoprotein lipase-deficient patients. Arterioscler Thromb Vasc Biol.  https://doi.org/10.1161/ATVBAHA.108.175620 PubMedCrossRefGoogle Scholar
  245. Struszczyk MH (2002) Chitin and chitosan: part I. Properties and production. Polimery/Polymers 2:316Google Scholar
  246. Su C-H, Wu Y-J, Wang H-H, Yeh H-I (2012) Nonviral gene therapy targeting cardiovascular system. AJP Hear Circ Physiol.  https://doi.org/10.1152/ajpheart.00126.2012 PubMedCrossRefGoogle Scholar
  247. Sugarman J (2015) Ethics and germline gene editing. EMBO Rep 16:879–880PubMedPubMedCentralCrossRefGoogle Scholar
  248. Tae HK, Su IK, Akaike T, Chong SC (2005) Synergistic effect of poly(ethylenimine) on the transfection efficiency of galactosylated chitosan/DNA complexes. J Control Release.  https://doi.org/10.1016/j.jconrel.2005.03.024 PubMedCrossRefGoogle Scholar
  249. Tahamtan A et al (2014) Antitumor effect of therapeutic HPV DNA vaccines with chitosan-based nanodelivery systems. J Biomed Sci 21:69PubMedPubMedCentralCrossRefGoogle Scholar
  250. Tahamtan A et al (2018) Antitumor immunity induced by genetic immunization with chitosan nanoparticle formulated Adjuvanted for HPV-16 E7 DNA vaccine. Iran J Immunol 15:269–280PubMedGoogle Scholar
  251. Tharanathan RN, Kittur FS (2003) Chitin – the undisputed biomolecule of great potential. Crit Rev Food Sci Nutr.  https://doi.org/10.1080/10408690390826455 PubMedCrossRefGoogle Scholar
  252. Thibault M, Nimesh S, Lavertu M, Buschmann MD (2010) Intracellular trafficking and decondensation kinetics of chitosan-pDNA polyplexes. Mol Ther.  https://doi.org/10.1038/mt.2010.143 PubMedPubMedCentralCrossRefGoogle Scholar
  253. Thomas CE, Ehrhardt A, Kay MA (2003) Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 4:346–358PubMedCrossRefPubMedCentralGoogle Scholar
  254. Valsalakumari J et al (2013) Novel gene delivery systems. Int J Pharm Investig 3:1PubMedPubMedCentralCrossRefGoogle Scholar
  255. van Drunen Littel-van den Hurk S, Hannaman D (2010) Electroporation for DNA immunization: clinical application. Expert Rev Vaccines 9:503–517PubMedCrossRefPubMedCentralGoogle Scholar
  256. Van Woensel M et al (2016) Development of siRNA-loaded chitosan nanoparticles targeting Galectin-1 for the treatment of glioblastoma multiforme via intranasal administration. J Control Release 10:71–81CrossRefGoogle Scholar
  257. Varkouhi AK et al (2010) Gene silencing activity of siRNA polyplexes based on thiolated N, N, N -trimethylated chitosan. Bioconjug Chem.  https://doi.org/10.1021/bc1003789 PubMedCrossRefPubMedCentralGoogle Scholar
  258. Varum KM, Ottoy MH, Smidsrod O (2001) Acid hydrolysis of chitosans. Carbohydr Polym 46:89–98CrossRefGoogle Scholar
  259. Vauthier C, Zandanel C, Ramon AL (2013) Chitosan-based nanoparticles for in vivo delivery of interfering agents including siRNA. Curr Opin Colloid Interface Sci.  https://doi.org/10.1016/j.cocis.2013.06.005 CrossRefGoogle Scholar
  260. Vollenweider RA (2000) Concerning calculation methods and limitations of proxy-estimates of proteins, carbohydrates and lipids in crustacean zooplankton from CHN analyses. J Limnol.  https://doi.org/10.4081/jlimnol.2000.170 CrossRefGoogle Scholar
  261. Voronina N et al (2016) Non-viral magnetic engineering of endothelial cells with microRNA and plasmid-DNA—an optimized targeting approach. Nanomed Nanotechnol Biol Med 12:2353–2364CrossRefGoogle Scholar
  262. Wang Y et al (2014) A magnetic nanoparticle-based multiple-gene delivery system for transfection of porcine kidney cells. PLoS One 9:1–9Google Scholar
  263. Wang G-H et al (2018) TAT-conjugated chitosan cationic micelle for nuclear-targeted drug and gene co-delivery. Colloids Surf B: Biointerfaces 162:326–334PubMedCrossRefPubMedCentralGoogle Scholar
  264. Wanjun T, Cunxin W, Donghua C (2005) Kinetic studies on the pyrolysis of chitin and chitosan. Polym Degrad Stab 87:389–394CrossRefGoogle Scholar
  265. Wasungu L, Hoekstra D (2006) Cationic lipids, lipoplexes and intracellular delivery of genes. J Control Release.  https://doi.org/10.1016/j.jconrel.2006.06.024 PubMedCrossRefPubMedCentralGoogle Scholar
  266. Wedmore I, McManus JG, Pusateri AE, Holcomb JB (2006) A special report on the chitosan-based hemostatic dressing: experience in current combat operations. J Trauma – Inj Infect Crit Care 60:655–658CrossRefGoogle Scholar
  267. Wheeler JJ et al (1999) Stabilized plasmid-lipid particles: construction and characterization. Gene Ther.  https://doi.org/10.1038/sj.gt.3300821 PubMedCrossRefPubMedCentralGoogle Scholar
  268. Whinnery C, Kirsch WM (2016) Recent advances in chitosan-based gene carrier application and design. JSM Biochem Mol Biol 3Google Scholar
  269. Wilson JM (2009) Lessons learned from the gene therapy trial for ornithine transcarbamylase deficiency. Mol Genet Metab.  https://doi.org/10.1016/j.ymgme.2008.12.016 PubMedCrossRefPubMedCentralGoogle Scholar
  270. Wolschek MF et al (2002) Specific systemic nonviral gene delivery to human hepatocellular carcinoma xenografts in SCID mice. Hepatology.  https://doi.org/10.1053/jhep.2002.36372 PubMedCrossRefPubMedCentralGoogle Scholar
  271. Wu LQ et al (2002) Voltage-dependent assembly of the polysaccharide chitosan onto an electrode surface. Langmuir.  https://doi.org/10.1021/la020381p CrossRefGoogle Scholar
  272. Wu G et al (2018) In situ controlled release of stromal cell-derived factor-1α and antimiR-138 for on-demand cranial bone regeneration. Carbohydr Polym 182:215–224PubMedCrossRefPubMedCentralGoogle Scholar
  273. Xu J, McCarthy SP, Gross RA, Kaplan DL (1996) Chitosan film acylation and effects on biodegradability. Macromolecules.  https://doi.org/10.1021/ma951638b CrossRefGoogle Scholar
  274. Xu T, Xin M, Li M, Huang H, Zhou S (2010) Synthesis, characteristic and antibacterial activity of N,N,N-trimethyl chitosan and its carboxymethyl derivatives. Carbohydr Polym 81:931–936CrossRefGoogle Scholar
  275. Yamano S et al (2011) Modified tat peptide with cationic lipids enhances gene transfection efficiency via temperature-dependent and caveolae-mediated endocytosis. J Control Release 152:278–285PubMedCrossRefPubMedCentralGoogle Scholar
  276. Yamano S et al (2014) Long-term efficient gene delivery using polyethylenimine with modified tat peptide. Biomaterials 35:1705–1715PubMedCrossRefPubMedCentralGoogle Scholar
  277. Yang NS, Burkholder J, Roberts B, Martinell B, McCabe D (1990) In vivo and in vitro gene transfer to mammalian somatic cells by particle bombardment. PNAS.  https://doi.org/10.1073/pnas.87.24.9568 CrossRefGoogle Scholar
  278. Yang YM, Hu W, Wang XD, Gu XS (2007) The controlling biodegradation of chitosan fibers by N-acetylation in vitro and in vivo. J Mater Sci Mater Med 18:2117–2121PubMedCrossRefPubMedCentralGoogle Scholar
  279. Yang F et al (2013) Anti-tumor effects in mice induced by survivin-targeted siRNA delivered through polysaccharide nanoparticles. Biomaterials 34:5689–5699PubMedCrossRefPubMedCentralGoogle Scholar
  280. Yhee JY et al (2015) Cancer-targeted MDR-1 siRNA delivery using self-cross-linked glycol chitosan nanoparticles to overcome drug resistance. J Control Release 198:1–9CrossRefGoogle Scholar
  281. Yigit S, Tokareva O, Varone A, Georgakoudi I, Kaplan DL (2014) Bioengineered silk gene delivery system for nuclear targeting. Macromol Biosci 14:1291–1298PubMedPubMedCentralCrossRefGoogle Scholar
  282. Yin H et al (2014) Non-viral vectors for gene-based therapy. Nat Rev Genet 15:541–555PubMedCrossRefPubMedCentralGoogle Scholar
  283. Zai W et al (2019) Targeted Interleukin-22 gene delivery in the liver by polymetformin and penetratin-based hybrid nanoparticles to treat nonalcoholic fatty liver disease. ACS Appl Mater Interfaces.  https://doi.org/10.1021/acsami.8b19717 CrossRefGoogle Scholar
  284. Zhang Y et al (2004a) Intravenous RNA interference gene therapy targeting the human epidermal growth factor receptor prolongs survival in intracranial brain cancer. Clin Cancer Res.  https://doi.org/10.1158/1078-0432.CCR-03-0740 PubMedCrossRefPubMedCentralGoogle Scholar
  285. Zhang S, Xu Y, Wang B, Qiao W, Liu D (2004b) Cationic compounds used in lipoplexes and polyplexes for gene delivery. J Control Release 100:165–180PubMedCrossRefPubMedCentralGoogle Scholar
  286. Zhang J et al (2010) Chitosan modification and pharmaceutical/biomedical applications. Mar Drugs 8:1962–1987PubMedPubMedCentralCrossRefGoogle Scholar
  287. Zhang Y, Satterlee A, Huang L (2012) In vivo gene delivery by nonviral vectors: overcoming hurdles. Mol Ther 20:1298–1304PubMedPubMedCentralCrossRefGoogle Scholar
  288. Zhang Y, Li N, Suh H, Irvine DJ (2018) Nanoparticle anchoring targets immune agonists to tumors enabling anti-cancer immunity without systemic toxicity. Nat Commun 9Google Scholar
  289. Zhao K et al (2011) Preparation and immunological effectiveness of a swine influenza DNA vaccine encapsulated in chitosan nanoparticles. Vaccine 29:8549–8556CrossRefGoogle Scholar
  290. Zheng L-Y, Zhu J-F (2003) Study on antimicrobial activity of chitosan with different molecular weights. Carbohydr Polym 54:527–530CrossRefGoogle Scholar
  291. Zhou P et al (2018) Chondroprotective effects of hyaluronic acid-chitosan nanoparticles containing plasmid DNA encoding cytokine response modifier a in a rat knee osteoarthritis model. Cell Physiol Biochem 47:1207–1216PubMedCrossRefPubMedCentralGoogle Scholar
  292. Zylberberg C, Gaskill K, Pasley S, Matosevic S (2017) Engineering liposomal nanoparticles for targeted gene therapy. Gene Ther 24:441–452PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Divya Sharma
    • 1
  • Sanjay Arora
    • 1
  • Bruna dos Santos Rodrigues
    • 1
  • Sushant Lakkadwala
    • 1
  • Amrita Banerjee
    • 1
  • Jagdish Singh
    • 1
    Email author
  1. 1.Department of Pharmaceutical Sciences, School of Pharmacy, College of Health ProfessionsNorth Dakota State UniversityFargoUSA

Personalised recommendations