Advertisement

Chitosan and Its Derivatives: A New Versatile Biopolymer for Various Applications

  • Deepali Rahangdale
  • Neha Joshi
  • Anupama KumarEmail author
Chapter
  • 39 Downloads

Abstract

Chitosan is a nontoxic, biodegradable, biocompatible natural aminopolysachharide with diverse applications. Chitosan can be easily modified into different forms such as membranes, sponges, gels, scaffolds, microparticles, nanoparticles, and nanofiber for drug delivery, gene therapy, tissue engineering, and wound healing in biomedical application. Recently, chitosan-based molecularly imprinted polymers have gained considerable attention and showed significant potential in fields, such as environmental remediation, medicine, as well as various industrial applications. However, the performance of the chitosan-based products in various applications is influenced by many factors including the source of chitin, extraction process, molecular weight, degree of deacetylation, pH, ionic strength, concentration, and temperature. This chapter will provide a brief overview of chitosan in molecular imprinting technique as a functional polymer or supporting matrix because of its low cost and high content of amino and hydroxyl functional groups as well as the computational modeling for the designing of chitosan-based material for desired application. Rational designing of chitosan-based derivatives using computational modeling is not only fast and economic but also a greener approach, which helps understanding various thermodynamic and spectroscopic aspects at molecular level. This chapter also discusses diverse applications of chitosan for biomedical, industrial, and environmental applications.

Keywords

Chitin Chitosan Computational modeling Graft copolymer Tissue engineering 

References

  1. Aiedeh K, Taha MO (2001) Synthesis of iron-crosslinked chitosan succinate and iron-crosslinked hydroxamated chitosan succinate and their in vitro evaluation as potential matrix materials for oral theophylline sustained-release beads. Eur J Pharm Sci 13(2):159–168PubMedCrossRefPubMedCentralGoogle Scholar
  2. Al Sagheer FA, Al-Sughayer MA, Muslim S, Elsabee MZ (2009) Extraction and characterization of chitin and chitosan from marine sources in Arabian Gulf. Carbohydr Polym 77(2):410–419CrossRefGoogle Scholar
  3. Amar B (2001) Fermentation of prawn shell waste and the application of its product as dietary ingredient for the Indian white prawn Penaeus indicus H Milne EdwardsGoogle Scholar
  4. Amaral IF, Granja PL, Barbosa MA (2005) Chemical modification of chitosan by phosphorylation: an XPS, FT-IR and SEM study. J Biomater Sci Polym Ed 16(12):1575–1593PubMedCrossRefPubMedCentralGoogle Scholar
  5. Andres Y, Giraud L, Gerente C, Le Cloirec P (2007) Antibacterial effects of chitosan powder: mechanisms of action. Environ Technol 28(12):1357–1363PubMedCrossRefPubMedCentralGoogle Scholar
  6. Arena F, Di Chio R, Gumina B, Spadaro L, Trunfio G (2015) Recent advances on wet air oxidation catalysts for treatment of industrial wastewaters. Inorg Chim Acta 431:101–109CrossRefGoogle Scholar
  7. Azimi A, Javanbakht M (2014) Computational prediction and experimental selectivity coefficients for hydroxyzine and cetirizine molecularly imprinted polymer based potentiometric sensors. Anal Chim Acta 812:184–190PubMedCrossRefPubMedCentralGoogle Scholar
  8. Bastide J, Cambon JP, Breton F, Piletsky SA, Rouillon R (2005) The use of molecularly imprinted polymers for extraction of sulfonylurea herbicides. Anal Chim Acta 542(1):97–103CrossRefGoogle Scholar
  9. Bolto B, Gregory J (2007) Organic polyelectrolytes in water treatment. Water Res 41(11):2301–2324PubMedCrossRefPubMedCentralGoogle Scholar
  10. Bratby J (2006) Coagulation and flocculation in water and wastewater treatment. IWA Publishing, LondonGoogle Scholar
  11. Caner H, Yilmaz E, Yilmaz O (2007) Synthesis, characterization and antibacterial activity of poly (N-vinylimidazole) grafted chitosan. Carbohydr Polym 69(2):318–325CrossRefGoogle Scholar
  12. Chang MY, Juang RS (2004) Adsorption of tannic acid, humic acid, and dyes from water using the composite of chitosan and activated clay. J Colloid Interface Sci 278(1):18–25PubMedCrossRefPubMedCentralGoogle Scholar
  13. Chao AC, Shyu SS, Lin YC, Mi FL (2004) Enzymatic grafting of carboxyl groups on to chitosan––to confer on chitosan the property of a cationic dye adsorbent. Bioresour Technol 91(2):157–162PubMedCrossRefPubMedCentralGoogle Scholar
  14. Chen G (2004) Electrochemical technologies in wastewater treatment. Sep Purif Technol 38(1):11–41CrossRefGoogle Scholar
  15. Chen Y, Wang J (2012) Removal of radionuclide Sr2+ ions from aqueous solution using synthesized magnetic chitosan beads. Nucl Eng Des 242:445–451CrossRefGoogle Scholar
  16. Chen AH, Liu SC, Chen CY, Chen CY (2008) Comparative adsorption of Cu (II), Zn (II), and Pb (II) ions in aqueous solution on the crosslinked chitosan with epichlorohydrin. J Hazard Mater 154(1–3):184–191PubMedCrossRefPubMedCentralGoogle Scholar
  17. Chen AH, Yang CY, Chen CY, Chen CY, Chen CW (2009) The chemically crosslinked metal-complexed chitosan for comparative adsorptions of Cu (II), Zn (II), Ni (II) and Pb (II) ions in aqueous medium. J Hazard Mater 163(2–3):1068–1075PubMedCrossRefPubMedCentralGoogle Scholar
  18. Chen A, Zeng G, Chen G, Hu X, Yan M, Guan S et al (2012) Novel thiourea-modified magnetic ion-imprinted chitosan/TiO2 composite for simultaneous removal of cadmium and 2, 4-dichlorophenol. Chem Eng J 191:85–94CrossRefGoogle Scholar
  19. Chien PJ, Chou CC (2006) Antifungal activity of chitosan and its application to control post-harvest quality and fungal rotting of Tankan citrus fruit (Citrus tankan Hayata). J Sci Food Agric 86(12):1964–1969CrossRefGoogle Scholar
  20. Chong MF (2012) Direct flocculation process for wastewater treatment. In: Advances in water treatment and pollution prevention. Springer, Dordrecht, pp 201–230CrossRefGoogle Scholar
  21. Chung YC, Chen CY (2008) Antibacterial characteristics and activity of acid-soluble chitosan. Bioresour Technol 99(8):2806–2814PubMedCrossRefGoogle Scholar
  22. Crini G (2005) Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog Polym Sci 30(1):38–70CrossRefGoogle Scholar
  23. Dao VH, Cameron NR, Saito K (2016) Synthesis, properties and performance of organic polymers employed in flocculation applications. Polym Chem 7(1):11–25CrossRefGoogle Scholar
  24. Darias R, Villalonga R (2001) Functional stabilization of cellulase by covalent modification with chitosan. J Chem Technol Biotechnol 76(5):489–493CrossRefGoogle Scholar
  25. Dash M, Chiellini F, Ottenbrite RM, Chiellini E (2011) Chitosan—A versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci 36(8):981–1014CrossRefGoogle Scholar
  26. Delgado Vela J, Stadler LB, Martin KJ, Raskin L, Bott CB, Love NG (2015) Prospects for biological nitrogen removal from anaerobic effluents during mainstream wastewater treatment. Environ Sci Technol Lett 2(9):234–244CrossRefGoogle Scholar
  27. Derfus AM, Chan WC, Bhatia SN (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4(1):11–18CrossRefGoogle Scholar
  28. Domard A, Domard M (2001) Chitosan: structure-properties relationship and biomedical applications. Polym Biomater 2:187–212Google Scholar
  29. Don TM, King CF, Chiu WY (2002) Synthesis and properties of chitosan-modified poly (vinyl acetate). J Appl Polym Sci 86(12):3057–3063CrossRefGoogle Scholar
  30. Dos Santos KSCR, Coelho JFJ, Ferreira P, Pinto I, Lorenzetti SG, Ferreira EI et al (2006) Synthesis and characterization of membranes obtained by graft copolymerization of 2-hydroxyethyl methacrylate and acrylic acid onto chitosan. Int J Pharm 310(1–2):37–45PubMedCrossRefGoogle Scholar
  31. Dutta PK, Ravikumar MNV, Dutta J (2002) Chitin and chitosan for versatile applications. J Macromol Sci Polym Rev 42(3):307–354CrossRefGoogle Scholar
  32. Dutta PK, Dutta J, Tripathi VS (2004) Chitin and chitosan: chemistry, properties and applications. J Sci Ind Res 63:20–31Google Scholar
  33. El Ghaouth A, Arul J, Asselin A, Benhamou N (1992) Antifungal activity of chitosan on post-harvest pathogens: induction of morphological and cytological alterations in Rhizopus stolonifer. Mycol Res 96(9):769–779CrossRefGoogle Scholar
  34. Fan L, Luo C, Lv Z, Lu F, Qiu H (2011) Removal of Ag+ from water environment using a novel magnetic thiourea-chitosan imprinted Ag+. J Hazard Mater 194:193–201PubMedCrossRefGoogle Scholar
  35. Fan L, Zhang Y, Li X et al (2012) Removal of alizarin red from water environment using magnetic chitosan with Alizarin Red as imprinted molecules. Colloids Surf B: Biointerfaces 91:250–257PubMedCrossRefGoogle Scholar
  36. Fane AG, Wang R, Hu MX (2015) Synthetic membranes for water purification: status and future. Angew Chem Int Ed 54(11):3368–3386CrossRefGoogle Scholar
  37. Fei Liu X, Lin Guan Y, Zhi Yang D et al (2001) Antibacterial action of chitosan and carboxymethylated chitosan. J Appl Polym Sci 79(7):1324–1335CrossRefGoogle Scholar
  38. Fox JC (1975) Silver sulfadiazine for control of burn wound infections. Int Surg 60(5):275–277PubMedPubMedCentralGoogle Scholar
  39. Freier T, Koh HS, Kazazian K et al (2005) Controlling cell adhesion and degradation of chitosan films by N-acetylation. Biomaterials 26(29):5872–5878PubMedCrossRefPubMedCentralGoogle Scholar
  40. Goy RC, Britto DD, Assis OB (2009) A review of the antimicrobial activity of chitosan. Polímeros 19(3):241–247CrossRefGoogle Scholar
  41. Guibal E, Van Vooren M, Dempsey BA et al (2006) A review of the use of chitosan for the removal of particulate and dissolved contaminants. Sep Sci Technol 41(11):2487–2514CrossRefGoogle Scholar
  42. Guo TY, Xia YQ, al HGJ (2004) Adsorptive separation of hemoglobin by molecularly imprinted chitosan beads. Biomaterials 25(27):5905–5912PubMedCrossRefPubMedCentralGoogle Scholar
  43. Hasan M, Ahmad AL, Hameed BH (2008) Adsorption of reactive dye onto cross-linked chitosan/oil palm ash composite beads. Chem Eng J 136(2–3):164–172CrossRefGoogle Scholar
  44. Hasipoglu HN, Yilmaz E, al YO (2005) Preparation and characterization of maleic acid grafted chitosan. Int J Polym Anal Charact 10(5–6):313–327CrossRefGoogle Scholar
  45. Helander IM, Nurmiaho-Lassila EL, Ahvenainen R et al (2001) Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria. Int J Food Microbiol 71(2–3):235–244PubMedCrossRefPubMedCentralGoogle Scholar
  46. Hidaka Y, Ito M, Mori K et al (1999) Histopathological and immunohistochemical studies of membranes of deacetylated chitin derivatives implanted over rat calvaria. J Biomed Mater Res Off J Soc Biomate, Jpn Soc Biomater Aust Soc Biomater Korean Soc Biomater 46(3):418–423Google Scholar
  47. Hillis P (ed) (2007) Membrane technology in water and wastewater treatment. Royal Society of Chemistry, LondonGoogle Scholar
  48. Hlaváč D, Tokarský J (2013) Molecular modeling of chitosan/polyethylene oxide polymer blends, Nanocon 2013, Brno, Czech Republic, EU, 16–18. 10. 2013Google Scholar
  49. Honarkar H, Barikani M (2009) Applications of biopolymers I: chitosan. Chem Mon 140(12):1403CrossRefGoogle Scholar
  50. Huamin Q, Lulu F, Li X et al (2013) Determination sulfamethoxazole based chemiluminescence and chitosan/graphene oxide-molecularly imprinted polymers. Carbohydr Polym 92(1):394–399PubMedCrossRefPubMedCentralGoogle Scholar
  51. Huang M, Jin X, Li Y et al (2006) Syntheses and characterization of novel pH-sensitive graft copolymers of maleoylchitosan and poly (acrylic acid). React Funct Polym 66(10):1041–1046CrossRefGoogle Scholar
  52. Hydari S, Sharififard H, Nabavinia M et al (2012) A comparative investigation on removal performances of commercial activated carbon, chitosan biosorbent and chitosan/activated carbon composite for cadmium. Chem Eng J 193:276–282CrossRefGoogle Scholar
  53. Imran M, Crowley DE, Khalid A et al (2015) Microbial biotechnology for decolorization of textile wastewaters. Rev Environ Sci Biotechnol 14(1):73–92CrossRefGoogle Scholar
  54. Janes KA, Fresneau MP, Marazuela A et al (2001) Chitosan nanoparticles as delivery systems for doxorubicin. J Control Release 73(2–3):255–267PubMedCrossRefPubMedCentralGoogle Scholar
  55. Jayakumar R, Prabaharan M, Reis RL et al (2005) Graft copolymerized chitosan—present status and applications. Carbohydr Polym 62(2):142–158CrossRefGoogle Scholar
  56. Jeon YJ, Kim SK (2002) Antitumor activity of chitosan oligosaccharides produced in ultrafiltration membrane reactor system. J Microbiol Biotechnol 12(3):503–507Google Scholar
  57. Jeyasanta KISI, Allwin SIJ, Patterson J (2017) Development of nutritious chutney powder from head shrimp waste for better utilization to reduce environmental pollution. Res J Anim, Vet Fish Sci 5(3):1–8Google Scholar
  58. Jiang JQ (2015) The role of coagulation in water treatment. Curr Opin Chem Eng 8:36–44CrossRefGoogle Scholar
  59. Jiang T, Abdel-Fattah WI, Laurencin CT (2006) In vitro evaluation of chitosan/poly (lactic acid-glycolic acid) sintered microsphere scaffolds for bone tissue engineering. Biomaterials 27(28):4894–4903PubMedCrossRefPubMedCentralGoogle Scholar
  60. Jiang T, Nukavarapu SP, Deng M, Jabbarzadeh E et al (2010) Chitosan–poly (lactide-co-glycolide) microsphere-based scaffolds for bone tissue engineering: in vitro degradation and in vivo bone regeneration studies. Acta Biomater 6(9):3457–3470PubMedCrossRefPubMedCentralGoogle Scholar
  61. Jun-Bo L, Yang S, Shan-Shan T et al (2015) Theoretical and experimental research on the self-assembled system of molecularly imprinted polymers formed by salbutamol and methacrylic acid. J Sep Sci 38(6):1065–1071PubMedCrossRefPubMedCentralGoogle Scholar
  62. Khan S, Bhatia T, Trivedi P et al (2016) Selective solid-phase extraction using molecularly imprinted polymer as a sorbent for the analysis of fenarimol in food samples. Food Chem 199:870–875PubMedCrossRefPubMedCentralGoogle Scholar
  63. Khor E, Lim LY (2003) Implantable applications of chitin and chitosan. Biomaterials 24(13):2339–2349PubMedCrossRefPubMedCentralGoogle Scholar
  64. Kim SY, Cho SM, Lee YM et al (2000) Thermo-and pH-responsive behaviors of graft copolymer and blend based on chitosan and N-isopropylacrylamide. J Appl Polym Sci 78(7):1381–1391CrossRefGoogle Scholar
  65. Kong M, Chen XG, Xue YP et al (2008) Preparation and antibacterial activity of chitosan microspheres in a solid dispersing system. Front Mater Sci China 2(2):214–220CrossRefGoogle Scholar
  66. Kong M, Chen XG, Xing K et al (2010) Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol 144(1):51–63PubMedCrossRefPubMedCentralGoogle Scholar
  67. Kumar MNR (2000) A review of chitin and chitosan applications. React Funct Polym 46(1):1–27CrossRefGoogle Scholar
  68. Kurit K, Tomita K, Ishii S et al (1993) β-chitin as a convenient starting material for acetolysis for efficient preparation of N-acetylchitooligosaccharides. J Polym Sci A Polym Chem 31(9):2393–2395CrossRefGoogle Scholar
  69. Kyzas GZ, Bikiaris DN (2015) Recent modifications of chitosan for adsorption applications: a critical and systematic review. Mar Drugs 13(1):312–337PubMedPubMedCentralCrossRefGoogle Scholar
  70. Kyzas GZ, Lazaridis NK, Bikiaris DN (2013) Optimization of chitosan and β-cyclodextrin molecularly imprinted polymer synthesis for dye adsorption. Carbohydr Polym 91(1):198–208PubMedCrossRefPubMedCentralGoogle Scholar
  71. Kyzas GZ, Siafaka PI, Pavlidou EG et al (2015) Synthesis and adsorption application of succinyl-grafted chitosan for the simultaneous removal of zinc and cationic dye from binary hazardous mixtures. Chem Eng J 259:438–448CrossRefGoogle Scholar
  72. Laplante S, Turgeon SL, Paquin P (2005) Effect of pH, ionic strength, and composition on emulsion stabilising properties of chitosan in a model system containing whey protein isolate. Food Hydrocoll 19(4):721–729CrossRefGoogle Scholar
  73. Lazaridis NK, Kyzas GZ, Vassiliou AA et al (2007) Chitosan derivatives as biosorbents for basic dyes. Langmuir 23(14):7634–7643PubMedCrossRefPubMedCentralGoogle Scholar
  74. Lee HC, Jeong YG, Min BG et al (2009a) Preparation and acid dye adsorption behavior of polyurethane/chitosan composite foams. Fibers Polym 10(5):636–642CrossRefGoogle Scholar
  75. Lee EJ, Shin DS, Kim HE et al (2009b) Membrane of hybrid chitosan–silica xerogel for guided bone regeneration. Biomaterials 30(5):743–750PubMedCrossRefPubMedCentralGoogle Scholar
  76. Lee CS, Robinson J, Chong MF (2014) A review on application of flocculants in wastewater treatment. Process Saf Environ Prot 92(6):489–508CrossRefGoogle Scholar
  77. Li FT, Zhang SF, Zhao Y (2005a) Coagulants and flocculants. Chemical Industry Press, BeijingGoogle Scholar
  78. Li Z, Ramay HR, Hauch KD et al (2005b) Chitosan–alginate hybrid scaffolds for bone tissue engineering. Biomaterials 26(18):3919–3928PubMedCrossRefPubMedCentralGoogle Scholar
  79. Li T, Zhu Z, Wang D, Yao C et al (2006) Characterization of floc size, strength and structure under various coagulation mechanisms. Powder Technol 168(2):104–110CrossRefGoogle Scholar
  80. Li Q, Su H, Tan T (2008) Synthesis of ion-imprinted chitosan-TiO2 adsorbent and its multi-functional performances. Biochem Eng J 38(2):212–218CrossRefGoogle Scholar
  81. Li Y, Qiu T, Xu X (2013) Preparation of lead-ion imprinted crosslinked electro-spun chitosan nanofiber mats and application in lead ions removal from aqueous solutions. Eur Polym J 49(6):1487–1494CrossRefGoogle Scholar
  82. Liu B, Wang D, Li H et al (2011a) As (III) removal from aqueous solution using α-Fe2O3 impregnated chitosan beads with As (III) as imprinted ions. Desalination 272(1–3):286–292CrossRefGoogle Scholar
  83. Liu H, Yang F, Zheng Y et al (2011b) Improvement of metal adsorption onto chitosan/Sargassum sp. composite sorbent by an innovative ion-imprint technology. Water Res 45(1):145–154PubMedCrossRefPubMedCentralGoogle Scholar
  84. Liu T, Wang ZL, Zhao L et al (2012) Enhanced chitosan/Fe0-nanoparticles beads for hexavalent chromium removal from wastewater. Chem Eng J 189:196–202CrossRefGoogle Scholar
  85. Liu B, Lv X, Meng X et al (2013) Removal of Pb (II) from aqueous solution using dithiocarbamate modified chitosan beads with Pb (II) as imprinted ions. Chem Eng J 220:412–419CrossRefGoogle Scholar
  86. Liu H, Yang X, Zhang Y et al (2014a) Flocculation characteristics of polyacrylamide grafted cellulose from Phyllostachys heterocycla: an efficient and eco-friendly flocculant. Water Res 59:165–171PubMedCrossRefPubMedCentralGoogle Scholar
  87. Liu J, Wen XY, Lu JF et al (2014b) Free radical mediated grafting of chitosan with caffeic and ferulic acids: Structures and antioxidant activity. Int J Biol Macromol 65:97–106PubMedCrossRefPubMedCentralGoogle Scholar
  88. Liu M, Li X, Li J et al (2017) Selective separation and determination of glucocorticoids in cosmetics using dual-template magnetic molecularly imprinted polymers and HPLC. J Colloid Interface Sci 504:124–133PubMedCrossRefPubMedCentralGoogle Scholar
  89. López-Chávez E, Martínez-Magadán JM, Oviedo-Roa R et al (2005) Molecular modeling and simulation of ion-conductivity in chitosan membranes. Polymer 46(18):7519–7527CrossRefGoogle Scholar
  90. Madihally SV, Matthew HW (1999) Porous chitosan scaffolds for tissue engineering. Biomaterials 20(12):1133–1142PubMedCrossRefPubMedCentralGoogle Scholar
  91. Mahdavinia GR, Pourjavadi A, Hosseinzadeh H (2004) Modified chitosan 4. Superabsorbent hydrogels from poly (acrylic acid-co-acrylamide) grafted chitosan with salt-and pH-responsiveness properties. Eur Polym J 40(7):1399–1407CrossRefGoogle Scholar
  92. Manzoor K, Johny S, Thomas D et al (2009) Bio-conjugated luminescent quantum dots of doped ZnS: a cyto-friendly system for targeted cancer imaging. Nanotechnology 20(6):065102PubMedCrossRefPubMedCentralGoogle Scholar
  93. Mathew ME, Mohan JC, Manzoor K et al (2010) Folate conjugated carboxymethyl chitosan–manganese doped zinc sulphide nanoparticles for targeted drug delivery and imaging of cancer cells. Carbohydr Polym 80(2):442–448CrossRefGoogle Scholar
  94. Meng M, Feng Y, Guan W et al (2014) Selective separation of salicylic acid from aqueous solutions using molecularly imprinted nano-polymer on wollastonite synthesized by oil-in-water microemulsion method. J Ind Eng Chem 20(6):3975–3983CrossRefGoogle Scholar
  95. Mi FL, Shyu SS, Wu YB et al (2001) Fabrication and characterization of a sponge-like asymmetric chitosan membrane as a wound dressing. Biomaterials 22(2):165–173PubMedCrossRefPubMedCentralGoogle Scholar
  96. Mi FL, Wu YB, Shyu SS (2003) Asymmetric chitosan membranes prepared by dry/wet phase separation: a new type of wound dressing for controlled antibacterial release. J Membr Sci 212(1–2):237–254CrossRefGoogle Scholar
  97. Mucha M (1997) Rheological characteristics of semi-dilute chitosan solutions. Macromol Chem Phys 198(2):471–484CrossRefGoogle Scholar
  98. Mun GA, Nurkeeva ZS, Dergunov SA et al (2008) Studies on graft copolymerization of 2-hydroxyethyl acrylate onto chitosan. React Funct Polym 68(1):389–395CrossRefGoogle Scholar
  99. Muzzarelli RA, Isolati A, Ferrero A (1974) Chitosan membranes. Ion Exch Membr 1(4):193–196PubMedPubMedCentralGoogle Scholar
  100. Najjar AMK, Yunus WMZW, Ahmad MB et al (2000) Preparation and characterization of poly (2-acrylamido-2-methylpropane-sulfonic acid) grafted chitosan using potassium persulfate as redox initiator. J Appl Polym Sci 77(10):2314–2318CrossRefGoogle Scholar
  101. Nguyen TTB, Hein S, Ng CH et al (2008) Molecular stability of chitosan in acid solutions stored at various conditions. J Appl Polym Sci 107(4):2588–2593CrossRefGoogle Scholar
  102. Nishad PA, Bhaskarapillai A, Velmurugan S et al (2012) Cobalt (II) imprinted chitosan for selective removal of cobalt during nuclear reactor decontamination. Carbohydr Polym 87(4):2690–2696CrossRefGoogle Scholar
  103. Oh HI, Kim YJ, Chang EJ et al (2001) Antimicrobial characteristics of chitosans against food spoilage microorganisms in liquid media and mayonnaise. Biosci Biotechnol Biochem 65(11):2378–2383PubMedCrossRefPubMedCentralGoogle Scholar
  104. Pal J, Verma HO, Munka VK et al (2014) Biological method of chitin extraction from shrimp waste an eco-friendly low cost technology and its advanced application. Int J Fish Aquat Stud 1(6):104–107Google Scholar
  105. Pan J, Yao H, Li X et al (2011) Synthesis of chitosan/γ-Fe2O3/fly-ash-cenospheres composites for the fast removal of bisphenol A and 2, 4, 6-trichlorophenol from aqueous solutions. J Hazard Mater 190(1–3):276–284PubMedCrossRefPubMedCentralGoogle Scholar
  106. Pandele AM, Ioniţă M, Iovu H (2014) Molecular modeling of mechanical properties of the chitosan based graphene composites. UPB Sci Bull Ser B Chem Mater Sci 76:107–112Google Scholar
  107. Pang HT, Chen XG, Ji QX (2008) Preparation and function of composite asymmetric chitosan/CM-chitosan membrane. J Mater Sci Mater Med 19(3):1413–1417PubMedCrossRefPubMedCentralGoogle Scholar
  108. Papineau AM, Hoover DG, Knorr D et al (1991) Antimicrobial effect of water-soluble chitosans with high hydrostatic pressure. Food Biotechnol 5(1):45–57CrossRefGoogle Scholar
  109. Pardeshi S, Dhodapkar R, Kumar A (2012a) Studies of the molecular recognition abilities of gallic acid-imprinted polymer prepared using a molecular imprinting technique. Adsorpt Sci Technol 30(1):23–34CrossRefGoogle Scholar
  110. Pardeshi S, Patrikar R, Dhodapkar R, Kumar A (2012b) Validation of computational approach to study monomer selectivity toward the template Gallic acid for rational molecularly imprinted polymer design. J Mol Model 18(11):4797–4810PubMedCrossRefPubMedCentralGoogle Scholar
  111. Pardeshi S, Dhodapkar R, Kumar A (2013) Quantum chemical density functional theory studies on the molecular structure and vibrational spectra of Gallic acid imprinted polymers. Spectrochim Acta A Mol Biomol Spectrosc 116:562–573PubMedCrossRefPubMedCentralGoogle Scholar
  112. Park PJ, Je JY, Byun HG et al (2004) Antimicrobial activity of hetero-chitosans and their oligosaccharides with different molecular weights. J Microbiol Biotechnol 14(2):317–323Google Scholar
  113. Peter M, Binulal NS, Soumya S, Nair SV, Furuike T, Tamura H, Jayakumar R (2010) Nanocomposite scaffolds of bioactive glass ceramic nanoparticles disseminated chitosan matrix for tissue engineering applications. Carbohydr Polym 79(2):284–289CrossRefGoogle Scholar
  114. Pourjavadi A, Mahdavinia GR, Zohuriaan-Mehr MJ et al (2003) Modified chitosan. I. Optimized cerium ammonium nitrate-induced synthesis of chitosan-graft-polyacrylonitrile. J Appl Polym Sci 88(8):2048–2054CrossRefGoogle Scholar
  115. Prabaharan M, Jayakumar R (2009) Chitosan-graft-β-cyclodextrin scaffolds with controlled drug release capability for tissue engineering applications. Int J Biol Macromol 44(4):320–325PubMedCrossRefPubMedCentralGoogle Scholar
  116. Prabaharan M, Rodriguez-Perez MA, De Saja JA et al (2007) Preparation and characterization of poly (L-lactic acid)-chitosan hybrid scaffolds with drug release capability. J Biomed Mater Res Part B: Appl Biomater: Off J Soc Biomater, Jpn Soc Biomater, Aust Soc Biomater Korean Soc Biomater 81(2):427–434CrossRefGoogle Scholar
  117. Prashanth KH, Tharanathan RN (2003) Studies on graft copolymerization of chitosan with synthetic monomers. Carbohydr Polym 54(3):343–351CrossRefGoogle Scholar
  118. Prashanth KH, Kittur FS, Tharanathan RN (2002) Solid state structure of chitosan prepared under different N-deacetylating conditions. Carbohydr Polym 50(1):27–33CrossRefGoogle Scholar
  119. Prasitsilp M, Jenwithisuk R, Kongsuwan K et al (2000) Cellular responses to chitosan in vitro: the importance of deacetylation. J Mater Sci Mater Med 11(12):773–778PubMedCrossRefPubMedCentralGoogle Scholar
  120. Rahangdale D, Kumar A (2018a) Acrylamide grafted chitosan based ion imprinted polymer for the recovery of cadmium from nickel-cadmium battery waste. J Environ Chem Eng 6(2):1828–1839CrossRefGoogle Scholar
  121. Rahangdale D, Kumar A (2018b) Derivatized chitosan: fundamentals to applications. In: Biopolymer grafting. Elsevier, Cambridge, MA, pp 251–284CrossRefGoogle Scholar
  122. Rahangdale D, Kumar A (2018c) Chitosan as a substrate for simultaneous surface imprinting of salicylic acid and cadmium. Carbohydr Polym 202:334–344PubMedCrossRefPubMedCentralGoogle Scholar
  123. Rahangdale D, Kumar A (2019) Water compatible functionalized chitosan-based 4-HBA mimic imprinted polymer as a potential sorbent for salicylic acid. Sep Sci Technol:1–14.  https://doi.org/10.1080/01496395.2018.154673
  124. Rahangdale D, Archana G, Kumar A (2016) Molecularly imprinted chitosan-based adsorbents for the removal of salicylic acid and its molecular modeling to study the influence of intramolecular hydrogen bonding of template on molecular recognition of molecularly imprinted polymer. Adsorpt Sci Technol 34(7–8):405–425CrossRefGoogle Scholar
  125. Rahangdale D, Archana G, Dhodapkar R et al (2017) Chitosan-based biosorbents: modifications and application for sequestration of PPCPs and metals for water remediation. In: Handbook of Composites from Renewable Materials, Functionalization, vol 4, p 1.  https://doi.org/10.1002/9781119441632 CrossRefGoogle Scholar
  126. Rahangdale D, Kumar A, Archana G et al (2018) Ion cum molecularly dual imprinted polymer for simultaneous removal of cadmium and salicylic acid. J Mol Recognit 31(3):e2630CrossRefGoogle Scholar
  127. Ramesh A, Hasegawa H, Sugimoto W et al (2008) Adsorption of gold (III), platinum (IV) and palladium (II) onto glycine modified crosslinked chitosan resin. Bioresour Technol 99(9):3801–3809PubMedCrossRefPubMedCentralGoogle Scholar
  128. Ravikumar MNV, Dutta PK (1998) Industrial products: emerging technologies and business opportunities, Industrial Products FinderGoogle Scholar
  129. Razali MAA, Ahmad Z, Ahmad MSB et al (2011) Treatment of pulp and paper mill wastewater with various molecular weight of polyDADMAC induced flocculation. Chem Eng J 166(2):529–535CrossRefGoogle Scholar
  130. Renault F, Sancey B, Badot PM et al (2009) Chitosan for coagulation/flocculation processes–an eco-friendly approach. Eur Polym J 45(5):1337–1348CrossRefGoogle Scholar
  131. Rezakazemi M, Albadarin AB, Walker GM et al (2018) Quantum chemical calculations and molecular modeling for methylene blue removal from water by a lignin-chitosan blend. Int J Biol Macromol.  https://doi.org/10.1016/j.ijbiomac.2018.09.027 PubMedCrossRefPubMedCentralGoogle Scholar
  132. Rhee JS, Jung MW, Paeng KJ (1998) Evaluation of chitin and chitosan as a sorbent for the preconcentration of phenol and chlorophenols in water. Anal Sci 14(6):1089–1092CrossRefGoogle Scholar
  133. Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31(7):603–632CrossRefGoogle Scholar
  134. Rivero S, García MA, Pinotti A (2011) Heat treatment to modify the structural and physical properties of chitosan-based films. J Agric Food Chem 60(1):492–499PubMedCrossRefPubMedCentralGoogle Scholar
  135. Roller S, Covill N (1999) The antifungal properties of chitosan in laboratory media and apple juice. Int J Food Microbiol 47(1–2):67–77PubMedCrossRefPubMedCentralGoogle Scholar
  136. Rorrer GL, Hsien TY, Way JD (1993) Synthesis of porous-magnetic chitosan beads for removal of cadmium ions from wastewater. Ind Eng Chem Res 32(9):2170–2178CrossRefGoogle Scholar
  137. Ruel-Gariepy E, Chenite A, Chaput C et al (2000) Characterization of thermosensitive chitosan gels for the sustained delivery of drugs. Int J Pharm 203(1–2):89–98PubMedCrossRefPubMedCentralGoogle Scholar
  138. Sashiwa H, Aiba SI (2004) Chemically modified chitin and chitosan as biomaterials. Prog Polym Sci 29(9):887–908CrossRefGoogle Scholar
  139. Sashiwa H, Kawasaki N, Nakayama A et al (2002) Chemical modification of chitosan. 14: synthesis of water-soluble chitosan derivatives by simple acetylation. Biomacromolecules 3(5):1126–1128PubMedCrossRefPubMedCentralGoogle Scholar
  140. Savard T, Beaulieu C, Boucher I et al (2002) Antimicrobial action of hydrolyzed chitosan against spoilage yeasts and lactic acid bacteria of fermented vegetables. J Food Prot 65(5):828–833PubMedCrossRefPubMedCentralGoogle Scholar
  141. Schwarzenbach RP, Escher BI, Fenner K et al (2006) The challenge of micropollutants in aquatic systems. Science 313(5790):1072–1077PubMedCrossRefPubMedCentralGoogle Scholar
  142. Shalumon KT, Binulal NS, al SN (2009) Electrospinning of carboxymethyl chitin/poly (vinyl alcohol) nanofibrous scaffolds for tissue engineering applications. Carbohydr Polym 77(4):863–869CrossRefGoogle Scholar
  143. Shannon MA, Bohn PW, Elimelech M et al (2008) Science and technology for water purification in the coming decades. Nature 452:301–310PubMedCrossRefPubMedCentralGoogle Scholar
  144. Shantha KL, Bala U, Rao KP (1995) Tailor-made chitosans for drug delivery. Eur Polym J 31(4):377–382CrossRefGoogle Scholar
  145. Sharma BR, Dhuldhoya NC, Merchant UC (2006) Flocculants—an ecofriendly approach. J Polym Environ 14(2):195–202CrossRefGoogle Scholar
  146. Shen JW, Li J, Zhao Z et al (2017) Molecular dynamics study on the mechanism of polynucleotide encapsulation by chitosan. Sci Rep 7(1):5050PubMedPubMedCentralCrossRefGoogle Scholar
  147. Shigemasa Y, Oota H, Tokura S et al (1992) Biological filling agent and wound healing agent. EP Patent, (0477979)Google Scholar
  148. Silva SS, Luna SM, Gomes ME et al (2008) Plasma surface modification of chitosan membranes: characterization and preliminary cell response studies. Macromol Biosci 8(6):568–576PubMedCrossRefPubMedCentralGoogle Scholar
  149. Singh J, Dutta PK (2011) Antibacterial and physiochemical behavior of prepared chitosan/pyridine-3, 5-di-carboxylic acid complex for biomedical applications. J Macromol Sci Part A 48(3):246–253CrossRefGoogle Scholar
  150. Singh RP, Karmakar GP, Rath SK et al (2000) Biodegradable drag reducing agents and flocculants based on polysaccharides: materials and applications. Polym Eng Sci 40(1):46–60CrossRefGoogle Scholar
  151. Singh V, Tripathi DN, Tiwari A et al (2006) Microwave synthesized chitosan-graft-poly (methylmethacrylate): An efficient Zn2+ ion binder. Carbohydr Polym 65(1):35–41CrossRefGoogle Scholar
  152. Stamford TCM, Stamford-Arnaud TM, de Medeiros Cavalcante HM, Macedo RO, de Campos-Takaki GM (2013) Microbiological chitosan: Potential application as anticariogenic agent. In: Practical applications in biomedical engineering. InTech, RijekaGoogle Scholar
  153. Sudarshan NR, Hoover DG, Knorr D (1992) Antibacterial action of chitosan. Food Biotechnol 6(3):257–272CrossRefGoogle Scholar
  154. Suh JKF, Matthew HW (2000) Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 21(24):2589–2598PubMedCrossRefPubMedCentralGoogle Scholar
  155. Sun S, Wang A (2006) Adsorption properties of carboxymethyl-chitosan and cross-linked carboxymethyl-chitosan resin with Cu (II) as template. Sep Purif Technol 49(3):197–204CrossRefGoogle Scholar
  156. Sun Y, Cui F, Shi K, Wang J, Niu M, Ma R (2009) The effect of chitosan molecular weight on the characteristics of spray-dried methotrexate-loaded chitosan microspheres for nasal administration. Drug Dev Ind Pharm 35(3):379–386PubMedCrossRefPubMedCentralGoogle Scholar
  157. Tianwei T, Xiaojing H, Weixia D (2001) Adsorption behaviour of metal ions on imprinted chitosan resin. J Chem Technol Biotechnol: Int Res Process, Environ Clean Technol 76(2):191–195CrossRefGoogle Scholar
  158. Tipparat H, Riyaphan O (2008) Effect of deacetylation conditions on antimicrobial activity of chitosan prepared from carapace of black tiger shrimp (Penaeus monodon). Songklanakarin J Sci Technol 30(1):1–9Google Scholar
  159. Tran HV, Dai Tran L, Nguyen TN (2010) Preparation of chitosan/magnetite composite beads and their application for removal of Pb (II) and Ni (II) from aqueous solution. Mater Sci Eng C 30(2):304–310CrossRefGoogle Scholar
  160. Tsai GUO, Su WH, Chen HC, Pan CL (2002) Antimicrobial activity of shrimp chitin and chitosan from different treatments. Fish Sci 68(1):170–177CrossRefGoogle Scholar
  161. Tseng HJ, Hsu SH, Wu MW, Hsueh TH, Tu PC (2009) Nylon textiles grafted with chitosan by open air plasma and their antimicrobial effect. Fibers Polym 10(1):53–59CrossRefGoogle Scholar
  162. Urgen Kaessmann HJ, Haak KWA (1997) U.S. Patent No. 5,597,581. U.S. Patent and Trademark Office, Washington, DCGoogle Scholar
  163. Vårum KM, Ottøy MH, Smidsrød O (2001) Acid hydrolysis of chitosans. Carbohydr Polym 46(1):89–98CrossRefGoogle Scholar
  164. Varun TK, Senani S, Jayapal N, Chikkerur J, Roy S, Tekulapally VB et al (2017) Extraction of chitosan and its oligomers from shrimp shell waste, their characterization and antimicrobial effect. Vet World 10(2):170PubMedPubMedCentralCrossRefGoogle Scholar
  165. Vilchez S, Manich AM, Jovancic P, Erra P (2008) Chitosan contribution on wool treatment. Carbohydr Polym 71:515–523CrossRefGoogle Scholar
  166. Walton JR (2013) Aluminum involvement in the progression of Alzheimer’s disease. J Alzheimers Dis 35(1):7–43PubMedCrossRefPubMedCentralGoogle Scholar
  167. Wan Ngah WS, Ariff NFM, Hanafiah MAKM (2010a) Preparation, characterization, and environmental application of crosslinked chitosan-coated bentonite for tartrazine adsorption from aqueous solutions. Water Air Soil Pollut 206(1–4):225–236CrossRefGoogle Scholar
  168. Wan Ngah WS, Ariff NFM, Hashim A, Hanafiah MAKM (2010b) Malachite green adsorption onto chitosan coated bentonite beads: isotherms, kinetics and mechanism. CLEAN–Soil, Air, Water 38(4):394–400CrossRefGoogle Scholar
  169. Wang X, Du Y, Fan L, Liu H, Hu Y (2005) Chitosan-metal complexes as antimicrobial agent: synthesis, characterization and structure-activity study. Polym Bull 55(1–2):105–113CrossRefGoogle Scholar
  170. Wang C, Fu X, Yang L (2007) Water-soluble chitosan nanoparticles as a novel carrier system for protein delivery. Chin Sci Bull 52(7):883–889CrossRefGoogle Scholar
  171. Wang Y, Wang E, Wu Z, Li H, Zhu Z, Zhu X, Dong Y (2014) Synthesis of chitosan molecularly imprinted polymers for solid-phase extraction of methandrostenolone. Carbohydr Polym 101:517–523PubMedCrossRefPubMedCentralGoogle Scholar
  172. Wang Y, Liu JB, Tang SS, Jin RF (2015) Preparation of melamine molecularly imprinted polymer by computer-aided design. J Sep Sci 38(15):2647–2654PubMedCrossRefPubMedCentralGoogle Scholar
  173. Wang J, Wang L, Yu H, Chen Y, Chen Q, Zhou W et al (2016) Recent progress on synthesis, property and application of modified chitosan: an overview. Int J Biol Macromol 88:333–344PubMedCrossRefPubMedCentralGoogle Scholar
  174. Ward RJ, McCrohan CR, White KN (2006) Influence of aqueous aluminium on the immune system of the freshwater crayfish Pacifasticus leniusculus. Aquat Toxicol 77(2):222–228PubMedCrossRefPubMedCentralGoogle Scholar
  175. Weng X, Lin S, Zhong Y, Chen Z (2013) Chitosan stabilized bimetallic Fe/Ni nanoparticles used to remove mixed contaminants-amoxicillin and Cd (II) from aqueous solutions. Chem Eng J 229:27–34CrossRefGoogle Scholar
  176. Xia YQ, Guo TY, Song MD, Zhang BH, Zhang BL (2006) Selective separation of quercetin by molecular imprinting using chitosan beads as functional matrix. React Funct Polym 66(12):1734–1740CrossRefGoogle Scholar
  177. Xu L, Pan J, Dai J, Li X, Hang H, Cao Z, Yan Y (2012) Preparation of thermal-responsive magnetic molecularly imprinted polymers for selective removal of antibiotics from aqueous solution. J Hazard Mater 233:48–56PubMedCrossRefPubMedCentralGoogle Scholar
  178. Yang TC, Chou CC, Li CF (2005) Antibacterial activity of N-alkylated disaccharide chitosan derivatives. Int J Food Microbiol 97(3):237–245PubMedCrossRefPubMedCentralGoogle Scholar
  179. Yazdani-Pedram M, Retuert J (1997) Homogeneous grafting reaction of vinyl pyrrolidone onto chitosan. J Appl Polym Sci 63(10):1321–1326CrossRefGoogle Scholar
  180. Yazdani-Pedram M, Retuert J, Quijada R (2000) Hydrogels based on modified chitosan, 1. Synthesis and swelling behavior of poly (acrylic acid) grafted chitosan. Macromol Chem Phys 201(9):923–930CrossRefGoogle Scholar
  181. Yazdani-Pedram M, Lagos A, Retuert PJ (2002) Study of the effect of reaction variables on grafting of polyacrylamide onto chitosan. Polym Bull 48(1):93–98CrossRefGoogle Scholar
  182. Yilmaz E, Adali T, Yilmaz O, Bengisu M (2007) Grafting of poly (triethylene glycol dimethacrylate) onto chitosan by ceric ion initiation. React Funct Polym 67(1):10–18CrossRefGoogle Scholar
  183. Younes I, Ghorbel-Bellaaj O, Chaabouni M, Rinaudo M, Souard F, Vanhaverbeke C et al (2014) Use of a fractional factorial design to study the effects of experimental factors on the chitin deacetylation. Int J Biol Macromol 70:385–390PubMedCrossRefPubMedCentralGoogle Scholar
  184. Yu L, He Y, Bin L, Yue’e F (2003) Study of radiation-induced graft copolymerization of butyl acrylate onto chitosan in acetic acid aqueous solution. J Appl Polym Sci 90(10):2855–2860CrossRefGoogle Scholar
  185. Zhang Y, Zhang M (2001) Synthesis and characterization of macroporous chitosan/calcium phosphate composite scaffolds for tissue engineering. J Biomed Mater Res Off J Soc Biomate, Jpn Soc Biomater Aust Soc Biomater Korean Soc Biomater 55(3):304–312Google Scholar
  186. Zhang J, Yuan Y, Shen J, Lin S (2003) Synthesis and characterization of chitosan grafted poly (N, N-dimethyl-N-methacryloxyethyl-N-(3-sulfopropyl) ammonium) initiated by ceric (IV) ion. Eur Polym J 39(4):847–850CrossRefGoogle Scholar
  187. Zhang HL, Wu SH, Tao Y, Zang LQ, Su ZQ (2010) Preparation and characterization of water-soluble chitosan nanoparticles as protein delivery system. J Nanomater 2010:1Google Scholar
  188. Zhang L, Yang S, Han T, Zhong L, Ma C, Zhou Y, Han X (2012) Improvement of Ag (I) adsorption onto chitosan/triethanolamine composite sorbent by an ion-imprinted technology. Appl Surf Sci 263:696–703CrossRefGoogle Scholar
  189. Zhang YL, Zhang J, Dai CM, Zhou XF, Liu SG (2013) Sorption of carbamazepine from water by magnetic molecularly imprinted polymers based on chitosan-Fe3O4. Carbohydr Polym 97(2):809–816PubMedCrossRefPubMedCentralGoogle Scholar
  190. Zhou L, Shang C, Liu Z, Huang G, Adesina AA (2012) Selective adsorption of uranium (VI) from aqueous solutions using the ion-imprinted magnetic chitosan resins. J Colloid Interface Sci 366(1):165–172PubMedCrossRefPubMedCentralGoogle Scholar
  191. Zhu HY, Jiang R, Xiao L (2010) Adsorption of an anionic azo dye by chitosan/kaolin/γ-Fe2O3 composites. Appl Clay Sci 48(3):522–526CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of ChemistryVisvesvaraya National Institute of Technology (VNIT)NagpurIndia
  2. 2.Department of Electronics and Communication EngineeringVNITNagpurIndia

Personalised recommendations