Chitosan-Based Systems for Theranostic Applications

  • V. Balan
  • S. Malihin
  • Liliana VerestiucEmail author


The ideal theranostic approach is capable of several functions ranging from diagnosis to treatment with accurate targeting of cancer-specific cells. Therefore, the newest generation of theranostic systems offers opportunities to combine passive and active targeting, environmentally responsive drug release, molecular imaging, and other therapeutic functions into a single biomedical platform. To achieve this purpose, biomedical researchers have developed various systems composed of organic or inorganic materials. Due to its remarkable physicochemical and biological properties, chitosan and its derivatives have been employed in the development of composite theranostic systems able of prediction, real-time monitoring, and assessment of the therapeutic responses. This review outlines recent developments of chitosan-based systems for theranostic applications and analyzes them in terms of performances and limits. Conclusions and future perspectives will both synthesize the state of the art of the chitosan applications in theragnosis and the authors’ point of view about insights toward biopolymer unexploited implications in this field.


Theranostic Chitosan Bioactivity Nanoparticles Scaffolds 



This work was supported by a grant of Grigore T. Popa University of Medicine and Pharmacy, no. 27499/2018.


  1. Agyare EK, Jaruszewski KM, Curran GL et al (2014) Engineering theranostic nanovehicles capable of targeting cerebrovascular amyloid deposits. J Control Release 185:121–129PubMedCrossRefGoogle Scholar
  2. Ahmadi Nasab N, Hassani Kumleh H, Beygzadeh M (2018) Delivery of curcumin by a pH-responsive chitosan mesoporous silica nanoparticles for cancer treatment. Artif Cells Nanomed Biotechnol 46:75–81PubMedCrossRefGoogle Scholar
  3. Ahmadi F, Oveisi Z, Mohammadi Samani S, Amoozgar Z (2015) Chitosan based hydrogels: characteristics and pharmaceutical applications. Res Pharm Sci 10:1): 1–1):16PubMedPubMedCentralGoogle Scholar
  4. Aleem AR, Shahzadi L, Alvi F et al (2017) Thyroxin releasing chitosan/collagen based smart hydrogels to stimulate neovascularization. Mater Des 133:417–421CrossRefGoogle Scholar
  5. Anitha A, Sowmya S, Sudheesh Kumar PT et al (2014) Chitin and chitosan in selected biomedical applications. Prog Polym Sci 39:1644–1667CrossRefGoogle Scholar
  6. Anraku M, Tabuchi R, Ifuku S et al (2017) An oral absorbent, surface-deacetylated chitin nano-fiber ameliorates renal injury and oxidative stress in 5/6 nephrectomized rats. Carbohydr Polym 161:21–25PubMedCrossRefGoogle Scholar
  7. Anraku M, Gebicki JM, Iohara D et al (2018) Antioxidant activities of chitosans and its derivatives in in vitro and in vivo studies. Carbohydr Polym 199:141–149PubMedCrossRefGoogle Scholar
  8. Anton N, Benoit JP, Saulnier P (2008) Design and production of nanoparticles formulated from nanoemulsion templates—a review. J Control Release 128:185–199PubMedCrossRefGoogle Scholar
  9. Ashjari M, Khoee S, Mahdavian AR (2012) A multiple emulsion method for loading 5-fluorouracil into a magnetite-loaded nanocapsule: a physicochemical investigation. Polym Int 61:850–859CrossRefGoogle Scholar
  10. Azuma K, Tomohiro Osaki T, Minami S et al (2015) Anticancer and anti-inflammatory properties of chitin and chitosan oligosaccharides. J Funct Biomater 6(1):33–49PubMedPubMedCentralCrossRefGoogle Scholar
  11. Balan V, Dodi G, Tudorachi N et al (2015) Doxorubicin-loaded magnetic nanocapsules based on N-palmitoyl chitosan and magnetite: synthesis and characterization. Chem Eng J 279:188–197CrossRefGoogle Scholar
  12. Balan V, Redinciuc V, Tudorachi N, Verestiuc L (2016) Biotinylated N-palmitoyl chitosan for design of drug loaded self-assembled nanocarriers. Eur Polym J 81:284–294CrossRefGoogle Scholar
  13. Baranwal A, Kumar A, Priyadharshini A et al (2018) Chitosan: an undisputed bio-fabrication material for tissue engineering and bio-sensing applications. Int J Biol Macromol 110:110–123CrossRefGoogle Scholar
  14. Barbosa JN, Amaral IF, Aguas AP et al (2010) Evaluation of the effect of the degree of acetylation on the inflammatory response to 3D porous chitosan scaffolds. J Biomed Mater Res A 93(1):20–28PubMedGoogle Scholar
  15. Barenholz Y (2012) Doxil(R) — the first FDA-approved nano-drug: lessons learned. J Control Release 160(2):117–134PubMedCrossRefGoogle Scholar
  16. Bellich B, D’Agostino I, Semeraro S et al (2016) “The good, the bad and the ugly” of chitosans. Mar Drugs 14(5):99–130PubMedCentralCrossRefPubMedGoogle Scholar
  17. Biswas S, Sen KK, Roy R et al (2014) Chitosan-based particulate system for oral vaccine delivery: a review. Int J Pharm 4(1):226–236Google Scholar
  18. Bressan E, Favero V, Gardin C et al (2011) Biopolymers for hard and soft engineered tissues: Application in odontoiatric and plastic surgery field. Polymers 3:509–526CrossRefGoogle Scholar
  19. Bružauskaitė I, Bironaitė D, Bagdonas E et al (2015) Scaffolds and cells for tissue regeneration: different scaffold pore sizes-different cell effects. Cytotechnology 68(3):355–369PubMedPubMedCentralCrossRefGoogle Scholar
  20. Cai SJ, Li CW, Weihs D et al (2017) Control of cell proliferation by a porous chitosan scaffold with multiple releasing capabilities. Sci Technol Adv Mater 18(1):987–996PubMedPubMedCentralCrossRefGoogle Scholar
  21. Chang SH, Wu CH, Tsai GJ (2018) Effects of chitosan molecular weight on its antioxidant and antimutagenic properties. Carbohydr Polym 181:1026–1032PubMedCrossRefPubMedCentralGoogle Scholar
  22. Charron DM, Chen J, Zheng G (2015) Theranostic lipid nanoparticles for cancer medicine. Cancer Treat Res 166:103–127PubMedCrossRefGoogle Scholar
  23. Chaudhari AA, Vig K, Baganizi DR et al (2016) Future prospects for scaffolding methods and biomaterials in skin tissue engineering: a review. Int J Mol Sci 17(12):1974PubMedCentralCrossRefPubMedGoogle Scholar
  24. Chen X, Wong STC (2014) Cancer theranostics: an introduction. In: Chen X, Wong STC (eds) Cancer theranostics. Academic/Elsevier, Oxford, pp 3–8CrossRefGoogle Scholar
  25. Chen R, Zheng X, Qian H et al (2013a) Combined near-IR photothermal therapy and chemotherapy using gold-nanorod/chitosan hybrid nanospheres to enhance the antitumor effect. Biomater Sci 3:285–293CrossRefGoogle Scholar
  26. Chen R, Wang X, Yao X et al (2013b) Near-IR-triggered photothermal/photodynamic dual-modality therapy system via chitosan hybrid nanospheres. Biomaterials 34:8314–8322PubMedCrossRefGoogle Scholar
  27. Cheung RCF, Ng TB, Wong JH et al (2015) Chitosan: an update on potential biomedical and pharmaceutical applications. Mar Drugs 13(8):5156–5186PubMedPubMedCentralCrossRefGoogle Scholar
  28. Chiang CS, Hu SH, Liao BJ et al (2014) Enhancement of cancer therapy efficacy by trastuzumab-conjugated and pH-sensitive nanocapsules with the simultaneous encapsulation of hydrophilic and hydrophobic compounds. Nanomedicine 10:99–107PubMedCrossRefGoogle Scholar
  29. Chiu YL, Ho YC, Chen YM et al (2010) The characteristics, cellular uptake and intracellular trafficking of nanoparticles made of hydrophobically modified chitosan. J Control Release 146:152–159PubMedCrossRefGoogle Scholar
  30. Cho B-B, Choi K (2018) Preparation of chitosan microspheres containing 166Dy/166Ho in vivo generators and their theranostic potential. J Radioanal Nucl Chem 317:1123–1132CrossRefGoogle Scholar
  31. Cho J, Heuzey MC, Bégin A et al (2005) Physical gelation of chitosan in the presence of β -glycerophosphate: the effect of temperature. Biomacromolecules 6(6):3267–3275PubMedCrossRefGoogle Scholar
  32. Choi D, Jeon S, You DG et al (2018) Iodinated echogenic glycol chitosan nanoparticles for X-ray CT/US dual imaging of tumor. Nanotheranostics 2(2):117–127PubMedPubMedCentralCrossRefGoogle Scholar
  33. Chowdhury S, Yusof F, Salim WWAW et al (2016) An overview of drug delivery vehicles for cancer treatment: nanocarriers and nanoparticles including photovoltaic nanoparticles. J Photochem Photobiol B Biol 164:151–159CrossRefGoogle Scholar
  34. Correia DM, Lanceros-Mendez S, Sencadas V et al (2017) Kinetic study of thermal degradation of chitosan as a function of deacetylation degree. Carbohydr Polym 16:752–758Google Scholar
  35. Costa-Júnior ES, Barbosa-Stancioli EF, Mansur AAP et al (2009) Preparation and characterization of chitosan/poly(vinyl alcohol) chemically crosslinked blends for biomedical applications. Carbohydr Polym 76(3):472–448CrossRefGoogle Scholar
  36. Crini G, Guibal E, Morcellet M et al (2009) In: Chitine et chitosane, du biopolymère à l’application. Crini G, Badot PM, Guibal E (eds) Presse Universitaires de Franche-Comté, Besançon, p 19Google Scholar
  37. Croisier F, Jérôme C (2013) Chitosan-based biomaterials for tissue engineering. Eur Polym J 49:780–792CrossRefGoogle Scholar
  38. Czechowska-Biskup R, Jarosińska D, Rokita B et al (2012) Determination of degree of deacetylation of chitosan – comparison of methods. Progress on Chemistry and Application of Chitin and its Derivatives 17:5–20Google Scholar
  39. Dadras P, Atyabi F, Irani S et al (2017) Formulation and evaluation of targeted nanoparticles for breast cancer theranostic system. Eur J Pharm Sci 97:47–54PubMedCrossRefGoogle Scholar
  40. Dai T, Tanaka M, Huang YY, Hamblin MR (2011) Chitosan preparations for wounds and burns: antimicrobial and wound-healing effects. Expert Rev Anti-infective Ther 9(7):857–879CrossRefGoogle Scholar
  41. Darsanaki RK, Azizzadeh A, Nourbakhsh M et al (2013) Biosensors: functions and Applications. J Biol Today’s World 2(1):53–61Google Scholar
  42. Davis PJ, Davis FB, Lin HY (2006) L-thyroxine acts as a hormone as well as a prohormone at the cell membrane. Immunology, Endocrine and Metabolic Agents in Medicinal Chemistry 6(3):235–240CrossRefGoogle Scholar
  43. de Smet M, Langereis S, van den Bosch S et al (2013) SPECT/CT imaging of temperature-sensitive liposomes for MR image guided drug delivery with high intensity focused ultrasound. J Control Release 169:82–90PubMedCrossRefGoogle Scholar
  44. Deng P, Fei J, Feng Y (2011) Sensitive voltammetric determination of tryptophan using an acetylene black paste electrode modified with a Schiff’s base derivative of chitosan. Analyst 136:5211–5217PubMedCrossRefGoogle Scholar
  45. Deng X, Cao M, Zhang J et al (2014) Hyaluronic acid-chitosan nanoparticles for co-delivery of MiR-34a and doxorubicin in therapy against triple negative breast cancer. Biomaterials 35:4333–4344PubMedCrossRefGoogle Scholar
  46. Desai KG (2016) Chitosan nanoparticles prepared by ionotropic gelation: an overview of recent advances. Crit Rev Ther Drug Carrier Syst 33(2):107–158PubMedCrossRefGoogle Scholar
  47. Ding L, Shan X, Zhao et al (2017) Spongy bilayer dressing composed of chitosan–Ag nanoparticles and chitosan–Bletilla striata polysaccharide for wound healing applications. Carbohydr Polym 157:1538–1547PubMedCrossRefGoogle Scholar
  48. Dürr S, Janko C, Lyer S et al (2013) Magnetic nanoparticles for cancer therapy. Nanotechnol Rev 2:395–409CrossRefGoogle Scholar
  49. Dutta PK, Rinki K, Dutta J (2011) Chitosan: a promising biomaterial for tissue engineering scaffold. In: Jayakumar R, Prabaharan M, Muzzarelli RAA (eds) Chitosan for biomaterials II. Springer, Heidelberg, p 57Google Scholar
  50. Elgqvist J (2017) Nanoparticles as theranostic vehicles in experimental and clinical applications – focus on prostate and breast cancer. Int J Mol Sci 18(5):1102PubMedCentralCrossRefPubMedGoogle Scholar
  51. Fan C, Gao W, Chen Z et al (2011) Tumor selectivity of stealth multi-functionalized superparamagnetic iron oxide nanoparticles. Int J Pharm 404:180–190PubMedCrossRefGoogle Scholar
  52. Fang C, Zhang M (2010) Nanoparticle-based theragnostics: Integrating diagnostic and therapeutic potentials in nanomedicine. J Control Release 146:2–5PubMedPubMedCentralCrossRefGoogle Scholar
  53. Fathi M, Majidi S, Zangabad PS et al (2018) Chitosan-based multifunctional nanomedicines and theranostics for targeted therapy of cancer. Med Res Rev 38:2110–2136PubMedCrossRefGoogle Scholar
  54. Feksa LR, Troian EA, Muller CD et al (2018) Hydrogels for biomedical applications. In: Grumezescu AM (ed) Nanostructures for the engineering of cells, tissues and organs from design to applications. Applied Science Publisher, Oxford, pp 403–438CrossRefGoogle Scholar
  55. Feng Y, Yang L, Li F (2010) A novel sensing platform based on periodate-oxidized chitosan. Anal Methods 2:2011–2016CrossRefGoogle Scholar
  56. Gallaher DD (2003) Chitosan, cholesterol lowering, and caloric loss. Agro Food Ind Hi Tech 14(5):32Google Scholar
  57. Geckil H, Xu F, Zhang X et al (2010) Engineering hydrogels as extracellular matrix mimics. Nanomedicine (London) 5(3):469–484CrossRefGoogle Scholar
  58. Gianino E, Miller C, Gilmore J (2018) Smart wound dressings for diabetic chronic wounds. Bioengineering 5(51):1–26Google Scholar
  59. Guarino V, Caputo T, Altobelli R, Ambrosio L (2015) Degradation properties and metabolic activity of alginate and chitosan polyelectrolytes for drug delivery and tissue engineering applications. AIMS Mater Sci 2(4):497–502CrossRefGoogle Scholar
  60. Habash RWY (2018) Therapeutic hyperthermia. In: Romanovsky AA (ed) Handbook of clinical neurology, vol 157 (3rd series) Thermoregulation: from basic neuroscience to clinical neurology, Part II. Elsevier, Amsterdam, pp 853–867Google Scholar
  61. Haeri A, Zalba S, ten Hagen TLM et al (2016) EGFR targeted thermosensitive liposomes: a novel multifunctional platform for simultaneous tumor targeted and stimulus responsive drug delivery. Colloids Surf B: Biointerfaces 146:657–669PubMedCrossRefGoogle Scholar
  62. Hamdi M, Nasri R, Hajji S et al (2019) Acetylation degree, a key parameter modulating chitosan rheological, thermal and film-forming properties. Food Hydrocoll 87:48–60CrossRefGoogle Scholar
  63. Hamedi H, Moradi S, Hudson SM et al (2018) Chitosan based hydrogels and their applications for drug delivery in wound dressings: a review. Carbohydr Polym 1(199):445–460CrossRefGoogle Scholar
  64. Hejjaji EMA, Smith AM, Morris GA (2018) Evaluation of the mucoadhesive properties of chitosan nanoparticles prepared using different chitosan to tripolyphosphate (CS:TPP) ratios. Int J Biol Macromol 120:1610–1617PubMedCrossRefGoogle Scholar
  65. Hirai A, Odani H, Nakajima A (1991) Determination of degree of deacetylation of chitosan by 1H NMR spectroscopy. Polym Bull 26(1):87–94CrossRefGoogle Scholar
  66. Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG (2013) Cancer drug resistance: an evolving paradigm. Nat Rev Cancer 13:714–726PubMedPubMedCentralCrossRefGoogle Scholar
  67. Hsiao MH, Mu Q, Stephen ZR et al (2015) Hexanoyl-chitosan-PEG copolymer coated iron oxide nanoparticles for hydrophobic drug delivery. ACS Macro Lett 4(4):403–407PubMedPubMedCentralCrossRefGoogle Scholar
  68. Hua XW, Bao YW, Chen Z et al (2017) Carbon quantum dots with intrinsic mitochondrial targeting ability for mitochondria-based theranostics. Nanoscale 9:10948–10960PubMedCrossRefGoogle Scholar
  69. Huang Y, He S, Cao W (2012) Biomedical nanomaterials for imaging-guided cancer therapy. Nanoscale 4:6135–6149PubMedCrossRefGoogle Scholar
  70. Huang Q, Bao C, Lin Y et al (2013) Disulfide-phenylazide: a reductively cleavable photoreactive linker for facile modification of nanoparticle surfaces. J Mater Chem B 1:1125–1132CrossRefGoogle Scholar
  71. Huang X, Xu C, Li Y et al (2019) Quaternized chitosan-stabilized copper sulfide nanoparticles for cancer therapy. Mater Sci Eng C Mater Biol Appl 96:129–137PubMedCrossRefGoogle Scholar
  72. Ibrahim HM, El-Zairy EMR (2015) Chitosan as a biomaterial – structure, properties, and electrospun nanofibers. In: Bobbarala V (ed) Concepts, compounds and the alternatives of antibacterials. IntechOpen, Rijeka, pp 81–100Google Scholar
  73. Ikeda T, Ikeda K, Yamamoto K et al (2014) Fabrication and characteristics of chitosan sponge as a tissue engineering scaffold. Biomed Res Int 2014:Article ID 786892CrossRefGoogle Scholar
  74. Iqbal MA, Md S, Sahni JK et al (2012) Nanostructured lipid carriers system: recent advances in drug delivery. J Drug Target 20:813–830PubMedCrossRefGoogle Scholar
  75. Jatunov S, Franconetti A, Prado-Gotor R et al (2015) Fluorescent amino and secondary amino chitosans as potential sensing biomaterials. Carbohydr Polym 123:288–296PubMedCrossRefGoogle Scholar
  76. Jayakumar R, Reis RL, Mano JF (2006) Chemistry and applications of phosphorylated chitin and chitosane. Polymer 2006, 035Google Scholar
  77. Jeelani S, Reddy RC, Maheswaran T et al (2014) Theranostics: a treasured tailor for tomorrow. J Pharm Bioallied Sci 6:S6–S8PubMedPubMedCentralCrossRefGoogle Scholar
  78. Jemal A, Bray F, Center MM et al (2011) Global cancer statistics. CA Cancer J Clin 61:69–90PubMedPubMedCentralCrossRefGoogle Scholar
  79. Jhaveri A, Deshpande P, Torchilin V (2014) Stimuli-sensitive nanopreparations for combination cancer therapy. J Controll Rel 190:352–370CrossRefGoogle Scholar
  80. Ji J, Hao S, Liu W et al (2011) Preparation and evaluation of O-carboxymethyl chitosan/cyclodextrin nanoparticles as hydrophobic drug delivery carriers. Polym Bull 67:1201–1213CrossRefGoogle Scholar
  81. John AE, Luckett JC, Tatler AL et al (2013) Preclinical SPECT/CT imaging of αvβ6 integrins for molecular stratification of idiopathic pulmonary fibrosis. J Nucl Med 54:2146–2152PubMedCrossRefGoogle Scholar
  82. Jolly P, Tamboli V, Harniman RL et al (2016) Aptamer- MIP hybrid receptor for highly sensitive electrochemical detection of prostate specific antigen. Biosens Bioelectron 75:188–195PubMedCrossRefGoogle Scholar
  83. Kalliola S, Repo E, Srivastava V et al (2017) The pH sensitive properties of carboxymethyl chitosan nanoparticles cross-linked with calcium ions. Colloids Surf B: Biointerfaces 153:229–236PubMedCrossRefGoogle Scholar
  84. Kast CE, Bernkop-Schnurch A (2001) Thiolated polymers – thiomers: development and in vitro evaluation of chitosan-thioglycolic acid conjugates. Biomaterials 22:2345–2352CrossRefGoogle Scholar
  85. Kaur S, Dhillon GS (2014) The versatile biopolymer chitosan: potential sources, evaluation of extraction methods and applications. Crit Rev Microbiol 40(2):155–175PubMedCrossRefGoogle Scholar
  86. Kelly KA, Allport JR, Tsourkas A et al (2005) Detection of vascular adhesion molecule-1 expression using a novel multimodal nanoparticle. Circ Res 96(3):32736CrossRefGoogle Scholar
  87. Kesharwani P, Banerjee S, Gupta U et al (2015) PAMAM dendrimers as promising nanocarriers for RNAi therapeutics. Mater Today 18:565–572CrossRefGoogle Scholar
  88. Khoee S, Yaghoobian M (2008) An investigation into the role of surfactants in controlling particle size of polymeric nanocapsules containing penicillin-G in double emulsion. Eur J Med Chem 44(6):2392–2399PubMedCrossRefGoogle Scholar
  89. Khoshmohabat H, Paydar S, Kazemi HM, Dalfardi B (2016) Overview of agents used for emergency hemostasis. Trauma Mon 21(1):e26023PubMedPubMedCentralGoogle Scholar
  90. Kim K, Kim JH, Park H et al (2010) Tumor-homing multifunctional nanoparticles for cancer theragnosis: Simultaneous diagnosis, drug delivery, and therapeutic monitoring. J Control Release 146:219–227PubMedCrossRefGoogle Scholar
  91. Kim J, Huy BT, Sakthivel K et al (2015a) Highly fluorescent CdTe quantum dots with reduced cytotoxicity-A Robust biomarker. Sens Bio-Sens Res 3:46–52CrossRefGoogle Scholar
  92. Kim JY, Ryu JH, Schellingerhout D et al (2015b) Direct imaging of cerebral thromboemboli using computed tomography and fibrin-targeted gold nanoparticles. Theranostics 5:1098–1114PubMedPubMedCentralCrossRefGoogle Scholar
  93. Kocak N, Sahin M, Kücükkolbasi S, Erdogan ZO (2012) Synthesis and characterization of novel nano-chitosan Schiff base and use of lead (II) sensor. Int J Biol Macromol 51:1159–1166PubMedCrossRefGoogle Scholar
  94. Kong M, Chen X, Xing K, Park H (2010) Antimicrobial properties of chitosan and mode of action: a state of the art review. J Food Microbiol 144:51–63CrossRefGoogle Scholar
  95. Kulkarni NS, Guererro Y, Gupta N et al (2019) Exploring potential of quantum dots as dual modality for cancer therapy and diagnosis. J Drug Deliv Sci Techno 49:352–364CrossRefGoogle Scholar
  96. Kumar P, Srivastava R (2015) IR 820 stabilized multifunctional polycaprolactone glycol chitosan composite nanoparticles for cancer therapy. RSC Adv 5:56162–56170CrossRefGoogle Scholar
  97. Kumar MNVR, Muzarelli RAA, Muzarelli C et al (2004) Chitosan chemistry and pharmaceutical perspectives. Chem Rev 104:6017–6084CrossRefGoogle Scholar
  98. Kumar P, Tambe P, Paknikar KM, Gajbhiyea V (2018) Mesoporous silica nanoparticles as cutting-edge theranostics: advancement from merely a carrier to tailor-made smart delivery platform. J Control Release 287:35–57PubMedCrossRefGoogle Scholar
  99. Laroui H, Dalmasso G, Nguyen HT (2010) Drug-loaded nanoparticles targeted to the colon with polysaccharide hydrogel reduce colitis in a mouse model. Gastroenterology 138:843–853PubMedCrossRefGoogle Scholar
  100. Larsson M, Huang W-C, Hsiao M-H et al (2013) Biomedical applications and colloidal properties of amphiphilically modified chitosan hybrids. Prog Polym Sci 38:1307–1328CrossRefGoogle Scholar
  101. Laurencin CT, Jiang T, Kumbar SG, Nair LS (2008) Biologically active chitosan systems for tissue engineering and regenerative medicine. Curr Top Med Chem 8:354–364PubMedCrossRefGoogle Scholar
  102. Leal J, Smyth HDC, Ghosh D (2017) Physicochemical properties of mucus and their impact on transmucosal drug delivery. Int J Pharm 532(1):555–572PubMedPubMedCentralCrossRefGoogle Scholar
  103. Lee DE, Koo H, Sun IC et al (2012) Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem Soc Rev 41:2656–2672PubMedCrossRefGoogle Scholar
  104. Lei Q, Wang SB, Hu JJ et al (2017) Stimuli responsive “cluster bomb” for programmed tumor therapy. ACS Nano 11:7201–7214PubMedCrossRefGoogle Scholar
  105. Letchford K, Burt H (2007) A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. Eur J Pharm Biopharm 65:259–269PubMedCrossRefGoogle Scholar
  106. Leung SJ, Romanowski M (2012) Light-activated content release from liposomes. Theranostics 2:1020–1036PubMedPubMedCentralCrossRefGoogle Scholar
  107. Levine DH, Ghoroghchian PP, Freudenberg J, Zhang G et al (2008) Polymersomes: a new multifunctional tool for cancer diagnosis and therapy. Methods 46(1):2532CrossRefGoogle Scholar
  108. Li J, Jiang H, Yu Z et al (2013) Multifunctional uniform core-shell Fe3O4@mSiO2 mesoporous nanoparticles for bimodal imaging and photothermal therapy. Chem-Asian J 8(2):385–391PubMedCrossRefGoogle Scholar
  109. Li H, Li Z, Zhao J et al (2014a) Carboxymethyl chitosan-folic acid-conjugated Fe3O4@SiO2 as a safe and targeting antitumor nanovehicle in vitro. Nanoscale Res Lett 9(1):146PubMedPubMedCentralCrossRefGoogle Scholar
  110. Li J, Mei H, Zheng W, Pan P et al (2014b) A novel hydrogen peroxide biosensor based on hemoglobin-collagen-CNTs composite nanofibers. Colloids Surf B: Biointerfaces 118:77–82PubMedCrossRefPubMedCentralGoogle Scholar
  111. Li J, Cai C, Li J et al (2018) Chitosan-based nanomaterials for drug delivery. Molecules 23(10):2661PubMedCentralCrossRefPubMedGoogle Scholar
  112. Lim EK, Sajomsang W, Choi Y et al (2013) Chitosan-based intelligent theragnosis nanocomposites enable pH-sensitive drug release with MR-guided imaging for cancer therapy. Nanoscale Res Lett 8:467PubMedPubMedCentralCrossRefGoogle Scholar
  113. Lin J, Li Y, Ki Y et al (2015) Drug/dye-loaded, multifunctional PEG-chitosan-iron oxide nanocomposites for methotrexate synergistically self-targeted cancer therapy and dual model imaging. ACS Appl Mater Interfaces 7:11908–11920PubMedCrossRefPubMedCentralGoogle Scholar
  114. Linardy EM, Erskine SM, Lima NE et al (2016) EzyAmp signal amplification cascade enables isothermal detection of nucleic acid and protein targets. Biosens Bioelectron 75:59–66PubMedCrossRefGoogle Scholar
  115. Ling Y, Wei K, Luo Y (2011) Dual docetaxel/superparamagnetic iron oxide loaded nanoparticles for both targeting magnetic resonance imaging and cancer therapy. Biomaterials 32:7139–7150PubMedCrossRefGoogle Scholar
  116. Liu D, Yang F, Xiong F et al (2016) The smart drug delivery system and its clinical potential. Theranostics 6:1306–1323PubMedPubMedCentralCrossRefGoogle Scholar
  117. Lu Y, Park K (2013) Polymeric micelles and alternative nanonized delivery vehicles for poorly soluble drugs. Int J Pharm 453:198–214PubMedCrossRefPubMedCentralGoogle Scholar
  118. Ma L, Gao C, Mao Z, Zhou J et al (2003) Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterials 24:4833–4841PubMedCrossRefGoogle Scholar
  119. Mahmoudi M, Sant S, Wang B et al (2011) Superparamagnetic iron oxide nanoparticles (SPION): development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev 63:24–46PubMedCrossRefGoogle Scholar
  120. Mahmoudi M, Hofmann H, Rothen-Rutishauser B, Petri-Fink A (2012) Assessing the in vitro and in vivo toxicity of superparamagnetic iron oxide nanoparticles. Chem Rev 11:2323–2338CrossRefGoogle Scholar
  121. Malhotra S, Verma A, Tyagi N, Kuma V (2017) Biosensors: principle, types and applications. IJARIIE 3(2):3639–3644Google Scholar
  122. Mamasheva E, O’Donnell C, Bandekar A, Sofou S (2011) Heterogeneous liposome membranes with pH-triggered permeability enhance the in vitro antitumor activity of folate-receptor targeted liposomal doxorubicin. Mol Pharm 8:2224–2232PubMedCrossRefGoogle Scholar
  123. Marchand C, Rivard GE, Sun J, Hoemann CD (2009) Solidification mechanisms of chitosan–glycerol phosphate/blood implant for articular cartilage repair. Osteoarthr Cartil 17(7):953–960PubMedCrossRefPubMedCentralGoogle Scholar
  124. Martinou A, Kafetzopoulos D, Bouriotis V (1995) Chitin deacetylation by enzymatic means: monitoring of deacetylation processes. Carbohydr Res 273(2):235–242CrossRefGoogle Scholar
  125. Maxwell T, Banu T, Price E et al (2015) Non-cytotoxic quantum dot–chitosan nanogel biosensing probe for potential cancer targeting agent. Nanomaterials 5:2359–2379PubMedPubMedCentralCrossRefGoogle Scholar
  126. Min HS, You DG, Son S et al (2015) Echogenic glycol chitosan nanoparticles for ultrasound-triggered cancer theranostics. Theranostics 5(12):1402–1418PubMedPubMedCentralCrossRefGoogle Scholar
  127. Mora-Huertas CE, Fessi H, Elaissari A (2010) Polymer-based nanocapsules for drug delivery. Int J Pharm 385(12):11342Google Scholar
  128. Mourya VK, Inamdar NNJ (2009) Trimethyl chitosan and its applications in drug delivery. Mater Sci Mater Med 20(5):1057–1079CrossRefGoogle Scholar
  129. Mourya VK, Inamdara NN, Tiwari A (2010) Carboxymethyl chitosan and its applications. Adv Mater Lett 1(1):11–33CrossRefGoogle Scholar
  130. Muskovich M, Bettinger CJ (2012) Biomaterials-based electronics: polymers and interfaces for biology and medicine. Adv Healthc Mater 1:248–266PubMedPubMedCentralCrossRefGoogle Scholar
  131. Muxika A, Etxabide A, Uranga J et al (2017) Chitosan as a bioactive polymer: processing, properties and applications. Int J Biol Macromol 105:1358–1368PubMedCrossRefGoogle Scholar
  132. Muzzarelli C, Tosi G, Francescangeli O, Muzzarelli RAA (2003) Alkaline chitosan solutions. Carbohydr Res 338:2247–2255PubMedCrossRefGoogle Scholar
  133. Na JH, Koo H, Lee S (2011) Real-time and non-invasive optical imaging of tumor-targeting glycol chitosan nanoparticles in various tumor models. Biomaterials 32:5252–5261PubMedCrossRefGoogle Scholar
  134. Narayanan S, Dutta D, Arora N et al (2017) Phytaspase-loaded, Mn-doped ZnS quantum dots when embedded into chitosan nanoparticles leads to improved chemotherapy of HeLa cells using in cisplatin. Biotechnol Lett 39(10):1591–1598PubMedCrossRefGoogle Scholar
  135. Ngo DH, Kim SK (2014) Antioxidant effects of chitin, chitosan, and their derivatives. Adv Food Nutr Res 73:15–31PubMedCrossRefGoogle Scholar
  136. Nikogeorgos N, Efler P, Kayitmazer AB, Lee S (2015) “Bio-glues” to enhance slipperiness of mucins: improved lubricity and wear resistance of porcine gastric mucin (PGM) layers assisted by mucoadhesion with chitosan. Soft Matter 11:489–498PubMedCrossRefGoogle Scholar
  137. No HK, Park NY, Ho SL, Meyers SP (2002) Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. Int J Food Microbiol 74:65–72PubMedCrossRefGoogle Scholar
  138. Nounou MI, ElAmrawy F, Ahmed N et al (2015) Breast cancer: conventional diagnosis and treatment modalities and recent patents and technologies. Breast Cancer 9:17–34PubMedGoogle Scholar
  139. O’Brien F (2011) Biomaterials & scaffolds for tissue engineering. Mater Today 14(3):88–95CrossRefGoogle Scholar
  140. Palmer LC, Newcomb CJ, Kaltz SR et al (2008) Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. Chem Rev 108(11):4754–4783PubMedPubMedCentralCrossRefGoogle Scholar
  141. Park SM, Kim MS, Park SJ et al (2013) Novel temperature-triggered liposome with high stability: formulation, in vitro evaluation, and in vivo study combined with high-intensity focused ultrasound (HIFU). J Control Release 170:373–379PubMedCrossRefGoogle Scholar
  142. Pellá MCG, Lima-Tenório MK, Tenório-Neto ET et al (2018) Chitosan-based hydrogels: from preparation to biomedical applications. Carbohydr Polym 15(196):233–245CrossRefGoogle Scholar
  143. Perche F, Torchilin VP (2013) Recent trends in multifunctional liposomal nanocarriers for enhanced tumor targeting. J Drug Del 705265Google Scholar
  144. Pillai CKS, Sharma CP (2009) Electrospinning of chitin and chitosan nanofibres. Trends Biomater Artif Organs 22(3):179–201Google Scholar
  145. Pinto C, Neufeld RJ, Ribeiro AJ, Veiga F (2006) Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine: NBM 2:8–21CrossRefGoogle Scholar
  146. Prabaharan M (2015) Chitosan-based nanoparticles for tumor-targeted drug delivery. Int J Biol Macromol 72:1313–1322PubMedCrossRefGoogle Scholar
  147. Prasad A, Mahato K, Maurya PK, Chandra P (2016) Biomaterials for biosensing applications. J Anal Bioanal Tech 7(2):1000e124Google Scholar
  148. Qi X, Rui Y, Fan Y et al (2015) Galactosylated chitosan-grafted multiwall carbon nanotubes for pH-dependent sustained release and hepatic tumor targeted delivery of doxorubicin in vivo. Colloids Surf B Bioint 133:314–322CrossRefGoogle Scholar
  149. Qin C, Li H, Xiao Q et al (2006) Water-solubility of chitosan and its antimicrobial activity. Carbohydr Polym 63(3):367–374CrossRefGoogle Scholar
  150. Qiu LY, Zheng C, Jin Y, Zhu K (2007) Polymeric micelles as nanocarriers for drug delivery. Exp Op Therap Pat 17(7):819–830CrossRefGoogle Scholar
  151. Rhee JK, Park OK, Lee A (2014) Glycol Chitosan-based fluorescent theranostic nanoagents for cancer therapy. Mar Drugs 12:6038–6057PubMedPubMedCentralCrossRefGoogle Scholar
  152. Rusu AG, Popa MI, Ibanescu C et al (2016) Tailoring the properties of chitosan-poly (acrylic acid) based hydrogels by hydrophobic monomer incorporation. Mater Lett 164:320–324CrossRefGoogle Scholar
  153. Sabaeian M, Nasab K (2012) Size dependent intersubband optical properties of dome shaped InAs/GaAs quantum dots with wetting layer. Appl Opt:4176–4185PubMedCrossRefGoogle Scholar
  154. Sahu SK, Maiti S, Pramanik A et al (2012) Controlling the thickness of polymeric shell on magnetic nanoparticles loaded with doxorubicin for targeted delivery and MRI contrast agent. Carbohydr Polym 87:2593–2604CrossRefGoogle Scholar
  155. Saikia C, Gogoi P, Maji TK (2015) Chitosan: a promising biopolymer in drug delivery applications. J Mol Genet Med S4:006CrossRefGoogle Scholar
  156. Sakamoto H, Watanabe K, Koto A et al (2015) A bienzyme electrochemical biosensor for the detection of collagen l-hydroxyproline. Sens Bio-Sens Res 4:37–39CrossRefGoogle Scholar
  157. Salva E, Turan SO, Eren F, Akbuga F (2015) The enhancement of gene silencing efficiency with chitosan-coated liposome formulations of siRNAs targeting HIF-1α and VEGF. Int J Pharm 478:147–154PubMedCrossRefGoogle Scholar
  158. Samykutty A, Grizzle WE, Fouts BL et al (2018) Optoacoustic imaging identifies ovarian cancer using a microenvironment targeted theranostic wormhole mesoporous silica nanoparticle. Biomaterials 182:114–126PubMedPubMedCentralCrossRefGoogle Scholar
  159. Sankalia MG, Mashru RC, Sankalia JM, Sutariya VB (2007) Reversed chitosan-alginate polyelectrolyte complex for stability improvement of alpha-amylase: optimization and physicochemical characterization. Eur J Pharm Biopharm 65(2):215–232PubMedCrossRefGoogle Scholar
  160. Schleich N, Sibret P, Danhier P et al (2013) Dual anticancer drug/superparamagnetic iron oxide-loaded PLGA-based nanoparticles for cancer therapy and magnetic resonance imaging. Int J Pharm 447:94–101PubMedCrossRefGoogle Scholar
  161. Shah PV, Rajput SJ (2018) Facile synthesis of chitosan capped mesoporous silica nanoparticles: a pH responsive smart delivery platform for raloxifene hydrochloride. AAPS PharmSciTech 19(3):1344–1357PubMedCrossRefPubMedCentralGoogle Scholar
  162. Shen JM, Gao FY, Yin T et al (2013) cRGD-functionalized polymeric magnetic nanoparticles as a dual-drug delivery system for safe targeted cancer therapy. Pharmacol Res 70:102–115PubMedCrossRefGoogle Scholar
  163. Shkilnyy A, Munnier E, Hervé K et al (2010) Synthesis and evaluation of novel biocompatible super-paramagnetic iron oxide nanoparticles as magnetic anticancer drug carrier and fluorescence active label. J Phys Chem C 114(13):5850–5858CrossRefGoogle Scholar
  164. Si HY, Li DP, Wang TM et al (2010) Improving the anti-tumor effect of genistein with a biocompatible superparamagnetic drug delivery system. J Nano Sci Nanotech 10:2325–2331CrossRefGoogle Scholar
  165. Soares PIP, Sousa AI, Ferreira IMM et al (2016) Towards the development of multifunctional chitosan-based iron oxide nanoparticles: optimization and modelling of doxorubicin release. Carbohydr Polym 153:212–221PubMedCrossRefGoogle Scholar
  166. Sogias IA, Williams AC, Khutoryanskiy VV (2018) Why is chitosan mucoadhesive? Biomacromolecules 9(7):1837–1842CrossRefGoogle Scholar
  167. Song X, Wu H, Li S et al (2015) Ultrasmall chitosan-genipin nanocarriers fabricated from reverse microemulsion process for tumor photothermal therapy in mice. Biomacromolecules 16(7):2080–2090PubMedCrossRefGoogle Scholar
  168. Sood N, Bhardwaj A, Mehta S, Mehta A (2016) Stimuli-responsive hydrogels in drug delivery and tissue engineering. Drug Deliv 23(3):758–780PubMedCrossRefGoogle Scholar
  169. Srinivasan S, Manchanda A, Fernandez-Fernandez A et al (2013) Targeted nanoparticles for simultaneous delivery of chemotherapeutic and hyperthermia agents – an in vitro study. J Photochem Photobiol B Biol 119:52–59CrossRefGoogle Scholar
  170. Sun G, Xu J, Hagooly A et al (2007) Strategies for optimized radiolabeling of nanoparticles for in vivo PET Imaging. Adv Mater 19(20):315762CrossRefGoogle Scholar
  171. Swierczewska M, Han HS, Kim K (2016) Polysaccharide-based nanoparticles for theranostic nanomedicine. Adv Drug Deliv Rev 99:70–84CrossRefGoogle Scholar
  172. Szymańska E, Winnicka K (2015) Stability of chitosan – a challenge for pharmaceutical and biomedical applications. Mar Drugs 13(4):1819–1846PubMedPubMedCentralCrossRefGoogle Scholar
  173. Tan W, Zhang J, Mi et al (2018) Synthesis, characterization, and evaluation of antifungal and antioxidant properties of cationic chitosan derivative via azide-alkyne click reaction. Int J Biol Macromol 120:318–324PubMedCrossRefGoogle Scholar
  174. Tang Y, Sun J, Fan H, Zhang X (2012) An improved complex gel of modified gellan gum and carboxymethyl chitosan for chondrocytes encapsulation. Carbohydr Polym 88(1):46–53CrossRefGoogle Scholar
  175. Thu B, Bruheim O, Espevik T et al (1996) Alginate polycation microcapsules. I. Interaction between alginate and polycation. Biomaterials 17:1031–1040PubMedCrossRefGoogle Scholar
  176. Tietze R, Lyer S, Dürr S et al (2013) Efficient drug-delivery using magnetic nanoparticles-biodistribution and therapeutic effects in tumour bearing rabbits. Nanomed Nanotechnol Biol Med 9:961–971CrossRefGoogle Scholar
  177. Tietze R, Zaloga J, Unterweger H et al (2015) Magnetic nanoparticle-based drug delivery for cancer therapy. Biochem Biophys Res Commun 468:463–470PubMedCrossRefGoogle Scholar
  178. Tiwari A et al (2015) Chitosan-based polyelectrolyte complexes: characteristics and application in formulation of particulate drug carriers. Advanced theranostic materials. Scrivener PublishingGoogle Scholar
  179. Türkoğlu T, Taşcıoğlu S (2014) Novel strategy for the ionotropic crosslinking of chitosan-alginate polyelectrolyte complexes. J Appl Polym Sci 131:40019CrossRefGoogle Scholar
  180. Tzaneva D, Simitchiev A, Petkova N et al (2017) Synthesis of carboxymethyl chitosan and its rheological behaviour in pharmaceutical and cosmetic emulsions. J App Pharm Sci 7(10):070–078Google Scholar
  181. Vadlapudi AD, Vadlapatla RK, Mitra AK (2012) Sodium dependent multivitamin transporter (SMVT): a potential target for drug delivery. Curr Drug Targets 13:994–1003PubMedPubMedCentralCrossRefGoogle Scholar
  182. Varki A, Freeze HH, Manzi AE (2009) Overview of glycoconjugate analysis. Curr Protoc Protein Sci 57(1):12.1.1–12.1.10CrossRefGoogle Scholar
  183. Vaz JM, Michel EC, Chevallier P et al (2014) Covalent grafting of chitosan on plasma-treated polytetrafluoroethylene surfaces for biomedical applications. J Biomater Tissue Eng 4:915–924CrossRefGoogle Scholar
  184. Vunain E, Mishra AK, Mamba BB (2017) Fundamentals of chitosan for biomedical applications. In: Jennings JA, Bumgardner JD (eds) Chitosan based biomaterials, volume 1: Fundamentals. Woodhead Publishing, Elsevier Ltd., Amsterdam, pp 3–30CrossRefGoogle Scholar
  185. Wang L, Stegemann JP (2010) Thermogelling chitosan and collagen composite hydrogels initiated with β-glycerophosphate for bone tissue engineering. Biomaterials 31(14):3976–3981PubMedPubMedCentralCrossRefGoogle Scholar
  186. Wang C, Cheng L, Liu Z (2011) Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy. Biomaterials 32:1110–1120PubMedCrossRefGoogle Scholar
  187. Wang L, Rao RR, Stegemann JP (2013) Delivery of mesenchymal stem cells in chitosan/collagen microbeads for orthopedic tissue. Repair Cells Tissues Organs 197:333–343PubMedCrossRefGoogle Scholar
  188. Wang K, Kievit FM, Sham JG et al (2016a) Iron-oxide-based nanovector for tumor targeted siRNA delivery in an orthotopic hepatocellular carcinoma xenograft mouse model. Small 12:477–487PubMedCrossRefGoogle Scholar
  189. Wang S, Chinnasamy T, Lifson M et al (2016b) Flexible substrate-based devices for point-of-care diagnostics. Trends Biotechnol 34(11):909–921PubMedPubMedCentralCrossRefGoogle Scholar
  190. Warner S (2004) Diagnostics + therapy = theranostics. The Scientist 18:38–39Google Scholar
  191. Ways TMM, Wing Man Lau WM, Khutoryanskiy VV (2018) Chitosan and its derivatives for application in mucoadhesive drug delivery systems. Polymer 10:267):1–267)37Google Scholar
  192. Welsher K, Liu Z, Daranciang D, Dai H (2008) Selective probing and imaging of cells with single walled carbon nanotubes as near-infrared fluorescent molecules. Nano Lett 8:586–590PubMedCrossRefGoogle Scholar
  193. Wu B, Zhao N (2016) A targeted nanoprobe based on carbon nanotubes-natural biopolymer chitosan composites. Nanomaterials 6:216PubMedCentralCrossRefPubMedGoogle Scholar
  194. Wu FC, Tseng RL, Juang RS (2010) A review and experimental verification of using chitosan and its derivatives as adsorbents for selected heavy metals. J Environ Manag 91(4):798–806CrossRefGoogle Scholar
  195. Xia W, Liu P, Zhang J, Chen J (2011a) Biological activities of chitosan and chitooligosaccharides. Food Hydrocoll 25:170–179CrossRefGoogle Scholar
  196. Xia Y, Li W, Cobley CM et al (2011b) Gold nanocages: from synthesis to theranostic applications. Acc Chem Res 44:914–924PubMedPubMedCentralCrossRefGoogle Scholar
  197. Xie P, Du P, Li J, Liu P (2019) Stimuli-responsive hybrid cluster bombs of PEGylated chitosan encapsulated DOX-loaded superparamagnetic nanoparticles enabling tumor-specific disassembly for on-demand drug delivery and enhanced MR imaging. Carbohydr Polym 205:377–384PubMedCrossRefGoogle Scholar
  198. Xu M, Obodo D, Yadavalli VK (2019) The design, fabrication, and applications of flexible biosensing devices. Biosens Bioelectron 124–125:96–114PubMedCrossRefGoogle Scholar
  199. Yager P, Domingo GJ, Gerdes J (2008) Point-of-care diagnostics for global health. Annu Rev Biomed Eng 10:107–144PubMedCrossRefGoogle Scholar
  200. Yang X, Grailer JJ, Rowland IJ et al (2010) Multifunctional SPIO/DOX-loaded wormlike polymer vesicles for cancer therapy and MR imaging. Biomaterials 31:9065–9073PubMedCrossRefGoogle Scholar
  201. Yang W, Wang M, Ma L et al (2014) Synthesis and characterization of biotin modified cholesteryl pullulan as a novel anticancer drug carrier. Carbohydr Polym 99:720–727PubMedCrossRefGoogle Scholar
  202. Yang H, Xu M, Li S et al (2016) Chitosan hybrid nanoparticles as a theranostic platform for targeted DOX/VEGF shRNA co-delivery and dual-modality fluorescence imaging. RSC Adv 6:29685CrossRefGoogle Scholar
  203. Yang H, Chen Y, Chen Z et al (2017) Chemo-photodynamic combined gene therapy and dual-modal cancer imaging achieved by pH-responsive alginate/chitosan multilayer-modified magnetic mesoporous silica nanocomposites. Biomater Sci 5(5):1001–1013PubMedCrossRefGoogle Scholar
  204. Yhee JY, Son S, Kim SH et al (2014) Self-assembled glycol chitosan nanoparticles for disease-specific theranostics. J Control Release 193:202–213PubMedCrossRefGoogle Scholar
  205. Yhee JY, Song S, Lee SJ et al (2015) Cancer-targeted MDR-1 siRNA delivery using self-cross-linked glycol chitosan nanoparticles to overcome drug resistance. J Control Release 198:1–9PubMedCrossRefGoogle Scholar
  206. Yoon HY, Son S, Lee SJ et al (2014) Glycol chitosan nanoparticles as specialized cancer therapeutic vehicles: sequential delivery of doxorubicin and Bcl-2 siRNA. Sci Rep 4:6878PubMedPubMedCentralCrossRefGoogle Scholar
  207. Younes I, Rinaudo M (2015) Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar Drugs 13(3):1133–1174PubMedPubMedCentralCrossRefGoogle Scholar
  208. Yu F, Jiang F, Tang X, Wang B (2018) N-octyl-N-arginine-chitosan micelles for gambogic acid intravenous delivery: characterization, cell uptake, pharmacokinetics, and biodistribution. Drug Dev Ind Pharm 44:615–623PubMedCrossRefGoogle Scholar
  209. Zahraei M, Marciello M, Lazaro-Carrillo A et al (2016) Versatile theranostics agents designed by coating ferrite nanoparticles with biocompatible polymers. Nanotechnology 27(25):255702PubMedCrossRefGoogle Scholar
  210. Zhang M, Li XH, Gong YD et al (2002) Properties and biocompatibility of chitosan films modified by blending with PEG. Biomaterials 23(13):2641–2648CrossRefGoogle Scholar
  211. Zhang H, Ma Y, Xie Y et al (2015) A controllable aptamer-based self-assembled DNA dendrimer for high affinity targeting, bioimaging and drug delivery. Sci Rep 5:10099PubMedPubMedCentralCrossRefGoogle Scholar
  212. Zhang N, Chen H, Liu AY et al (2016) Gold conjugate-based liposomes with hybrid cluster bomb structure for liver cancer therapy. Biomaterials 74:280–291PubMedCrossRefGoogle Scholar
  213. Zhang Q, Xu TY, Zhao CX et al (2017) Dynamic self-assembly of gold/polymer nanocomposites: pH-encoded switching between 1D nanowires and 3D nanosponges. Chem Asian J 12:2549–2553PubMedCrossRefGoogle Scholar
  214. Zhao L, Zhai G (2013) Preparation and in vitro and in vivo evaluation of RGD modified curcumin loaded PEG-PLA micelles. J Control Release 172(1):e102CrossRefGoogle Scholar
  215. Zhao L, Kim TH, Kim HW et al (2016) Enhanced cellular uptake and phototoxicity of Verteporfin-conjugated gold nanoparticles as theranostic nanocarriers for targeted photodynamic therapy and imaging of cancers. Mater Sci Eng C 67:611–622CrossRefGoogle Scholar
  216. Zhao L, Niu L, Liang H et al (2017) pH and glucose dual-responsive injectable hydrogels with insulin and fibroblasts as bioactive dressings for diabetic wound healing. ACS Appl Mater Interfaces 9:37563–37574PubMedCrossRefGoogle Scholar
  217. Zhen F, Peter PF, Hongtao Y et al (2014) Theranostics nano-medicine for cancer detection and treatment. J Food Drug Anal 22:3–17CrossRefGoogle Scholar
  218. Zhou Y, Li J, Lu F et al (2015) A study on the hemocompatibility of dendronized chitosan derivatives in red blood cells. Drug Des Dev Ther 9:2635–2645Google Scholar
  219. Zhu Y, Moran-Mirabal J (2016) Highly bendable and stretchable electrodes based on micro/nanostructured gold films for flexible sensors and electronics. Adv Electron Mater 2(3):1500345CrossRefGoogle Scholar
  220. Zhu X, Chian KS, Chan-Park MBE, Lee ST (2005) Effect of argon-plasma treatment on proliferation of human-skin-derived fibroblast on chitosan membrane in vitro. J Biomed Mater Res A 73A:264–274CrossRefGoogle Scholar
  221. Zhu W, Song Z, Wei P et al (2015) Y-shaped biotin-conjugated poly (ethylene glycol)–poly (epsilon caprolactone) copolymer for the targeted delivery of curcumin. J Colloid Interface Sci 443:1–7PubMedCrossRefGoogle Scholar
  222. Zhuang C, Zhong Y, Zhao Y (2019) Effect of deacetylation degree on properties of chitosan films using electrostatic spraying technique. Food Control 97:25–31CrossRefGoogle Scholar
  223. Zivanovic S, Davis RH, Golden DA (2014) Chitosan as an antimicrobial food products. In: Taylor M (ed) Handbook of natural antimicrobials for food safety and quality. Elsevier, Amsterdam, pp 163–179Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Biomedical Sciences, Faculty of Medical Bioengineering“Grigore T. Popa” University of Medicine and PharmacyIasiRomania

Personalised recommendations