Chitosan-Based Nanoformulation as Carriers of Small Molecules for Tissue Regeneration

  • Shoba Narayan


This chapter traces the growth of nanoformulations and the role of biopolymers in the field of medicine and nanomedicine in particular. Keeping in mind the vast literature available in this field, the chapter provides the reader an insight into the developments relating to use of one of the biopolymers, viz., chitosan. While highlighting the developments, extensive care is taken to provide an overall understanding of the subject while providing the literature support for detailed analysis. The chapter highlights the significance and facile maneuverability of chitosan to yield hydrogels and polyplexes that are ideally suited for tissue engineering applications. The chapter closes with the introduction to 3D printing technologies which are likely to take over the tissue regeneration field in a massive way.


Chitosan Nano-formulation Tissue regeneration Hydrogels Polyplexes Biopolymers 


  1. Adamkiewicz M, Rubinsky B (2015) Cryogenic 3D printing for tissue engineering. Cryobiology 71(3):518–521PubMedCrossRefGoogle Scholar
  2. Anitha A, Chennazhi KP, Nair SV, Jayakumar R (2012) 5-flourouracil loaded N,O-carboxymethyl chitosan nanoparticles as an anticancer nanomedicine for breast cancer. J Biomed Nanotechnol 8(1):29–42PubMedCrossRefGoogle Scholar
  3. Atala A, Kim W, Paige KT, Vacanti CA, Retik AB (1994) Endoscopic treatment of vesicoureteral reflux with a chondrocyte-alginate suspension. J Urol 152(2):641–643PubMedCrossRefGoogle Scholar
  4. Babin J, Pelletier M, Lepage M, Allard JF, Morris D, Zhao Y (2009) A new two-photon-sensitive block copolymer nanocarrier. Angew Chem Int Ed 48(18):3329–3332CrossRefGoogle Scholar
  5. Badawi A, Ahmed EM, Mostafa NY, Abdel-Wahab F, Alomairy SE (2017) Enhancement of the optical and mechanical properties of chitosan using Fe2O3 nanoparticles. J Mater Sci Mater Electron 28(15):10877–10884CrossRefGoogle Scholar
  6. Bae YH, Park K (2011) Targeted drug delivery to tumors: myths, reality and possibility. J Control Release 153(3):198–205PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bae Y, Lee YH, Lee S, Han J, Ko KS, Choi JS (2016) Characterization of glycol chitosan grafted with low molecular weight polyethylenimine as a gene carrier for human adipose-derived mesenchymal stem cells. Carbohydr Polym 153:379–390PubMedCrossRefGoogle Scholar
  8. Balakrishnan B, Soman D, Payanam U, Laurent A, Labarre D, Jayakrishnan A (2017) A novel injectable tissue adhesive based on oxidized dextran and chitosan. Acta Biomater 53:343–354PubMedCrossRefGoogle Scholar
  9. Bano I, Arshad M, Yasin T, Ghauri MA, Younus M (2017) Chitosan: a potential biopolymer for wound management. Int J Biol Macromol 102:380–383PubMedCrossRefGoogle Scholar
  10. Baranwal A, Kumar A, Priyadharshini A, Oggu GS, Bhatnagar I, Srivastava A et al (2018) Chitosan: an undisputed bio-fabrication material for tissue engineering and bio-sensing applications. Int J Biol Macromol 110:110–123PubMedCrossRefGoogle Scholar
  11. Bernkop-Schnurch A, Clausen AE, Hnatyszyn M (2001) Thiolated polymers: synthesis and in vitro evaluation of polymer-cysteamine conjugates. Int J Pharm 226(1–2):185–194PubMedCrossRefGoogle Scholar
  12. Bianconi E, Piovesan A, Facchin F, Beraudi A, Casadei R, Frabetti F et al (2013) An estimation of the number of cells in the human body. Ann Hum Biol 40(6):463–471PubMedCrossRefGoogle Scholar
  13. Binning J, Woodburn J, Bus SA, Barn R (2019) Motivational interviewing to improve adherence behaviours for the prevention of diabetic foot ulceration. Diabetes Metab Res Rev 35(2):11CrossRefGoogle Scholar
  14. Boateng JS, Matthews KH, Stevens HNE, Eccleston GM (2008) Wound healing dressings and drug delivery systems: a review. J Pharm Sci 97(8):2892–2923PubMedCrossRefGoogle Scholar
  15. Brem H, Tomic-Canic M (2007) Cellular and molecular basis of wound healing in diabetes. J Clin Investig 117(5):1219–1222PubMedCrossRefGoogle Scholar
  16. Brezaniova I, Trousil J, Cernochova Z, Kral V, Hruby M, Stepanek P et al (2017) Self-assembled chitosan-alginate polyplex nanoparticles containing temoporfin. Colloid Polym Sci 295(8):1259–1270CrossRefGoogle Scholar
  17. Cai SJ, Li CW, Weihs D, Wang GJ (2017) Control of cell proliferation by a porous chitosan scaffold with multiple releasing capabilities. Sci Technol Adv Mater 18(1):987–996PubMedPubMedCentralCrossRefGoogle Scholar
  18. Cao Z, Dou C, Dong SW (2014) Scaffolding biomaterials for cartilage regeneration. J Nanomater 8:489128Google Scholar
  19. Chandika P, Ko SC, Jung WK (2015) Marine-derived biological macromolecule-based biomaterials for wound healing and skin tissue regeneration. Int J Biol Macromol 77:24–35PubMedCrossRefGoogle Scholar
  20. Chaudhari AA, Vig K, Baganizi DR, Sahu R, Dixit S, Dennis V et al (2016) Future prospects for scaffolding methods and biomaterials in skin tissue engineering: a review. Int J Mol Sci 17(12):31CrossRefGoogle Scholar
  21. Chen FM, Liu XH (2016) Advancing biomaterials of human origin for tissue engineering. Prog Polym Sci 53:86–168PubMedCrossRefGoogle Scholar
  22. Chen Z, Li N, Li SB, Dharmarwardana M, Schlimme A, Gassensmith JJ (2016) Viral chemistry: the chemical functionalization of viral architectures to create new technology. Wiley Interdiscip Rev Nanomed Nanobiotechnol 8(4):512–534PubMedCrossRefGoogle Scholar
  23. Colaco M, Igel DA, Atala A (2018) The potential of 3D printing in urological research and patient care. Nat Rev Urol 15(4):213–221PubMedCrossRefGoogle Scholar
  24. De Francesco EM, Sims AH, Maggiolini M, Sotgia F, Lisanti MP (2017) Clarke RB. GPER mediates the angiocrine actions induced by IGF1 through the HIF-1 alpha/VEGF pathway in the breast tumor microenvironment. Breast Cancer Res 19:14CrossRefGoogle Scholar
  25. De Jong WH, Borm PJA (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine 3(2):133–149PubMedPubMedCentralCrossRefGoogle Scholar
  26. Dehaini D, Fang RH, Zhang LF (2016) Biomimetic strategies for targeted nanoparticle delivery. Bioeng Transl Med 1(1):30–46PubMedPubMedCentralCrossRefGoogle Scholar
  27. Deng YM, Ren JN, Chen GP, Li GE, Wu XW, Wang GF et al (2017) Injectable in situ cross-linking chitosan-hyaluronic acid based hydrogels for abdominal tissue regeneration. Sci Rep 7:13CrossRefGoogle Scholar
  28. Depan D, Surya P, Girase B, Misra RDK (2011) Organic/inorganic hybrid network structure nanocomposite scaffolds based on grafted chitosan for tissue engineering. Acta Biomater 7(5):2163–2175PubMedCrossRefGoogle Scholar
  29. Dreyer DR, Todd AD, Bielawski CW (2014) Harnessing the chemistry of graphene oxide. Chem Soc Rev 43(15):5288–5301PubMedCrossRefGoogle Scholar
  30. Du HL, Cai XQ, Zhai GX (2013) Advances in the targeting molecules modified chitosan-based nanoformulations. Curr Drug Targets 14(9):1034–1052PubMedCrossRefGoogle Scholar
  31. Duceppe N, Tabrizian M (2009) Factors influencing the transfection efficiency of ultra low molecular weight chitosan/hyaluronic acid nanoparticles. Biomaterials 30(13):2625–2631PubMedCrossRefPubMedCentralGoogle Scholar
  32. Fan HL, Wang LL, Zhao KK, Li N, Shi ZJ, Ge ZG et al (2010) Fabrication, mechanical properties, and biocompatibility of graphene-reinforced chitosan composites. Biomacromolecules 11(9):2345–2351PubMedCrossRefPubMedCentralGoogle Scholar
  33. Fan LH, Yang J, Wu H, Hu ZH, Yi JY, Tong J et al (2015) Preparation and characterization of quaternary ammonium chitosan hydrogel with significant antibacterial activity. Int J Biol Macromol 79:830–836PubMedCrossRefPubMedCentralGoogle Scholar
  34. Fathabadi EG, Shelling AN, Al-Kassas R (2012) Nanocarrier systems for delivery of siRNA to ovarian cancer tissues. Expert Opin Drug Deliv 9(7):743–754PubMedCrossRefGoogle Scholar
  35. Fernandes R, Tsao CY, Hashimoto Y, Wang L, Wood TK, Payne GF et al (2007) Magnetic nanofactories: Localized synthesis and delivery of quorum-sensing signaling molecule autoinducer-2 to bacterial cell surfaces. Metab Eng 9(2):228–239PubMedCrossRefPubMedCentralGoogle Scholar
  36. Fernandez-Fernandez A, Manchanda R, McGoron AJ (2011) Theranostic applications of nanomaterials in cancer: drug delivery, image-guided therapy, and multifunctional platforms. Appl Biochem Biotechnol 165(7–8):1628–1651PubMedPubMedCentralCrossRefGoogle Scholar
  37. Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9(6):669–676PubMedPubMedCentralCrossRefGoogle Scholar
  38. Gao Y, Liu XL, Li XR (2011) Research progress on siRNA delivery with nonviral carriers. Int J Nanomedicine 6:1017–1025PubMedPubMedCentralCrossRefGoogle Scholar
  39. Ghobril C, Grinstaff MW (2015) The chemistry and engineering of polymeric hydrogel adhesives for wound closure: a tutorial. Chem Soc Rev 44(7):1820–1835PubMedCrossRefGoogle Scholar
  40. Ghosn B, van de Ven AL, Tam J, Gillenwater A, Sokolov KV, Richards-Kortum R et al (2010) Efficient mucosal delivery of optical contrast agents using imidazole-modified chitosan. J Biomed Opt 15(1):11Google Scholar
  41. Griffith LG, Naughton G (2002) Tissue engineering - current challenges and expanding opportunities. Science 295(5557):1009PubMedCrossRefGoogle Scholar
  42. Gu XS, Ding F, Williams DF (2014) Neural tissue engineering options for peripheral nerve regeneration. Biomaterials 35(24):6143–6156PubMedCrossRefGoogle Scholar
  43. Guo P, Martin CR, Zhao YP, Ge J, Zare RN (2010) General method for producing organic nanoparticles using nanoporous membranes. Nano Lett 10(6):2202–2206PubMedCrossRefGoogle Scholar
  44. He W, Graf R, Vieth S, Ziener U, Landfester K, Crespy D (2016) The cushion method: a new technique for the recovery of hydrophilic nanocarriers. Langmuir 32(51):13669–13674PubMedCrossRefGoogle Scholar
  45. Henderson TA, Morries LD (2015) Near-infrared photonic energy penetration: can infrared phototherapy effectively reach the human brain? Neuropsychiatr Dis Treat 11:2191–2208PubMedPubMedCentralCrossRefGoogle Scholar
  46. Hu Z, Hong PZ, Liao MN, Kong SZ, Huang N, Ou CY et al (2016) Preparation and characterization of chitosan-agarose composite films. Materials 9(10):9Google Scholar
  47. Huang YZ, Gao JQ, Lang WQ, Nakagawa S (2005) Preparation and characterization of liposomes encapsulating chitosan nanoparticles. Biol Pharm Bull 28(2):387–390PubMedCrossRefGoogle Scholar
  48. Huebsch N, Mooney DJ (2009) Inspiration and application in the evolution of biomaterials. Nature 462(7272):426–432PubMedPubMedCentralCrossRefGoogle Scholar
  49. Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21(24):2529–2543PubMedCrossRefGoogle Scholar
  50. Jagani H, Rao JV, Palanimuthu VR, Hariharapura RC, Gang SA (2013) Nanoformulation of siRNA and its role in cancer therapy: in vitro and in vivo evaluation. Cell Mol Biol Lett 18(1):120–136PubMedCrossRefGoogle Scholar
  51. Jiang Q, Zhou W, Wang J, Tang RP, Zhang D, Wang X (2016) Hypromellose succinate-crosslinked chitosan hydrogel films for potential wound dressing. Int J Biol Macromol 91:85–91PubMedCrossRefGoogle Scholar
  52. Jiao J, Huang JJ, Zhang ZJ (2019) Hydrogels based on chitosan in tissue regeneration: how do they work? a mini review. J Appl Polym Sci 136(13):9Google Scholar
  53. Joorabloo A, Khorasani MT, Adeli H, Mansoori-Moghadam Z, Moghaddam A (2019) Fabrication of heparinized nano ZnO/poly(vinylalcohol)/carboxymethyl cellulose bionanocomposite hydrogels using artificial neural network for wound dressing application. J Ind Eng Chem 70:253–263CrossRefGoogle Scholar
  54. Kanwar JR, Mahidhara G, Kanwar RK (2012) Novel alginate-enclosed chitosan-calcium phosphate-loaded iron-saturated bovine lactoferrin nanocarriers for oral delivery in colon cancer therapy. Nanomedicine 7(10):1521–1550PubMedCrossRefGoogle Scholar
  55. Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Ahn JH et al (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230):706–710PubMedCrossRefGoogle Scholar
  56. Kirsner RS, Falanga V, Eaglstein WH (1998) The development of bioengineered skin. Trends Biotechnol 16(6):246–249PubMedCrossRefGoogle Scholar
  57. Kokabi M, Sirousazar M, Hassan ZM (2007) PVA-clay nanocomposite hydrogels for wound dressing. Eur Polym J 43(3):773–781CrossRefGoogle Scholar
  58. Kotze AF, Luessen HL, de Leeuw BJ, de Boer BG, Verhoef JC, Junginger HE (1998) Comparison of the effect of different chitosan salts and N-trimethyl chitosan chloride on the permeability of intestinal epithelial cells (Caco-2). J Control Release 51(1):35–46PubMedCrossRefGoogle Scholar
  59. Kuo YC, Wang CC (2011) Surface modification with peptide for enhancing chondrocyte adhesion and cartilage regeneration in porous scaffolds. Colloids Surf B-Biointerfaces 84(1):63–70PubMedCrossRefGoogle Scholar
  60. Kuo YC, Wang CC (2012) Cartilage regeneration by culturing chondrocytes in scaffolds grafted with TATVHL peptide. Colloids Surf B-Biointerfaces 93:235–240PubMedCrossRefGoogle Scholar
  61. Lane SW, Williams DA, Watt FM (2014) Modulating the stem cell niche for tissue regeneration. Nat Biotechnol 32(8):795–803PubMedPubMedCentralCrossRefGoogle Scholar
  62. Lau C, Cooney MJ, Atanassov P (2008) Conductive macroporous composite chitosan-carbon nanotube scaffolds. Langmuir 24(13):7004–7010PubMedCrossRefGoogle Scholar
  63. Lee SJ, Heo DN, Moon JH, Ko WK, Lee JB, Bae MS et al (2014) Electrospun chitosan nanofibers with controlled levels of silver nanoparticles. Preparation, characterization and antibacterial activity. Carbohydr Polym 111:530–537PubMedCrossRefGoogle Scholar
  64. Levengood SKL, Zhang MQ (2014) Chitosan-based scaffolds for bone tissue engineering. J Mater Chem B 2(21):3161–3184PubMedPubMedCentralCrossRefGoogle Scholar
  65. Li J, Chen J, Kirsner R (2007) Pathophysiology of acute wound healing. Clin Dermatol 25(1):9–18PubMedCrossRefGoogle Scholar
  66. Li L, Wang N, Jin X, Deng R, Nie SH, Sun L et al (2014) Biodegradable and injectable in situ cross-linking chitosan-hyaluronic acid based hydrogels for postoperative adhesion prevention. Biomaterials 35(12):3903–3917PubMedCrossRefGoogle Scholar
  67. Li HJ, Tan C, Li L (2018) Review of 3D printable hydrogels and constructs. Mater Des 159:20–38CrossRefGoogle Scholar
  68. Lino MM, Ferreira L (2018) Light-triggerable formulations for the intracellular controlled release of biomolecules. Drug Discov Today 23(5):1062–1070PubMedCrossRefGoogle Scholar
  69. Liu Y, Wang FQ, Shah Z, Cheng XJ, Kong M, Feng C et al (2016) Nano-polyplex based on oleoyl-carboxymethy-chitosan (OCMCS) and hyaluronic acid for oral gene vaccine delivery. Colloids Surf B-Biointerfaces 145:492–501PubMedCrossRefGoogle Scholar
  70. Liu T, Dan WH, Dan NH, Liu XH, Liu XX, Peng X (2017) A novel grapheme oxide-modified collagen-chitosan bio-film for controlled growth factor release in wound healing applications. Mater Sci Eng C-Mater Biol Appl 77:202–211PubMedCrossRefGoogle Scholar
  71. Liu YX, Fang N, Liu B, Song LN, Wen BY, Yang DZ (2018a) Aligned porous chitosan/graphene oxide scaffold for bone tissue engineering. Mater Lett 233:78–81CrossRefGoogle Scholar
  72. Liu F, Chen QH, Liu C, Ao Q, Tian XH, Fan J et al (2018b) Natural polymers for organ 3D bioprinting. Polymers 10(11):26Google Scholar
  73. Liu XC, You LJ, Tarafder S, Zou L, Fang ZX, Chen JD et al (2019) Curcumin-releasing chitosan/aloe membrane for skin regeneration. Chem Eng J 359:1111–1119CrossRefGoogle Scholar
  74. Lu L, Peter SJ, Lyman MD, Lai HL, Leite SM, Tamada JA et al (2000) In vitro and in vivo degradation of porous poly(DL-lactic-co-glycolic acid) foams. Biomaterials 21(18):1837–1845PubMedCrossRefGoogle Scholar
  75. Mayol L, De Stefano D, Campani V, De Falco F, Ferrari E, Cencetti C et al (2014) Design and characterization of a chitosan physical gel promoting wound healing in mice. J Mater Sci Mater Med 25(6):1483–1493PubMedCrossRefGoogle Scholar
  76. Medberry P, Dennis S, Van Hecke T, DeLong RK (2004) pDNA bioparticles: comparative heterogeneity, surface, binding and activity analyses. Biochem Biophys Res Commun 319(2):426–432PubMedCrossRefGoogle Scholar
  77. Minuth WW, Sittinger M, Kloth S (1998) Tissue engineering: generation of differentiated artificial tissues for biomedical applications. Cell Tissue Res 291(1):1–11PubMedCrossRefGoogle Scholar
  78. Mogosanu GD, Grumezescu AM (2014) Natural and synthetic polymers for wounds and burns dressing. Int J Pharm 463(2):127–136PubMedCrossRefGoogle Scholar
  79. Mohammadi Z, Abolhassani M, Dorkoosh FA, Hosseinkhani S, Gilani K, Amini T et al (2011) Preparation and evaluation of chitosan-DNA-FAP-B nanoparticles as a novel non-viral vector for gene delivery to the lung epithelial cells. Int J Pharm 409(1–2):307–313PubMedCrossRefGoogle Scholar
  80. Moura LIF, Dias AMA, Leal EC, Carvalho L, de Sousa HC, Carvalho E (2014) Chitosan-based dressings loaded with neurotensin-an efficient strategy to improve early diabetic wound healing. Acta Biomater 10(2):843–857PubMedCrossRefGoogle Scholar
  81. Mouser VHM, Abbadessa A, Levato R, Hennink WE, Vermonden T, Gawlitta D et al (2017) Development of a thermosensitive HAMA-containing bio-ink for the fabrication of composite cartilage repair constructs. Biofabrication 9(1):13CrossRefGoogle Scholar
  82. Mu QX, Yu J, McConnachie LA, Kraft JC, Gao Y, Gulati GK et al (2018) Translation of combination nanodrugs into nanomedicines: lessons learned and future outlook. J Drug Target 26(5–6):435–447PubMedPubMedCentralCrossRefGoogle Scholar
  83. Mueller-Rath R, Gavenis K, Andereya S, Mumme T, Albrand M, Stoffel M et al (2010) Condensed cellular seeded collagen gel as an improved biomaterial for tissue engineering of articular cartilage. Biomed Mater Eng 20(6):317–328PubMedGoogle Scholar
  84. Mulligan RC (1993) The basic science of gene-therapy. Science 260(5110):926–932PubMedCrossRefGoogle Scholar
  85. Mura S, Nicolas J, Couvreur P (2013) Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12(11):991–1003PubMedCrossRefGoogle Scholar
  86. Nafee N, Taetz S, Schneider M, Schaefer UF, Lehr CM (2007) Chitosan-coated PLGA nanoparticles for DNA/RNA delivery: Effect of the formulation parameters on complexation and transfection of antisense oligonucleotides. Nanomed Nanotechnol Biol Med 3(3):173–183CrossRefGoogle Scholar
  87. Nascimento AV, Gattacceca F, Singh A, Bousbaa H, Ferreira D, Sarmento B et al (2016) Biodistribution and pharmacokinetics of Mad2 siRNA-loaded EGFR-targeted chitosan nanoparticles in cisplatin sensitive and resistant lung cancer models. Nanomedicine 11(7):767–781PubMedPubMedCentralCrossRefGoogle Scholar
  88. Nguyen MH, Tran TT, Hadinoto K (2016) Controlling the burst release of amorphous drug-polysaccharide nanoparticle complex via crosslinking of the polysaccharide chains. Eur J Pharm Biopharm 104:156–163PubMedCrossRefGoogle Scholar
  89. Noh SM, Park MO, Shim G, Han SE, Lee HY, Huh JH et al (2010) Pegylated poly-L-arginine derivatives of chitosan for effective delivery of siRNA. J Control Release 145(2):159–164PubMedCrossRefGoogle Scholar
  90. Ozbolat IT, Peng WJ, Ozbolat V (2016) Application areas of 3D bioprinting. Drug Discov Today 21(8):1257–1271PubMedCrossRefGoogle Scholar
  91. Pati F, Song TH, Rijal G, Jang J, Kim SW, Cho DW (2015) Ornamenting 3D printed scaffolds with cell-laid extracellular matrix for bone tissue regeneration. Biomaterials 37:230–241PubMedCrossRefGoogle Scholar
  92. Qasim SB, Zafar MS, Najeeb S, Khurshid Z, Shah AH, Husain S et al (2018) Electrospinning of chitosan-based solutions for tissue engineering and regenerative medicine. Int J Mol Sci 19(2):26CrossRefGoogle Scholar
  93. Qian C, Zhang TB, Gravesande J, Baysah C, Song XY, Xing JF (2019) Injectable and self-healing polysaccharide-based hydrogel for pH-responsive drug release. Int J Biol Macromol 123:140–148PubMedCrossRefGoogle Scholar
  94. Ran LX, Zou YN, Cheng JW, Lu F (2019) Silver nanoparticles in situ synthesized by polysaccharides from Sanghuangporus sanghuang and composites with chitosan to prepare scaffolds for the regeneration of infected full-thickness skin defects. Int J Biol Macromol 125:392–403PubMedCrossRefGoogle Scholar
  95. Rasoulianboroujeni M, Fahimipour F, Shah P, Khoshroo K, Tahriri M, Eslami H et al (2019) Development of 3D-printed PLGA/TiO2 nanocomposite scaffolds for bone tissue engineering applications. Mater Sci Eng C-Mater Biol Appl 96:105–113PubMedCrossRefGoogle Scholar
  96. Rehm BHA (2010) Bacterial polymers: biosynthesis, modifications and applications. Nat Rev Microbiol 8(8):578–592PubMedPubMedCentralCrossRefGoogle Scholar
  97. Ribeiro MP, Espiga A, Silva D, Baptista P, Henriques J, Ferreira C et al (2009) Development of a new chitosan hydrogel for wound dressing. Wound Repair Regen 17(6):817–824PubMedCrossRefGoogle Scholar
  98. Risbud MV, Sittinger M (2002) Tissue engineering: advances in in vitro cartilage generation. Trends Biotechnol 20(8):351–356PubMedCrossRefGoogle Scholar
  99. Risbud M, Ringe J, Bhonde R, Sittinger M (2001) In vitro expression of cartilage-specific markers by chondrocytes on a biocompatible hydrogel: Implications for engineering cartilage tissue. Cell Transplant 10(8):755–763PubMedCrossRefGoogle Scholar
  100. Rodriguez-Rodriguez R, Garcia-Carvajal ZY, Jimenez-Palomar I, Jimenez-Avalos JA, Espinosa-Andrews H (2019) Development of gelatin/chitosan/PVA hydrogels: thermal stability, water state, viscoelasticity, and cytotoxicity assays. J Appl Polym Sci 136(10):9CrossRefGoogle Scholar
  101. Rowland CR, Lennon DP, Caplan AI, Guilak F (2013) The effects of crosslinking of scaffolds engineered from cartilage ECM Cross Mark on the chondrogenic differentiation of MSCs. Biomaterials 34(23):5802–5812PubMedPubMedCentralCrossRefGoogle Scholar
  102. Rudzinski WE, Aminabhavi TM (2010) Chitosan as a carrier for targeted delivery of small interfering RNA. Int J Pharm 399(1–2):1–11PubMedCrossRefGoogle Scholar
  103. Rudzinski WE, Palacios A, Ahmed A, Lane MA, Aminabhavi TM (2016) Targeted delivery of small interfering RNA to colon cancer cells using chitosan and PEGylated chitosan nanoparticles. Carbohydr Polym 147:323–332PubMedCrossRefGoogle Scholar
  104. Saengkrit N, Sajomsang W, Pimpa N, Chaleawlert-umpon S, Rakkhithawatthana V, Tencomnao T (2011) Layer-by-layer deposition of cationic polymers on gold nanoparticle for non-viral gene delivery system. Nanotechnology 2011. Bio Sensors, Instr, Med, Enviro Energy, Nsti-Nanotech 3(2011):302–305Google Scholar
  105. Sahana TG, Rekha PD (2018) Biopolymers: Applications in wound healing and skin tissue engineering. Mol Biol Rep 45(6):2857–2867PubMedCrossRefGoogle Scholar
  106. Saravanan S, Chawla A, Vairamani M, Sastry TP, Subramanian KS, Selvamurugan N (2017) Scaffolds containing chitosan, gelatin and graphene oxide for bone tissue regeneration in vitro and in vivo. Int J Biol Macromol 104:1975–1985PubMedCrossRefGoogle Scholar
  107. Sarmento B, Ribeiro A, Veiga F, Sampaio P, Neufeld R, Ferreira D (2007) Alginate/chitosan nanoparticles are effective for oral insulin delivery. Pharm Res 24(12):2198–2206PubMedCrossRefGoogle Scholar
  108. Saxena V, Hasan A, Pandey LM (2018) Effect of Zn/ZnO integration with hydroxyapatite: a review. Mater Technol 33(2):79–92CrossRefGoogle Scholar
  109. Scaffaro R, Lopresti F, Maio A, Sutera F, Botta L (2017) Development of polymeric functionally graded scaffolds: a brief review. J Appl Biomater Funct Mater 15(2):E107–EE21PubMedGoogle Scholar
  110. Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM et al (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett 7(3):219–242CrossRefGoogle Scholar
  111. Song KD, Li LY, Li WF, Zhu YX, Jiao ZR, Lim M et al (2015) Three-dimensional dynamic fabrication of engineered cartilage based on chitosan/gelatin hybrid hydrogel scaffold in a spinner flask with a special designed steel frame. Mater Sci Eng C-Mater Biol Appl 55:384–392PubMedCrossRefGoogle Scholar
  112. Sonia TA, Sharma CP (2011) Chitosan and its derivatives for drug delivery perspective. In: Jayakumar R, Prabaharan M, Muzzarelli RAA (eds) Chitosan for biomaterials I. Advances in polymer science, vol 243. Springer-Verlag Berlin, Berlin, pp 23–53CrossRefGoogle Scholar
  113. Sreeram KJ, Narayan S, Abbineni G, Hayhurst A, Mao CB (2010) Architectonics of phage-liposome nanowebs as optimized photosensitizer vehicles for photodynamic cancer therapy. Mol Cancer Ther 9(9):2524–2535PubMedCentralCrossRefPubMedGoogle Scholar
  114. Strauer BE, Kornowski R (2003) Stem cell therapy in perspective. Circulation 107(7):929–934PubMedCrossRefGoogle Scholar
  115. Subbiah R, Guldberg RE (2019) Materials science and design principles of growth factor delivery systems in tissue engineering and regenerative medicine. Adv Healthc Mater 8(1):24CrossRefGoogle Scholar
  116. Sun QH, Sun XR, Ma XP, Zhou ZX, Jin EL, Zhang B et al (2014) Integration of nanoassembly functions for an effective delivery cascade for cancer drugs. Adv Mater 26(45):7615–7621PubMedCrossRefGoogle Scholar
  117. Sun P, Huang W, Jin MJ, Wang QM, Fan B, Kang L et al (2016) Chitosan-based nanoparticles for survivin targeted siRNA delivery in breast tumor therapy and preventing its metastasis. Int J Nanomedicine 11:4931–4945PubMedPubMedCentralCrossRefGoogle Scholar
  118. Supp DM, Boyce ST (2005) Engineered skin substitutes: practices and potentials. Clin Dermatol 23(4):403–412PubMedCrossRefGoogle Scholar
  119. Swierczewska M, Han HS, Kim K, Park JH, Lee S (2016) Polysaccharide-based nanoparticles for theranostic nanomedicine. Adv Drug Deliv Rev 99:70–84PubMedCrossRefGoogle Scholar
  120. Tan Q, Liu XJ, Fu XY, Li QL, Dou JF, Zhai GX (2012) Current development in nanoformulations of docetaxel. Expert Opin Drug Deliv 9(8):975–990PubMedCrossRefGoogle Scholar
  121. Tan ZC, Parisi C, Di Silvio L, Dini D, Forte AE (2017) Cryogenic 3D printing of super soft hydrogels. Sci Rep 7:11CrossRefGoogle Scholar
  122. Tardajos MG, Cama G, Dash M, Misseeuw L, Gheysens T, Gorzelanny C et al (2018) Chitosan functionalized poly-epsilon-caprolactone electrospun fibers and 3D printed scaffolds as antibacterial materials for tissue engineering applications. Carbohydr Polym 191:127–135PubMedCrossRefGoogle Scholar
  123. Teijeiro-Osorio D, Remunan-Lopez C, Alonso MJ (2009) Chitosan/cyclodextrin nanoparticles can efficiently transfect the airway epithelium in vitro. Eur J Pharm Biopharm 71(2):257–263PubMedCrossRefGoogle Scholar
  124. Toume S, Gefen A, Weihs D (2017) Low-level stretching accelerates cell migration into a gap. Int Wound J 14(4):698–703PubMedCrossRefGoogle Scholar
  125. Veilleux D, Panicker RKG, Chevrier A, Biniecki K, Lavertu M, Buschmann MD (2018) Lyophilisation and concentration of chitosan/siRNA polyplexes: Influence of buffer composition, oligonucleotide sequence, and hyaluronic acid coating. J Colloid Interface Sci 512:335–345PubMedCrossRefGoogle Scholar
  126. Verma MS, Liu SY, Chen YY, Meerasa A, Gu FX (2012) Size-tunable nanoparticles composed of dextran-b-poly(D,L-lactide) for drug delivery applications. Nano Res 5(1):49–61CrossRefGoogle Scholar
  127. Vukajlovic D, Parker J, Bretcanu O, Novakovic K (2019) Chitosan based polymer/bioglass composites for tissue engineering applications. Mater Sci Eng C-Mater Biol Appl 96:955–967PubMedCrossRefGoogle Scholar
  128. Weissig V, Pettinger TK, Murdock N (2014) Nanopharmaceuticals (part I): products on the market. Int J Nanomedicine 9:4357–4373PubMedPubMedCentralCrossRefGoogle Scholar
  129. Wen YF, Oh JK (2014) Recent Strategies to develop polysaccharide-based nanomaterials for biomedical applications. Macromol Rapid Commun 35(21):1819–1832PubMedGoogle Scholar
  130. Wu T, Li Y, Lee DS (2017) Chitosan-based composite hydrogels for biomedical applications. Macromol Res 25(6):480–488CrossRefGoogle Scholar
  131. Xu YM, Zhan CY, Fan LH, Wang L, Zheng H (2007) Preparation of dual crosslinked alginate-chitosan blend gel beads and in vitro controlled release in oral site-specific drug delivery system. Int J Pharm 336(2):329–337PubMedCrossRefGoogle Scholar
  132. Yallapu MM, Jaggi M, Chauhan SC (2013) Curcumin nanomedicine: a road to cancer therapeutics. Curr Pharm Des 19(11):1994–2010PubMedPubMedCentralGoogle Scholar
  133. Yan YN, Wang XH, Pan YQ, Liu HX, Cheng J, Xiong Z et al (2005) Fabrication of viable tissue-engineered constructs with 3D cell-assembly technique. Biomaterials 26(29):5864–5871PubMedCrossRefGoogle Scholar
  134. Yan SF, Zhang KX, Liu ZW, Zhang X, Gan L, Cao B et al (2013) Fabrication of poly(L-glutamic acid)/chitosan polyelectrolyte complex porous scaffolds for tissue engineering. J Mater Chem B 1(11):1541–1551CrossRefGoogle Scholar
  135. Yu RM, Shi YZ, Yang DZ, Liu YX, Qu J, Yu ZZ (2017) Graphene oxide/chitosan aerogel microspheres with honeycomb cobweb and radially oriented microchannel structures for broad spectrum and rapid adsorption of water contaminants. ACS Appl Mater Interfaces 9(26):21809–21819PubMedCrossRefGoogle Scholar
  136. Zhang LM, Xia JG, Zhao QH, Liu LW, Zhang ZJ (2010) Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small 6(4):537–544PubMedCrossRefGoogle Scholar
  137. Zhang HP, Luo XG, Lin XY, Lu X, Tang YH (2016) The molecular understanding of interfacial interactions of functionalized graphene and chitosan. Appl Surf Sci 360:715–721CrossRefGoogle Scholar
  138. Zhao DY, Yu S, Sun BN, Gao S, Guo SH, Zhao K (2018) Biomedical applications of chitosan and its derivative nanoparticles. Polymers 10(4):17Google Scholar
  139. Zhou YS, Yang DZ, Chen XM, Xu Q, Lu FM, Nie J (2008) Electrospun water-soluble carboxyethyl chitosan/poly(vinyl alcohol) nanofibrous membrane as potential wound dressing for skin regeneration. Biomacromolecules 9(1):349–354PubMedCrossRefGoogle Scholar
  140. Zhou YS, Yang HJ, Liu X, Mao J, Gu SJ, Xu WL (2013) Electrospinning of carboxyethyl chitosan/poly(vinyl alcohol)/silk fibroin nanoparticles for wound dressings. Int J Biol Macromol 53:88–92PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Shoba Narayan
    • 1
  1. 1.Faculty of Allied Health SciencesChettinad Hospital and Research Institute, Chettinad Academy of Research and EducationKelambakkamIndia

Personalised recommendations