Advertisement

Functional Chitosan Carriers for Oral Colon-Specific Drug Delivery

  • Nafisah Musa
  • Tin Wui WongEmail author
Chapter
  • 32 Downloads

Abstract

Chitosan is a polysaccharide consisting of D-glucosamine and N-acetyl-D-glucosamine units linked by β-(1,4) linkages. It is derived via deacetylation of chitin. Chitosan is a cationic polymer which is biodegradable, biocompatible, nontoxic, and mildly allergenic. It is characterized by antitumor, antimicrobial, and antioxidant activities which render a widespread research interest for pharmaceutical and biomedical applications. Used as a matrix and/or coat material, chitosan can protect drugs from chemical and enzymatic degradation with reference to oral delivery. Chitosan binds strongly to mucus and exhibits mucosal permeation-enhancing property that promotes drug absorption through intestinal epithelial cells. Oral colon-specific delivery systems have been explored for targeted drug administration for the treatment of colon cancer, ulcerative colitis, Crohn’s disease, diverticulitis, irritable bowel syndrome, Hirschsprung’s disease, antibiotic-associated colitis, and other colon diseases. This chapter gives an overview of relevant physicochemical and biological properties of chitosan and its derivatives and innovative formulations with respect to their use as oral colon-specific drug delivery systems.

Keywords

Chitosan Colon specific Drug delivery Oral 

References

  1. Abraham M-K et al (2017) Nanoliposomes for safe and efficient therapeutic mrna delivery: a step toward nanotheranostics in inflammatory and cardiovascular diseases as well as cancer. Nano 1(2):154–165Google Scholar
  2. Abruzzo A et al (2015) Mucoadhesive buccal tablets based on chitosan / gelatin microparticles for delivery of propranolol hydrochloride. J Pharm Sci 104(12):4365–4372PubMedCrossRefGoogle Scholar
  3. Ahmad MZ et al (2012) In vitro and in vivo evaluation of Assam bora rice starch-based bioadhesive microsphere as a drug carrier for colon targeting. Expert Opin Drug Deliv 9(12):141–149PubMedCrossRefGoogle Scholar
  4. Ahmed TA, Aljaeid BM (2016) Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery. Drug Des Devel Ther 10:483–507PubMedPubMedCentralCrossRefGoogle Scholar
  5. Alfatama M, Lim LY, Wong TW (2018) Alginate-C18 conjugate nanoparticles loaded in coated calcium alginate beads as oral insulin carrier. Mol Pharm 15(8):3369–3382PubMedCrossRefGoogle Scholar
  6. Amidon S, Brown JE, Dave VS (2015) Colon-targeted oral drug delivery systems: design trends and approaches. AAPS PharmSciTech 16(4):731–741PubMedPubMedCentralCrossRefGoogle Scholar
  7. Andishmand H et al (2017) Pectin-zinc-chitosan-polyethylene glycol colloidal nano-suspension as a food grade carrier for colon targeted delivery of resveratrol. Int J Biol Macromol 97:16–22PubMedCrossRefGoogle Scholar
  8. Anitha a et al (2014) Combinatorial anticancer effects of curcumin and 5-fluorouracil loaded thiolated chitosan nanoparticles towards colon cancer treatment. Biochim Biophys Acta Gen Subj 1840(9):2730–2743CrossRefGoogle Scholar
  9. Aranaz I et al (2009) Functional characterization of chitin and chitosan. Curr Chem Biol 3:203–230Google Scholar
  10. Atyabi F et al (2005) In vitro evaluation and modification of pectinate gel beads containing trimethyl chitosan, as a multi-particulate system for delivery of water-soluble macromolecules to colon. Carbohydr Polym 61(1):39–51CrossRefGoogle Scholar
  11. Azuma K et al (2015) Anticancer and anti-inflammatory properties of chitin and chitosan oligosaccharides. J Funct Biomater 6:33–49PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bagre AP, Jain K, Jain NK (2013) Alginate coated chitosan core shell nanoparticles for oral delivery of enoxaparin: in vitro and in vivo assessment. Int J Pharm 456(1):31–40PubMedCrossRefGoogle Scholar
  13. Bansal V et al (2011) Applications of chitosan and chitosan derivatives in drug delivery. Adv Biol Res 5(1):28–37Google Scholar
  14. Bernkop-schnürch A, Hornof M, Zoidl T (2003) Thiolated polymers — thiomers : synthesis and in vitro evaluation of chitosan – 2-iminothiolane conjugates. Int J Pharm 260:229–237PubMedCrossRefGoogle Scholar
  15. Bose A, Wong TW (2018) 18: Oral colon cancer targeting by chitosan nanocomposites. Elsevier Inc.  https://doi.org/10.1016/B978-0-12-813741-3.00018-2 CrossRefGoogle Scholar
  16. Cerchiara T et al (2015) Chitosan based micro- and nanoparticles for colon-targeted delivery of vancomycin prepared by alternative processing methods. Eur J Pharm Biopharm 92:112–119PubMedCrossRefGoogle Scholar
  17. Cerchiara T et al (2016) Microparticles based on chitosan/carboxymethylcellulose polyelectrolyte complexes for colon delivery of vancomycin. Carbohydr Polym 143:124–130PubMedCrossRefGoogle Scholar
  18. Chang Y, Xiao L, Du Y (2009) Preparation and properties of a novel thermosensitive N-trimethyl chitosan hydrogel. Polym Bull 63(4):531–545CrossRefGoogle Scholar
  19. Changyong Q, Nam J, Nah J (2016) Application of chitosan and chitosan derivatives as biomaterials. J Ind Eng Chem 33:1–10CrossRefGoogle Scholar
  20. Chaudhary A et al (2011) Chemoprevention of colon cancer in a rat carcinogenesis model using a novel nanotechnology-based combined treatment system. Cancer Prev Res (Phila) 4(10):1655–1664CrossRefGoogle Scholar
  21. Chen H et al (2016) The potential use of novel chitosan-coated deformable liposomes in an ocular drug delivery system. Colloids Surf B: Biointerfaces 143:455–462PubMedCrossRefGoogle Scholar
  22. Chien RC, Yen MT, Mau JL (2016) Antimicrobial and antitumor activities of chitosan from shiitake stipes, compared to commercial chitosan from crab shells. Carbohydr Polym 138:259–264PubMedCrossRefGoogle Scholar
  23. Chirkov SN (2002) The antiviral activity of chitosan. Appl Biochem Microbiol 38(1):5–13CrossRefGoogle Scholar
  24. Chourasia MK, Jain SK (2004) Design and development of multiparticulate system for targeted drug delivery to colon. Drug Deliv 11(3):201–207PubMedCrossRefGoogle Scholar
  25. Croisier F, Jérôme C (2013) Chitosan-based biomaterials for tissue engineering. Eur Polym J 49(4):780–792CrossRefGoogle Scholar
  26. Das S, Chaudhury A, Ng KY (2011) Preparation and evaluation of zinc-pectin-chitosan composite particles for drug delivery to the colon: role of chitosan in modifying in vitro and in vivo drug release. Int J Pharm 406(1–2):11–20PubMedCrossRefGoogle Scholar
  27. Delmar K, Bianco-Peled H (2015) The dramatic effect of small pH changes on the properties of chitosan hydrogels crosslinked with genipin. Carbohydr Polym 127:28–37PubMedCrossRefGoogle Scholar
  28. Dhawan S, Singla AK, Sinha VR (2004) Evaluation of mucoadhesive properties of chitosan microspheres prepared by different methods. AAPS PharmSciTech 5(4):124–128CrossRefGoogle Scholar
  29. Dodane V, Amin Khan M, Merwin JR (1999) Effect of chitosan on epithelial permeability and structure. Int J Pharm 182(1):21–32PubMedCrossRefGoogle Scholar
  30. Dressman JB, Berardi RR, Dermentzoglou LC, Russell TL, Schmaltz SP, Barnett JL, Jarvenpa KM (1990) Upper gastrointestinal (GI) pH in young, healthy men and women. Pharm Res 7(7):756–761PubMedCrossRefGoogle Scholar
  31. Du J, El-Sherbiny IM, Smyth HD (2014) Swellable ciprofloxacin-loaded nano-in-micro hydrogel particles for local lung drug delivery. AAPS PharmSciTech 15(6):1535–1544PubMedPubMedCentralCrossRefGoogle Scholar
  32. Elbaz NM et al (2016) Chitosan-based nano-in-microparticle carriers for enhanced oral delivery and anticancer activity of propolis. Int J Biol Macromol 92:254–269PubMedCrossRefGoogle Scholar
  33. Ensign LM, Cone R, Hanes J (2012) Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv Drug Deliv Rev 64(6):557–570PubMedCrossRefGoogle Scholar
  34. Fallingborg J et al (1993) Very low intraluminal colonic ph in patients with active ulcerative colitis. Dig Dis Sci 38(11):1989–1993PubMedCrossRefGoogle Scholar
  35. Feng C et al (2013) Chitosan/o-carboxymethyl chitosan nanoparticles for efficient and safe oral anticancer drug delivery: in vitro and in vivo evaluation. Int J Pharm 457(1):158–167PubMedCrossRefPubMedCentralGoogle Scholar
  36. Feng C et al (2015) Surface charge effect on mucoadhesion of chitosan based nanogels for local anti-colorectal cancer drug delivery. Colloids Surf B: Biointerfaces 128:439–447PubMedCrossRefGoogle Scholar
  37. Fukui E et al (2000) Preparation of enteric coated timed-release press-coated tablets and evaluation of their function by in vitro and in vivo tests for colon targeting. Int J Pharm 204:7–15PubMedCrossRefPubMedCentralGoogle Scholar
  38. Gadalla HH et al (2015) Development and in vitro / in vivo evaluation of Zn-pectinate microparticles reinforced with chitosan for the colonic delivery of progesterone. Drug Deliv 23(7):2541–2554PubMedGoogle Scholar
  39. Ganguly K et al (2015) In vitro cytotoxicity and in vivo efficacy of 5- chitosan microspheres in colorectal cancer therapy in rats enteric-coated PEG-crosslinked chitosan microspheres in rats. Drug Deliv 23(8):2838–2851PubMedCrossRefPubMedCentralGoogle Scholar
  40. Gulbake A, Jain S (2012) Chitosan: a potential polymer for colon-specific drug delivery system. Expert Opin Drug Deliv 9(6):713–729PubMedCrossRefGoogle Scholar
  41. Gupta A et al (2017) Targeting of herbal bioactives through folate receptors : a novel concept to enhance intracellular drug delivery in cancer therapy. J Recept Signal Transduction 37(3):314–323CrossRefGoogle Scholar
  42. Haziyah S et al (2016) In vitro investigation of influences of chitosan nanoparticles on fluorescein permeation into alveolar macrophages. Pharm Res 33(6):1497–1508CrossRefGoogle Scholar
  43. Hornof MD, Kast CE, Bernkop-schnu A (2003) In vitro evaluation of the viscoelastic properties of chitosan – thioglycolic acid conjugates. Eur J Pharm Biopharm 55:185–190PubMedCrossRefGoogle Scholar
  44. Hornof M, Guggi D, Bernkop-schnu A (2004) Thiolated chitosans. Eur J Pharm Biopharm 57:9–17PubMedCrossRefGoogle Scholar
  45. Huang R et al (2006) Strong electronic charge as an important factor for anticancer activity of chitooligosaccharides (COS). Life Sci 78(20):2399–2408PubMedCrossRefGoogle Scholar
  46. Ibekwe VC et al (2008) Interplay between intestinal ph, transit time and feed status on the in vivo performance of ph responsive ileo-colonic release systems. Pharm Res 25(8):1828–1835PubMedCrossRefGoogle Scholar
  47. Islam S, Bhuiyan MAR, Islam MN (2016) Chitin and chitosan: structure, properties and applications in biomedical engineering. J Polym Environ 25(3):854–866CrossRefGoogle Scholar
  48. Jana S, Maiti S (2017) Chapter 20: Chitosan-based nanoparticulate systems for oral drug delivery. Elsevier Inc.  https://doi.org/10.1016/B978-0-323-47720-8/00021-3
  49. Jayakumar R et al (2005) Graft copolymerized chitosan — present status and applications. Carbohydr Polym 62:142–158CrossRefGoogle Scholar
  50. Jayakumar R et al (2010) Novel carboxymethyl derivatives of chitin and chitosan materials and their biomedical applications. Prog Mater Sci 55(7):675–709CrossRefGoogle Scholar
  51. Ji J et al (2012) Preparation, characterization, and in vitro release of folic acid-conjugated chitosan nanoparticles loaded with methotrexate for targeted delivery. Polym Bull 68(6):1707–1720CrossRefGoogle Scholar
  52. Jiali Z, Xia W, Liu P, Cheng Q, Talba Tahirou WG, Li B (2010) Chitosan modification and pharmaceutical/biomedical. Maine Drugs 8(1):1962–1987Google Scholar
  53. Jin L et al (2014) Preparation oral levofloxacin colon-specific microspheres delivery : in vitro and in vivo studies. Drug Deliv 7544:1–7Google Scholar
  54. Jridi M et al (2014) Physical, structural, antioxidant and antimicrobial properties of gelatin-chitosan composite edible films. Int J Biol Macromol 67:373–379PubMedCrossRefGoogle Scholar
  55. Kaya M et al (2014) Bat guano as new and attractive chitin and chitosan source. Front Zool 11:1–10CrossRefGoogle Scholar
  56. Kaya M, Baran T, Karaarslan M (2015) A new method for fast chitin extraction from shells of crab, crayfish and shrimp. Nat Prod Res 29(15):1477–1480PubMedCrossRefGoogle Scholar
  57. Khlibsuwan R, Pongjanyakul T (2016) Chitosan-clay matrix tablets for sustained-release drug delivery: effect of chitosan molecular weight and lubricant. J Drug Delivery Sci Technol 35:303–313CrossRefGoogle Scholar
  58. Kim JH et al (2008) Antitumor efficacy of cisplatin-loaded glycol chitosan nanoparticles in tumor-bearing mice. J Control Release 127(1):41–49PubMedCrossRefGoogle Scholar
  59. Kofuji K et al (2005) Relationship between physicochemical characteristics and functional properties of chitosan. Eur Polym J 41(11):2784–2791CrossRefGoogle Scholar
  60. Kong M et al (2010) Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol 144(1):51–63PubMedPubMedCentralCrossRefGoogle Scholar
  61. Kubota N, Eguchi Y (1997) Facile preparation of water-soluble n-acetylated chitosan and molecular weight dependence of its water-solubility. Polym J 29(2):123–127CrossRefGoogle Scholar
  62. Kumar A, Vimal A, Kumar A (2016) Why chitosan? From properties to perspective of mucosal drug delivery. Int J Biol Macromol 91:615–622PubMedCrossRefGoogle Scholar
  63. Lakkakula JR et al (2017) Cationic cyclodextrin / alginate chitosan nano fl owers as 5- fluorouracil drug delivery system. Mater Sci Eng C 70:169–177CrossRefGoogle Scholar
  64. Lehr C (1992) In vitro evaluation of mucoadhesive properties of chitosan and some other natural polymers. Int J Pharm 78:43–48CrossRefGoogle Scholar
  65. Li PW et al (2011) Development of ligand incorporated chitosan nanoparticles for the selective delivery of 5-fluorouracil to colon. Adv Mater Res 197–198:238–241Google Scholar
  66. Li P et al (2015) Microencapsulation of coupled folate and chitosan nanoparticles for targeted delivery of combination drugs to colon. J Microencapsul 32(1):1–6CrossRefGoogle Scholar
  67. Liu XFEI et al (2000) Antibacterial action of chitosan and carboxymethylated. J Appl Polym Sci 79(7):1324–1335Google Scholar
  68. Liu L et al (2003) Pectin-based systems for colon-specific drug delivery via oral route. Biomaterials 24(19):3333–3343PubMedCrossRefGoogle Scholar
  69. Liu Z et al (2012) Food hydrocolloids effects of chitosan molecular weight and degree of deacetylation on the properties of gelatine-based fi lms. Food Hydrocoll 26(1):311–317CrossRefGoogle Scholar
  70. Liu J et al (2013) Preparation, characterization and antioxidant activity of phenolic acids grafted carboxymethyl chitosan. Int J Biol Macromol 62:85–93PubMedCrossRefGoogle Scholar
  71. Malayandi R et al (2014) Biopharmaceutical considerations and characterizations in development of colon targeted dosage forms for inflammatory bowel disease. Drug Deliv Transl Res 4(2):187–202PubMedCrossRefGoogle Scholar
  72. Martins AF et al (2015) Preparation and cytotoxicity of N, N, N -trimethyl chitosan / alginate beads containing gold nanoparticles. Int J Biol Macromol 72:466–471PubMedCrossRefGoogle Scholar
  73. Muñoz Ortega B, Sallam MA, Marín Boscá MT (2016) Methacrylate micro/nano particles prepared by spray drying: a preliminary in vitro/in vivo study. Drug Deliv 23(7):2439–2444PubMedGoogle Scholar
  74. Netsomboon K, Bernkop-schnürch A (2016) Mucoadhesive vs. Mucopenetrating particulate drug delivery. Eur J Pharm Biopharm 98:76–89PubMedCrossRefGoogle Scholar
  75. Nugent SG et al (2001) Intestinal luminal pH in inflammatory bowel disease : possible determinants and implications for therapy with aminosalicylates and other drugs. Br Soc Gastroenterol 48:571–577Google Scholar
  76. Ong S et al (2008) Development of a chitosan-based wound dressing with improved hemostatic and antimicrobial properties. Biomaterials 29:4323–4332PubMedCrossRefGoogle Scholar
  77. Ouchi T et al (1989) Synthesis and antitumor activity of chitosan carrying 5-fluorouracils. Makromol Chem 190:1817–1825CrossRefGoogle Scholar
  78. Panith N et al (2016) Effect of physical and physicochemical characteristics of chitosan on fat-binding capacities under in vitro gastrointestinal conditions. LWT Food Sci Technol 71:25–32CrossRefGoogle Scholar
  79. Paños I, Niuris Acosta AH et al (2008) New drug delivery systems based on chitosan. Curr Drug Discov Technol 5(4):333–341PubMedCrossRefGoogle Scholar
  80. Qin C et al (2004) The physicochemical properties and antitumor activity of cellulase-treated chitosan. Food Chem 84:107–115CrossRefGoogle Scholar
  81. Qin C et al (2014) Effects of chito-oligosaccharides supplementation on growth performance, intestinal cytokine expression, autochthonous gut bacteria and disease resistance in hybrid tilapia Oreochromis niloticus ♀×Oreochromis aureus ♂. Fish Shellfish Immunol 40(1):267–274PubMedCrossRefGoogle Scholar
  82. Rata-Aguilar a et al (2012) Colloidal stability and “in vitro” antitumor targeting ability of lipid nanocapsules coated by folate-chitosan conjugates. J Bioact Compat Polym 27(4):388–404CrossRefGoogle Scholar
  83. Roldo M et al (2004) Mucoadhesive thiolated chitosans as platforms for oral controlled drug delivery : synthesis and in vitro evaluation. Eur J Pharm Biopharm 57:115–121PubMedCrossRefGoogle Scholar
  84. Roller S, Covill N (1999) The antifungal properties of chitosan in laboratory media and apple juice. Int J Food Microbiol 47(1–2):67–77PubMedPubMedCentralCrossRefGoogle Scholar
  85. Rui L et al (2017) Enhanced solubility and antioxidant activity of chlorogenic acid-chitosan conjugates due to the conjugation of chitosan with chlorogenic acid. Carbohydr Polym 170:206–216PubMedCrossRefGoogle Scholar
  86. Salah R et al (2013) Anticancer activity of chemically prepared shrimp low molecular weight chitin evaluation with the human monocyte leukaemia cell line, THP-1. Int J Biol Macromol 52(1):333–339PubMedCrossRefGoogle Scholar
  87. Seth A et al (2014) Performance of magnetic chitosan-alginate core-shell beads for increasing the bioavailability of a low permeable drug. Eur J Pharm Biopharm 88(2):374–381PubMedCrossRefGoogle Scholar
  88. Seyfarth F et al (2008) Antifungal effect of high- and low-molecular-weight chitosan hydrochloride, carboxymethyl chitosan, chitosan oligosaccharide and N -acetyl- d -glucosamine against Candida albicans, Candida krusei and Candida glabrata. Int J Pharm 353:139–148PubMedGoogle Scholar
  89. Shao Y et al (2015) ScienceDirect evaluation of chitosan e anionic polymers based tablets for extended-release of highly water- soluble drugs. Asian J Pharm Sci 10(1):24–30CrossRefGoogle Scholar
  90. Shi Y et al (2018) Polyelectrolyte complex nanoparticles based on chitosan and methoxy poly(ethylene glycol) methacrylate-co-poly(methylacrylic acid) for oral delivery of ibuprofen. Colloids Surf B: Biointerfaces 165:235–242PubMedCrossRefGoogle Scholar
  91. Shitrit Y, Bianco-Peled H (2017) Acrylated chitosan for mucoadhesive drug delivery systems. Int J Pharm 517(1–2):247–255PubMedCrossRefGoogle Scholar
  92. Sinha VR, Kumria R (2003) Microbially triggered drug delivery to the colon. Eur J Pharm Sci 18(1):3–18PubMedCrossRefGoogle Scholar
  93. Song C et al (2013) Physicochemical properties and antioxidant activity of chitosan from the blowfly Chrysomya megacephala larvae. Int J Biol Macromol 60:347–354PubMedCrossRefGoogle Scholar
  94. Sonia TA, Sharma CP (2011) Chitosan and its derivatives for drug delivery perspective. Adv Polym Sci 243:23–54CrossRefGoogle Scholar
  95. Sudarshan NR, Hoover DG, Knorr D (1992) Antibacterial action of chitosan. Food Biotechnol 6(3):257–272CrossRefGoogle Scholar
  96. Suganoa M et al (1988) Hypocholesterolemic action of chitosans with different viscosity in rats. Lipids 23(3):187–191CrossRefGoogle Scholar
  97. Syed Mohamad Al-Azi SO, Tan YTF, Wong TW (2014) Transforming large molecular weight pectin and chitosan into oral protein drug nanoparticulate carrier. React Funct Polym 84:45–52CrossRefGoogle Scholar
  98. Tekie FSM et al (2016) Nano polyelectrolyte complexes of carboxymethyl dextran and chitosan to improve chitosan-mediated delivery of miR-145. Carbohydr Polym 159:66–75PubMedCrossRefGoogle Scholar
  99. Thanou M et al (2000) Intestinal absorption of octreotide : N-trimethyl chitosan chloride (TMC) ameliorates the permeability and absorption properties of the somatostatin analogue in vitro and in vivo. J Pharm Sci 89(7):951–957PubMedCrossRefGoogle Scholar
  100. Vandamme TF et al (2002) The use of polysaccharides to target drugs to the colon. Carbohydr Polym 48(3):219–231CrossRefGoogle Scholar
  101. Vin J, Vav E (2011) Chitosan derivatives with antimicrobial, antitumour and antioxidant activities - a review. Curr Pharm Des 17:3596–3607CrossRefGoogle Scholar
  102. Wan A et al (2013) Antioxidant activity of high molecular weight chitosan and N,O-quaternized chitosans. J Agric Food Chem 61(28):6921–6928PubMedCrossRefGoogle Scholar
  103. Wang Y, Li P, Peng Z, She FH, Kong LX (2013) Microencapsulation of nanoparticles with enhanced drug loading for pH-sensitive oral drug delivery for the treatment of colon cancer. J Appl Polym Sci 129:714–720CrossRefGoogle Scholar
  104. Wang QS et al (2016) Colon targeted oral drug delivery system based on alginate-chitosan microspheres loaded with icariin in the treatment of ulcerative colitis. Int J Pharm 515(1–2):176–185PubMedCrossRefGoogle Scholar
  105. Werle M, Takeuchi H, Bernkop-Schnurch A (2008) Modified chitosan for oral drug delivery. J Pharm Sci 98(5):1643–1656CrossRefGoogle Scholar
  106. Wiarachai O et al (2012) Surface-quaternized chitosan particles as an alternative and effective organic antibacterial material. Colloids Surf B: Biointerfaces 92:121–129PubMedCrossRefGoogle Scholar
  107. Wong TW, Nurjaya S (2008) Drug release property of chitosan–pectinate beads and its changes under the influence of microwave. Eur J Pharm Biopharm 69(1):176–188PubMedCrossRefGoogle Scholar
  108. Wong TW, Nurulaini H (2012) Sustained-release alginate-chitosan pellets prepared by melt pelletization technique. Drug Dev Ind Pharm 38(12):1417–1427PubMedCrossRefGoogle Scholar
  109. Wong T, Colombo G, Sonvico F (2011) Pectin matrix as oral drug delivery vehicle for colon cancer treatment. AAPS PharmSciTech 12(1):201–214PubMedCrossRefGoogle Scholar
  110. Wu H et al (2012) Inhibition of angiogenesis by chitooligosaccharides with specific degrees of acetylation and polymerization. Carbohydr Polym 89(2):511–518PubMedCrossRefGoogle Scholar
  111. Xia W et al (2011) Biological activities of chitosan and chitooligosaccharides. Food Hydrocoll 25(2):170–179CrossRefGoogle Scholar
  112. Xiao B, Merlin D (2012) Oral colon-specific therapeutic approaches toward treatment of inflammatory bowel disease. Expert Opin Drug Deliv 9(11):1393–1407PubMedCrossRefGoogle Scholar
  113. Xing R et al (2005) Relevance of molecular weight of chitosan and its derivatives and their antioxidant activities in vitro. Bioorg Med Chem 13:1573–1577PubMedCrossRefGoogle Scholar
  114. Xu J et al (2017) Mucoadhesive chitosan hydrogels as rectal drug delivery vessels to treat ulcerative colitis. Acta Biomater 48:247–257PubMedCrossRefGoogle Scholar
  115. Yang L, Chu JS, Fix JA (2002) Colon-specific drug delivery: new approaches and in vitro/in vivo evaluation. Int J Pharm 235(1–2):1–15PubMedCrossRefGoogle Scholar
  116. Yang J et al (2007) Effect of chitosan molecular weight and deacetylation degree on hemostasis. J Biomed Mater Res 84(1):131–137CrossRefGoogle Scholar
  117. Yen MT, Yang JH, Mau JL (2008) Antioxidant properties of chitosan from crab shells. Carbohydr Polym 74(4):840–844CrossRefGoogle Scholar
  118. Yen MT, Yang JH, Mau JL (2009) Physicochemical characterization of chitin and chitosan from crab shells. Carbohydr Polym 75(1):15–21CrossRefGoogle Scholar
  119. Yu S et al (2017) A novel pH-induced thermosensitive hydrogel composed of carboxymethyl chitosan and poloxamer cross-linked by glutaraldehyde for ophthalmic drug delivery. Carbohydr Polym 155:208–217CrossRefGoogle Scholar
  120. Zargar V, Asghari M, Dashti A (2015) A review on chitin and chitosan polymers: structure, chemistry, solubility, derivatives, and applications. Chem Bio Eng 2(3):204–226Google Scholar
  121. Zhang DY et al (2008a) Preparation of chitosan-polyaspartic acid-5-fluorouracil nanoparticles and its anti-carcinoma effect on tumor growth in nude mice. World J Gastroenterol 14(22):3554–3562PubMedPubMedCentralCrossRefGoogle Scholar
  122. Zhang J et al (2008b) Dietary chitosan improves hypercholesterolemia in rats fed high-fat diets. Nutr Res 28:383–390PubMedCrossRefGoogle Scholar
  123. Zhang J et al (2012) A comparative study on hypolipidemic activities of high and low molecular weight chitosan in rats. Int J Biol Macromol 51(4):504–508PubMedCrossRefGoogle Scholar
  124. Zheng H, Tang C, Yin C (2015) Oral delivery of shRNA based on amino acid modified chitosan for improved antitumor efficacy. Biomaterials 70:126–137CrossRefGoogle Scholar
  125. Zolkefpeli SNM, Wong TW (2013) Design of microcrystalline cellulose-free alginate spheroids by extrusion-spheronization technique. Chem Eng Res Des 91(12):2437–2446CrossRefGoogle Scholar
  126. Zou P et al (2016) Advances in characterisation and biological activities of chitosan and chitosan oligosaccharides. Food Chem 190(12):1174–1181PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Non-Destructive Biomedical and Pharmaceutical Research Centre, iPROMISEPuncak AlamMalaysia
  2. 2.Particle Design Research Group, Faculty of PharmacyUniversiti Teknologi MARAPuncak AlamMalaysia

Personalised recommendations