Transdermal Delivery of Chitosan-Based Systems

  • Arshiya Praveen
  • Mohd AqilEmail author


Transdermal drug delivery has offered a promising alternative to other routes of delivery especially for the lipophilic drugs with limited oral bioavailability. Transdermal systems are acceptable because of their noninvasiveness, ease of application and removal, controlled drug release for long duration of time, avoidance of hepatic first-pass metabolism, and improved bioavailability. The predominant challenge in transdermal drug delivery is the skin barrier in the form of stratum corneum. Various approaches have been employed for breaching this barrier including penetration enhancers, iontophoresis, electroporation, and sonophoresis to name a few. Chitosan is a biodegradable, biocompatible polysaccharide polymer with anti-infective, antidiabetic, anticancer, and antihyperlipidemic effect. It has also been used as an adjuvant in transdermal drug delivery for its skin penetration enhancing properties. It is polycationic in nature and shows strong mucoadhesive property by interacting with negatively charged entity of skin moieties, thus prolonging contact time. This chapter deals with the synthesis of chitosan and application of chitosan-based drug delivery systems in transdermal drug delivery.


Chitosan Transdermal Penetration enhancer 


  1. Abdou ES, Nagy KSA, Elsabee MZ (2008) Extraction and characterization of chitin and chitosan from local sources. Bioresour Technol 99:1359–1367PubMedCrossRefGoogle Scholar
  2. Abioye AO, Issah S, Kola-Mustapha AT (2015) Ex vivo skin permeation and retention studies on chitosan- ibuprofen- 2 gellan ternary nanogel prepared by in situ ionic gelation technique- a 3 tool for controlled transdermal delivery of ibuprofen. Int J PharmGoogle Scholar
  3. Abnoos M, Mohseni M, Mousavi SAJ, Ashtari K, Ilka R, Mehravi B (2018) Chitosan-alginate nano-carrier for transdermal delivery of pirfenidone in idiopathic pulmonary fibrosis. Bio MacromolGoogle Scholar
  4. Agnihotri SA, Mallikarjuna NN, Aminabhavi TM (2004) Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release 100(1):5–28PubMedCrossRefGoogle Scholar
  5. Alexander A, Dwivedi S, Ajazuddin GTK, Saraf S, Saraf S, Tripathi DK (2012) Approaches for breaking the barriers of drug permeation through transdermal drug delivery. J Control Release 164:26–40PubMedCrossRefGoogle Scholar
  6. Ali HSM, Hanafy AF (2016) Glibenclamide nanocrystals in a biodegradable chitosan patch for transdermal delivery: engineering, formulation, and evaluation. J Pharm Sci xxx:1–9Google Scholar
  7. Al-Kassas R, Wen J, Cheng AE, Kim AM, Liu SSM, Yu J (2016) Transdermal delivery of propranolol hydrochloride through chitosan nanoparticles dispersed in mucoadhesive gel. Carboppol Polym 06:096Google Scholar
  8. Alvarez-Roman R, Naik A, Kalia YN, Guy RH, Fessi H (2004) Skin penetration and distribution of polymeric nanoparticles. J Control Release 99:53–62PubMedCrossRefGoogle Scholar
  9. Anirudhan TS, Nair SS, Nair AS (2016) Fabrication of a bioadhesive transdermal device from chitosan and hyaluronic acid for the controlled release of lidocaine. Carbohydr Polym 152:687–698PubMedCrossRefGoogle Scholar
  10. Arai K, Kinumaki T, Fujita T (1968) Toxicity of chitosan. Bull Tokai Reg Fish Lab 56:89–94Google Scholar
  11. Barradas TN, Senna JP, Cardoso SA, Silva KGH, Mansur CRE (2018) Formulation characterization and in-vitro drug release of hydrogel thickened nanoemulsion for topical delivery of 8- methoxypsoralen. Mater Sci Eng C 92:245–253CrossRefGoogle Scholar
  12. Bhise K, Dhumal R, Paradkar A, Kadam S, Effect of drying methods on swelling, erosion and drug release from chitosan–naproxen sodium complexes, AAPS Pharm SciTech.20089;1–12.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bolzinger MA, Briançon S, Pelletier J, Chevalier Y (2012) Penetration of drugs through skin; a complex rate-controlling membrane. Colloid Interface Sci 17:156–165Google Scholar
  14. Brown MB, Martin GP, Jones SA, Akomeah FK (2006) Dermal and transdermal drug delivery systems: current and future prospects. Drug Deliv 13:175–187PubMedCrossRefGoogle Scholar
  15. Budhian A, Siegel SJ, Winey KI (2007) Haloperidol-loaded PLGA nanoparticles:systematic study of particle size and drug content. Int J Pharm 336:367–375PubMedCrossRefGoogle Scholar
  16. Busio J, Molina-Perea C, Gonzalez-Aramundiz JV (2018) Lower-sized chitosan nanocapsules for transcutaneous antigen delivery. Nanomaterials 8(9):659CrossRefGoogle Scholar
  17. Ceschel G, Bergamante V, Maffei P, Borgia Lambardi S, Calabrese V, Biserni S (2003) Solubility and transdermal permeation properties of a dehydroepiandrosterone cyclodextrin complex from hydrophilic and lipophilic vehicles. Drug Deliv 12:275–280CrossRefGoogle Scholar
  18. Cevc G, Vierl U (2010) Nanotechnology and the transdermal route; A state of the art review and critical appraisal. J Control Release 141:277–299PubMedCrossRefGoogle Scholar
  19. Chassarya P, Vincenta T, Marcanob JS, Macaskiec LE, Guibala E (2005) Palladium and platinum recovery from bicomponent mixtures using chitosan derivatives. Hydrometallurgy 76:131–147CrossRefGoogle Scholar
  20. Clarys P, Alewaeters K, Jadoul A (1998) In vitro percutaneous penetration through hairless rat skin: influence of temperature, vehicle and penetration enhancers. Eur J Pharm Biopharm 46:279–283PubMedCrossRefGoogle Scholar
  21. Cormier M, Trautman J, Kim HL (2001) Skin treatment apparatus for sustained transdermal drug delivery. Patent (Serial number WO 01/41864 A1)Google Scholar
  22. Crocker P, Maynard K, Little M (2001) Pain free blunt needle injection technology. Innov Pharm Technol 9:111–115Google Scholar
  23. Delgado-Charro MB, Guy RH (2014) Effective use of transdermal drug delivery in children. Adv Drug Deliv Rev 73:63–82PubMedCrossRefGoogle Scholar
  24. Denet AR, Vanbever R, Preat V (2004) Skin electroporation for topical and transdermal delivery. Adv Drug Deliv Rev 56:659–674PubMedCrossRefGoogle Scholar
  25. Doukas AG, Kollias N (2004) Transdermal delivery with a pressure wave. Adv Drug Deliv Rev 56:559–579PubMedCrossRefGoogle Scholar
  26. Elgadir MA, Uddin MS, Ferdosh S, Adam A, Ahmed Jalal Khan Chowdhury, Sarker MZI (2015) Impact of chitosan composites and chitosan nanoparticle composites on various drug delivery systems: a review. J Food Drug Anal 23:619–629PubMedCrossRefPubMedCentralGoogle Scholar
  27. Fonseca-Santos B, Chorilli M (2017) An overview of carboxymethyl derivatives of chitosan: their use as biomaterials and drug delivery systems. Mater Sci Eng C 77:1349–1362CrossRefGoogle Scholar
  28. Furlani F, Sacco P, Marsich E, Donati I, Paoletti S (2017) Highly monodisperse colloidal coacervates based on a bioactive lactose-modified chitosan: from synthesis to characterization. Carbohydr Polym 174:360–368PubMedCrossRefGoogle Scholar
  29. Godin B, Touitou E (2003) Ethosomes: new prospects in transdermal delivery. Crit Rev Ther Drug Carrier Syst 20:63–102PubMedCrossRefGoogle Scholar
  30. Godin B, Touitou E (2007) Transdermal skin delivery: predictions for humans from in vivo, ex vivo and animal models. Adv Drug Deliv Rev 59:1152–1161PubMedCrossRefGoogle Scholar
  31. Godshall N, Anderson R (1999) Method and apparatus for disruption of the epidermis. Patent (Serial number U.S. 5,879, 326)Google Scholar
  32. Grabovac V, Guggi D, Bernkop-Schnürch A (2005) Comparison of the mucoadhesive properties of various polymers. Adv Drug Deliv Rev 57:1713–1723PubMedCrossRefGoogle Scholar
  33. Grenha A, Remunan-Lopez C, Carvalh EL, Seijo B (2008) Microspheres containing lipid/chitosan nanoparticles complexes for pulmonary delivery of therapeutic proteins. Eur J Pharm Biopharm 69:83–93PubMedCrossRefGoogle Scholar
  34. Grice JE, Ciotti S, Weiner N, Lockwood P, Cross SE, Roberts MS (2010) Relative uptake of minoxidil into appendages and stratum corneum and permeation through human skin in vitro. J Pharm Sci 99:712–718PubMedCrossRefGoogle Scholar
  35. Gupta S, Vyas SP (2010) Carbopol/chitosan based pH triggered in situ gelling system for ocular delivery of timolol maleate. Sci Pharm 78:959–976PubMedPubMedCentralCrossRefGoogle Scholar
  36. Guy RH, Kalia YN, Delgado-Charro MB (2000) Iontophoresis: electrorepulsion and electroosmosis. J Control Release 64:129–132PubMedCrossRefGoogle Scholar
  37. Hafez SMA, Hathout RM, Sammour OA (2018) Tracking the transdermal penetration pathways of optimized curcumin-loaded chitosan nanoparticles via confocal laser scanningmicroscopy. Int J Biol Macromol 108:753–764PubMedCrossRefGoogle Scholar
  38. Hafner A, Lovric J, Pepic I, Filipovic-Grcic J (2011) Lecithin/chitosan nanoparticles for transdermal delivery of Melatonin. J Microencapsul 28(8):807–815PubMedCrossRefGoogle Scholar
  39. He W, Guo X, Xiao L, Feng M (2009) Study on the mechanisms of chitosan and its derivatives used as transdermal penetration enhancers. Int J Pharm 382(1–2):234–243PubMedCrossRefGoogle Scholar
  40. Helmstadter A (2001) The history of electrically assisted transdermal drug delivery (iontophoresis). Pharmazie 56:583–587PubMedGoogle Scholar
  41. Howling GI, Dettmar PW, Goddard PA, Hampson FC, Dornish M, Wood EJ (2001) The effect of chitin and chitosan on the proliferation of human skin fibroblasts and keratinocytes in vitro. Biomaterials 22:2959–2966PubMedCrossRefGoogle Scholar
  42. Jacques SL, McAuliffe DJ, Blank IH, Parrish JA (1988) Controlled removal of human stratum corneum by pulsed laser to enhance percutaneous transport. Patent (Serial number U.S. 4, 775, 361)Google Scholar
  43. Jana S, Manna S, Nayak AK, Sen KK, Basu SK (2014) Carbopol gel containing chitosan-egg albumin nanoparticles for transdermal aceclofenac delivery. Colloids Surf B Biointerfaces 114:36–44PubMedCrossRefGoogle Scholar
  44. Jang K (1998) Skin perforating apparatus for transdermal medication. Patent (Serial number U.S. 5,843,114)Google Scholar
  45. Jintapattanakit A, Junyaprasert VB, Kissel T (2009) The role of mucoadhesion of trimethyl chitosan and PEGylated trimethyl chitosan nanocomplexes in insulin uptake. J Pharm Sci 98:4818–4830PubMedCrossRefGoogle Scholar
  46. Kalia YN, Naik A, Garrison J, Guy RH (2004) Iontophoretic drug delivery. Adv Drug Deliv Rev 56:619–658PubMedCrossRefGoogle Scholar
  47. Kassas RA, Wen J, Cheng AEM, Kim AMJ, Liu SSM, Yu J (2016) Transdermal delivery of propranolol hydrochloride through chitosan nanoparticles dispersed in mucoadhesive gel. Carbohydr Polym 153:176–186CrossRefGoogle Scholar
  48. Kast CE, Bernkop-Schnürch A (2002) Influence of the molecular mass on the permeation enhancing effect of different poly(acrylates). STP Pharm Sci 6:351–356Google Scholar
  49. Kaushik S, Hord AH, Denson DD, McAllister DV, Smitra S, Allen MG, Prausnitz MR (2001) Lack of pain associated with microfabricated microneedles. Anesth Analg 92:502–504PubMedCrossRefGoogle Scholar
  50. Khalil SKH, El-Feky GS, El-Banna ST, Khalil WA (2012) Preparation and evaluation of warfarin-cyclodextrin loaded chitosan nanoparticles for transdermal delivery. Carbohydr Polym 90:1244–1253PubMedCrossRefGoogle Scholar
  51. Kim H, Kim SI, Kwon IB, Kim MH, Lim JI (2013) Simple fabrication of silver hybridized porous chitosan-based patch for transdermal drug-delivery system. Mater Lett 95:48–51CrossRefGoogle Scholar
  52. Kotze AF, Lueben HL, Leeuw BJ, Boer BG, Verhoef JC, Junginger HE (1998) Comparison of the effect of different chitosan salts and N-trimethyl chitosan chloride on the permeability of intestinal epithelial cells (Caco-2). J Control Release 51:35–46CrossRefGoogle Scholar
  53. Kurita K (2001) Controlled functionalization of the polysaccharide chitin. Prog Polym Sci 26:1921–1971CrossRefGoogle Scholar
  54. Lai-Cheong JE, McGrath JA (2009) Structure and function of skin, hair and nails. Medicine 37:223–226CrossRefGoogle Scholar
  55. Lee D, Mohapatra SS (2008) Chitosan nanoparticle-mediated gene transfer. Gene Therapy Protocols Humana Press 127–140Google Scholar
  56. Liu S, Yang S, Ho PC (2017) Intranasal administration of carbamazepine-loaded carboxymethyl chitosan nanoparticles for drug delivery to the brain. Asian J Pharm SciGoogle Scholar
  57. Loftsson T, Brewster ME (1996) Pharmaceutical applications of cyclodextrins; Drug solubilization and stabilization. J Pharm Sci 85:1017–1025PubMedCrossRefGoogle Scholar
  58. Longbridge DJ, Sweeney PA, Burkoth TL, Bellhouse BJ (1998) Effects of particle size and cylinder pressure on dermal powder ject-R delivery of testosterone to conscious rabbits. Proc Int Symp Control Rel Bioact Mat 25:964Google Scholar
  59. Magnusson BM, Walters KA, Roberts MS (2001) Veterinary drug delivery: potential for skin penetration enhancement. Adv Drug Deliv Rev 50:205–227PubMedCrossRefGoogle Scholar
  60. Malhotra M, Lane C, Tomaro-Duchesneau C, Saha S, Prakash S (2011) A novel method for synthesizing PEGylated chitosan nanoparticles: strategy, preparation, and in vitro analysis. Int J Nanomedicine 6:485–494PubMedPubMedCentralGoogle Scholar
  61. Manca ML, Loy G, Zaru M, Fadda AM, Antimisiaris SG (2008) Release of rifampicin from chitosan, PLGA and chitosan-coated PLGA microparticles. Colloids Surf B Biointerfaces 67:166–170PubMedCrossRefGoogle Scholar
  62. Mao S, Sun W, Kissel T (2010) Chitosan-based formulations for delivery of DNA and siRNA. Adv Drug Deliv Rev 62:12–27PubMedCrossRefGoogle Scholar
  63. Marks R (2004) The stratum corneum barrier: the final frontier. J Nutr 134:2017S–2021SPubMedCrossRefGoogle Scholar
  64. Martien R, Loretz B, Thaler M, Majzoob S, Bernkop-Schnürch A (2007) Chitosan– thioglycolic acid conjugate: an alternative carrier for oral nonviral gene delivery? J Biomed Mater Res 82:1–9CrossRefGoogle Scholar
  65. Matos BN, Reis TA, Gratieri T, Gelfuso GM (2015) Chitosan nanoparticles for targeting and sustaining minoxidil sulphate delivery to hair follicles. Int J Biol Macromols 75:225–229CrossRefGoogle Scholar
  66. Matriano JA, Cormier M, Johnson J (2002) Macroflux technology: a new and efficient approach for intracutaneous immunization. Pharm Res 19:63–70PubMedCrossRefGoogle Scholar
  67. Mikszta JA, Alarcon J, Britingham JM (2002) Improved genetic immunization via micromechanical disruption of skin barrier function and targeted epidermal delivery. Nat Med 8:415–419PubMedCrossRefGoogle Scholar
  68. Mitragotri S, Blankschtein D, Langer R (1996) Transdermal delivery using low frequency sonophoresis. Pharm Res 13:411–420PubMedCrossRefGoogle Scholar
  69. Mohammed MA, Syeda JTM, Wasan KM, Wasan EK (2017) An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. PharmaceuticsGoogle Scholar
  70. Monteiro-Riviere NA (2010) Toxicology of the skin. Informa Healthcare USA, Inc., New York, pp 1–18Google Scholar
  71. Muddle AG, Longridge DJ, Sweeney PA (1997) Transdermal delivery of testosterone to conscious rabbits using powderject (R): a supersonic powder delivery system. Proc Int Symp Control Rel Bioact Mat 24:713Google Scholar
  72. Mudshinge SR, Deore AB, Patil S, Bhalgat CM (2011) Nanoparticles: emerging carriers for drug delivery. Saudi Pharm J 19:129–141PubMedPubMedCentralCrossRefGoogle Scholar
  73. Murthy SN, Hiremath RR (2001) Physical and chemical permeation enhancers in transdermal delivery of terbutaline sulphate. AAPS PharmSciTech 2:1–5PubMedCentralCrossRefPubMedGoogle Scholar
  74. Muxika A, Etxabide A, Uranga J, Guerrero P, de la Caba K (2017) Chitosan as a bioactive polymer: processing, properties and applications. Int J Biol Macromol 105:1358–1368PubMedCrossRefGoogle Scholar
  75. Nawaz A, Wong TW (2009) Microwave as skin permeation enhancer for transdermal drug delivery of chitosan-5-fluorouracil nanoparticles. Carbohydr PolymGoogle Scholar
  76. Park SY, Jun ST, Marsh KS (2001) Physical properties of PVOH/chitosan-blended films cast from different solvents. Food Hydrocoll 15:499–502CrossRefGoogle Scholar
  77. Pathan IB, Setty CM (2009) Chemical penetration enhancers for transdermal drug delivery systems. Trop J Pharm Res 8(2):173–179CrossRefGoogle Scholar
  78. Paulino AT, Simionato JI, Garcia JC, Jorge N (2006) Characterization of chitosan and chitin produced from silkworm crysalides. Carbohydr Polym 64:98–103CrossRefGoogle Scholar
  79. Pawadee M, Malinee P, Thanawit P, Junya P (2003) Hetrogeneous N-deacetylation of squid chitin in alkaline solution. Carbohydr Polyms 52:119–123CrossRefGoogle Scholar
  80. Pawar D, Mangal S, Goswami R, Jaganathan KS (2013) Development and characterization of surface modified PLGA nanoparticles for nasal vaccine delivery: effect of mucoadhesive coating on antigen uptake and immune adjuvant activity. Eur J Pharm Biopharm 85:550–559PubMedCrossRefGoogle Scholar
  81. Prashanth KVH, Tharanathan RN (2007) Chitin/chitosan: modifications and their unlimited application potential-an overview. Trends Food Sci Technol 18:117–131CrossRefGoogle Scholar
  82. Prausnitz MR (2004) Microneedles for transdermal drug delivery. Adv Drug Deliv Rev 56:581–587PubMedCrossRefGoogle Scholar
  83. Prow TW, Grice JE, Lin LL, Faye R, Butler M, Becker W, Wurm EMT, Yoong C, Robertson TA, Soyer HP, Roberts MS (2011) Nanoparticles and microparticles for skin drug delivery. Adv D Deli Rev 63:470–491CrossRefGoogle Scholar
  84. Risbud MV, Hardikar AA, Bhat SV, Bhonde R (2000) pH-sensitive freeze-dried chitosan–polyvinyl pyrrolidone hydrogels as controlled release system for antibiotic delivery. J Control Release 68:23–30PubMedCrossRefGoogle Scholar
  85. Roberts MS, Cross SE, Pellett MA (2002) Skin transport. In: Walters KA (ed) Dermatological and transdermal formulations. Marcel Dekker, New York, pp 89–195Google Scholar
  86. Sadeghi AMM, Dorkoosh FA, Avadi MR, Weinhold M, Bayat A, Delie F, Gurny R, Larijani B, Rafiee-Tehrani M, Junginger HE (2008) Permeation enhancer effect of chitosan and chitosan derivatives: Comparison of formulations as soluble polymers and nanoparticulate systems on insulin absorption in Caco-2 cells. Eur J Pharm Biopharm 70:270–278CrossRefGoogle Scholar
  87. Sakloetsakun D, Hombach J, Bernkop-Schnürch A (2009) In situ gelling properties of chitosan–thioglycolic acid conjugate in the presence of oxidizing agents. Biomaterials 30:6151–6157PubMedCrossRefGoogle Scholar
  88. Scheuplein RJ (1965) Mechanism of percutaneous adsorption. I. Routes of penetration and the influence of solubility. J Invest Dermatol 45:334–334PubMedCrossRefGoogle Scholar
  89. Shukla SK, Mishra AK, Arotiba OA, Mamba BB (2013) Chitosan-based nanomaterials: a state-of-the-art review. Int J Biol Macromol 59:46–58PubMedCrossRefGoogle Scholar
  90. Siafaka PI, Titopoulou A, Koukaras EN, Kostoglou M, Koutris E, Karavas E, Bikiaris DN (2015) Chitosan derivatives as effective nanocarriers for ocular release of timolol drug. Int J Pharm 495:249–264PubMedCrossRefGoogle Scholar
  91. Siepmann J, Siepmann F (2012) Modeling of diffusion controlled drug delivery. J Control Release 161:351–362PubMedCrossRefGoogle Scholar
  92. Sinha VR, Kaur MP (2000) Permeation enhancers for transdermal drug delivery. Drug Dev Ind Pharm 26:1131–1140PubMedCrossRefGoogle Scholar
  93. Sintov A, Krymbeck I, Daniel D (2003) Radiofrequency microchanneling as a new way for electrically assisted transdermal delivery of hydrophilic drugs. J Control Release 89:311–320PubMedCrossRefGoogle Scholar
  94. Smith J, Wood E, Dornish M (2004) Effect of chitosan on epithelial cell tight junctions. Pharm Res 21(1):43–49PubMedCrossRefGoogle Scholar
  95. Svedman P, Lundin S, Hoglund P (1996) Passive drug diffusion via standardized skin mini-erosion; methodological aspects and clinical findings with new device. Pharm Res 13:1354–1359PubMedCrossRefGoogle Scholar
  96. Tanner T, Marks R (2008) Delivering drugs by the transdermal route: review and comment. Skin Res Technol 14:249–260PubMedCrossRefGoogle Scholar
  97. Tapia C, Corbalán V, Costa E, Gai MN, Yazdani-Pedram M (2005) Study of the release mechanism of diltiazem hydrochloride from matrices based on chitosan-alginate and chitosan-carrageenan mixtures. Biomacromols 6:2389–2395CrossRefGoogle Scholar
  98. Taveira SF, Nomizo A, Lopez RF (2009) Effect of the iontophoresis of a chitosan gel on doxorubicin skin penetration and cytotoxicity. J Control Release 134:35–40PubMedCrossRefGoogle Scholar
  99. Thanou MM, Kotze AF, Scharringhausen T, Lueben HL, De Boer AG, Verhoef JC, Junginger HE (2000) Effect of degree of quaternization of N-trimethyl chitosan chloride for enhanced transport of hydrophilic compounds across intestinal Caco-2 cell monolayers. J Control Release 64:15–25CrossRefGoogle Scholar
  100. Trautman J, Cormier MJ, Kim HL, Zuck MG (2000) Device for enhancing transdermal agent flux. Patent (Serial number U.S. 6,083,196)Google Scholar
  101. Tu Y, Wang X, Lu Y, Zhang H, Yu Y, Chen Y, Liu J, Sun Z, Cui L, Gao J, Zhong Y (2016) Promotion of the transdermal delivery of protein drugs by N-trimethyl chitosan nanoparticles combined with polypropylene electret. Int J Nanomedicine 11:5549–5561PubMedPubMedCentralCrossRefGoogle Scholar
  102. Wendtner MHS, Korting HC (2006) The pH of the skin surface and its impact on the barrier function. Skin Pharmacol Physiol 19:296–302CrossRefGoogle Scholar
  103. Werle M, Bernkop-Schnürch A (2008) Thiolated chitosans: useful excipients for oral drug delivery. J Pharm Pharmacol 60:273–281CrossRefGoogle Scholar
  104. William AC, Barry BW (2004) Penetration enhancer. Adv Drug Deliv 56:603–618CrossRefGoogle Scholar
  105. Yuan Z, Ye Y, Gao F, Yuan H, Lan M, Lou K, Wang W (2013) Chitosan-graft-cyclodextrin nanoparticles asa carrier for controlled drug release. Int J PharmGoogle Scholar
  106. Zhang L, Nolan E, Kreitschitz S, Rabussay DP (2002) Enhanced delivery of naked DNA to the skin by non-invasive in vivo electroporation. Biochim Biophys Acta 1572:1–9PubMedCrossRefGoogle Scholar
  107. Zu Y, Zhang Y, Zhao X, Shan C, Zu S, Wang K, Li Y, Ge Y (2012) Preparation and characterization of chitosan–polyvinyl alcohol blend hydrogels for the controlled release of nano-insulin. Int J Biol Macromol 50:82–87PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Pharmaceutics, School of Pharmaceutical Education and ResearchJamia Hamdard (Deemed University)New DelhiIndia

Personalised recommendations