Studies on the Evaluation of Water Footprints at Various Regional Scales

  • Meng XuEmail author
  • Chunhui Li


In this chapter, major studies on sustainable water resources management based on the virtual water or water footprint assessments were caterorized in accordance with multiple regional scales: global, national, provincial/city and river basin scales. Their relevant studies were listed in each regional scales with their major contributions in each focuses.


WF evaluation Top-down approach Input-Output analysis Multiregional scale 


  1. 1.
    Perry, C. (2014). Water footprints: Path to enlightenment, or false trail? Agricultural Water Management, 134, 119–125.CrossRefGoogle Scholar
  2. 2.
    Yan, Y., Jia, J., Zhou, K., & Wu, G. (2013). Study of regional water footprint of industrial sectors: The case of Chaoyang City, Liaoning Province, China. International Journal of Sustainable Development and World Ecology, 20, 542–548.CrossRefGoogle Scholar
  3. 3.
    Gerbens-Leenes, P. W., Hoekstra, A. Y., & van der Meer, T. (2009). The water footprint of energy from biomass: A quantitative assessment and consequences of an increasing share of bio-energy in energy supply. Ecological Economics, 68, 1052–1060.CrossRefGoogle Scholar
  4. 4.
    Shi, J., Liu, J., & Pinter, L. (2014). Recent evolution of China’s virtual water trade: Analysis of selected crops and considerations for policy. Hydrology and Earth System Sciences, 18, 1349–1357.CrossRefGoogle Scholar
  5. 5.
    Hoekstra, A. Y., & Hung, P. Q. (2005). Globalisation of water resources: International virtual water flows in relation to crop trade. Global Environmental Change Human and Policy Dimensions, 15, 45–56.CrossRefGoogle Scholar
  6. 6.
    Hoekstra, A. Y., Chapagain, A. K., & van Oel, P. R. (2017). Advancing water footprint assessment research: Challenges in monitoring progress towards sustainable development goal 6. Water, 9, 438.CrossRefGoogle Scholar
  7. 7.
    O’Bannon, C., Carr, J., Seekell, D. A., & D’Odorico, P. (2014). Globalization of agricultural pollution due to international trade. Hydrology and Earth System Sciences, 18, 503–510.CrossRefGoogle Scholar
  8. 8.
    Lamastra, L., Suciu, N. A., Novelli, E., & Trevisan, M. (2014). A new approach to assessing the water footprint of wine: An Italian case study. The Science of the Total Environment, 490, 748–756.CrossRefGoogle Scholar
  9. 9.
    Haro, M. E., Navarro, I., Thompson, R., & Jimenez, B. (2014). Estimation of the water footprint of sugarcane in Mexico: Is ethanol production an environmentally feasible fuel option? Journal of Water and Climate Change, 5, 70–80.CrossRefGoogle Scholar
  10. 10.
    Zonderland-Thomassen, M. A., Lieffering, M., & Ledgard, S. F. (2014). Water footprint of beef cattle and sheep produced in New Zealand: Water scarcity and eutrophication impacts. Journal of Cleaner Production, 73, 253–262.CrossRefGoogle Scholar
  11. 11.
    Mekonnen, M. M., & Hoekstra, A. Y. (2014). Water conservation through trade: The case of Kenya. Water International, 39, 451–468.CrossRefGoogle Scholar
  12. 12.
    Winter, J. A., Allamano, P., & Claps, P. (2014). Virtuous and vicious virtual water trade with application to Italy. PLoS One, 9, e93084.CrossRefGoogle Scholar
  13. 13.
    Feng, K., Hubacek, K., Pfister, S., Yu, Y., & Sun, L. (2014). Virtual scarce water in China. Environmental Science & Technology, 48, 7704–7713.CrossRefGoogle Scholar
  14. 14.
    Cazcarro, I., Hoekstra, A. Y., & Choliz, J. S. (2014). The water footprint of tourism in Spain. Tourism Management, 40, 90–101.CrossRefGoogle Scholar
  15. 15.
    El-Sadek, A. (2010). Virtual water trade as a solution for water scarcity in Egypt. Water Resources Management, 24, 2437–2448.CrossRefGoogle Scholar
  16. 16.
    Zhang, Z. Y., Yang, H., & Shi, M. J. (2011). Analyses of water footprint of Beijing in an interregional input-output framework. Ecological Economics, 70, 2494–2502.CrossRefGoogle Scholar
  17. 17.
    Mubako, S., Lahiri, S., & Lant, C. (2013). Input-output analysis of virtual water transfers: Case study of California and Illinois. Ecological Economics, 93, 230–238.CrossRefGoogle Scholar
  18. 18.
    Mekonnen, M. M., Hoekstra, A. Y., & Becht, R. (2012). Mitigating the water footprint of export cut flowers from the Lake Naivasha Basin, Kenya. Water Resources Management, 26, 3725–3742.CrossRefGoogle Scholar
  19. 19.
    Nana, E., Corbari, C., & Bocchiola, D. (2014). A model for crop yield and water footprint assessment: Study of maize in the Po valley. Agricultural Systems, 127, 139–149.CrossRefGoogle Scholar
  20. 20.
    Pena, C. A., & Huijbregts, M. A. J. (2014). The blue water footprint of primary copper production in northern Chile. Journal of Industrial Ecology, 18, 49–58.CrossRefGoogle Scholar
  21. 21.
    Perez-Blanco, C. D., & Thaler, T. (2014). An input-output assessment of water productivity in the castile and Leon region (Spain). Water, 6, 929–944.CrossRefGoogle Scholar
  22. 22.
    Zoumides, C., Bruggeman, A., Hadjikakou, M., & Zachariadis, T. (2014). Policy-relevant indicators for semi-arid nations: The water footprint of crop production and supply utilization of Cyprus. Ecological Indicators, 43, 205–214.CrossRefGoogle Scholar
  23. 23.
    Ma, Z., & Zhang, J. L. (2008). Analysis on virtual water in Zhangye City using regional input-output model. Statistical Research, 5, 65–70 (in Chinese).Google Scholar
  24. 24.
    Zhao, X., Yang, H., Yang, Z. F., Chen, B., & Qin, Y. (2010). Applying the input-output method to account for water footprint and virtual water trade in the Haihe River basin in China. Environmental Science & Technology, 44, 9150–9156.CrossRefGoogle Scholar
  25. 25.
    Cao, Y. Q., Jiang, L., Zhang, W. N., & Liu, L. (2010). Case study of virtual water for agricultural products in Beijing-Tianjin-Hebei region of Haihe River basin. Journal of Economics of Water Resources, 5, 11–14 (in Chinese).Google Scholar
  26. 26.
    Li, J. F., & Shu, X. L. (2012). Subdividing virtual water of farm produce in Shiyang River basin. Journal of Irrigation and Drainage, 31, 113–116.Google Scholar
  27. 27.
    Zhuo, L., Mekonnen, M. M., Hoekstra, A. Y., & Wada, Y. (2016). Inter- and intra-annual variation of water footprint of crops and blue water scarcity in the Yellow River basin (1961-2009). Advances in Water Resources, 87, 29–41.CrossRefGoogle Scholar
  28. 28.
    Zeng, Z., Liu, J., Koeneman, P. H., Zarate, E., & Hoekstra, A. Y. (2012). Assessing water footprint at river basin level: A case study for the Heihe River basin in Northwest China. Hydrology and Earth System Sciences, 16, 2771–2781.CrossRefGoogle Scholar
  29. 29.
    Montesinos, P., Camacho, E., Campos, B., & Rodriguez-Diaz, J. A. (2011). Analysis of virtual irrigation water. Application to water resources management in a Mediterranean River basin. Water Resources Management, 25, 1635–1651.CrossRefGoogle Scholar
  30. 30.
    Fang, S. F., Pei, H. A., Liu, Z. H., Beven, K., & Wei, Z. C. (2010). Water resources assessment and regional virtual water potential in the Turpan Basin, China. Water Resources Management, 24, 3321–3332.CrossRefGoogle Scholar
  31. 31.
    Aldaya, M. M., Allan, J. A., & Hoekstra, A. Y. (2010). Strategic importance of green water in international crop trade. Ecological Economics, 69, 887–894.CrossRefGoogle Scholar
  32. 32.
    Vanham, D., & Bidoglio, G. (2014). The water footprint of agricultural products in European river basins. Environmental Research Letters, 9, 1–11.CrossRefGoogle Scholar
  33. 33.
    Mao, X. F., & Yang, Z. F. (2012). Ecological network analysis for virtual water trade system: A case study for the Baiyangdian Basin in Northern China. Ecological Informatics, 10, 17–24.CrossRefGoogle Scholar
  34. 34.
    Ma, J., Hoekstra, A. Y., Wang, H., Chapagain, A. K., & Wang, D. (2006). Virtual versus real water transfers within China. Philosophical Transactions of the Royal Society B Biological Sciences, 361, 835–842.CrossRefGoogle Scholar
  35. 35.
    Antonelli, M., Roson, R., & Sartori, M. (2012). Systemic input-output computation of green and blue virtual water ‘Flows’ with an illustration for the Mediterranean region. Water Resources Management, 26, 4133–4146.CrossRefGoogle Scholar
  36. 36.
    Zeitoun, M., Allan, J. A., & Mohieldeen, Y. (2010). Virtual water ‘flows’ of the Nile Basin, 1998-2004: A first approximation and implications for water security. Global Environmental Change-Human and Policy Dimensions, 20, 229–242.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.School of Public AdministrationZhejiang University of Finance and EconomicsHangzhouChina
  2. 2.School of EnvironmentBeijing Normal UniversityBeijingChina

Personalised recommendations