Advertisement

Studies on the Evaluation of Water Footprints at Various Regional Scales

  • Meng XuEmail author
  • Chunhui Li
Chapter

Abstract

In this chapter, major studies on sustainable water resources management based on the virtual water or water footprint assessments were caterorized in accordance with multiple regional scales: global, national, provincial/city and river basin scales. Their relevant studies were listed in each regional scales with their major contributions in each focuses.

Keywords

WF evaluation Top-down approach Input-Output analysis Multiregional scale 

References

  1. 1.
    Perry, C. (2014). Water footprints: Path to enlightenment, or false trail? Agricultural Water Management, 134, 119–125.CrossRefGoogle Scholar
  2. 2.
    Yan, Y., Jia, J., Zhou, K., & Wu, G. (2013). Study of regional water footprint of industrial sectors: The case of Chaoyang City, Liaoning Province, China. International Journal of Sustainable Development and World Ecology, 20, 542–548.CrossRefGoogle Scholar
  3. 3.
    Gerbens-Leenes, P. W., Hoekstra, A. Y., & van der Meer, T. (2009). The water footprint of energy from biomass: A quantitative assessment and consequences of an increasing share of bio-energy in energy supply. Ecological Economics, 68, 1052–1060.CrossRefGoogle Scholar
  4. 4.
    Shi, J., Liu, J., & Pinter, L. (2014). Recent evolution of China’s virtual water trade: Analysis of selected crops and considerations for policy. Hydrology and Earth System Sciences, 18, 1349–1357.CrossRefGoogle Scholar
  5. 5.
    Hoekstra, A. Y., & Hung, P. Q. (2005). Globalisation of water resources: International virtual water flows in relation to crop trade. Global Environmental Change Human and Policy Dimensions, 15, 45–56.CrossRefGoogle Scholar
  6. 6.
    Hoekstra, A. Y., Chapagain, A. K., & van Oel, P. R. (2017). Advancing water footprint assessment research: Challenges in monitoring progress towards sustainable development goal 6. Water, 9, 438.CrossRefGoogle Scholar
  7. 7.
    O’Bannon, C., Carr, J., Seekell, D. A., & D’Odorico, P. (2014). Globalization of agricultural pollution due to international trade. Hydrology and Earth System Sciences, 18, 503–510.CrossRefGoogle Scholar
  8. 8.
    Lamastra, L., Suciu, N. A., Novelli, E., & Trevisan, M. (2014). A new approach to assessing the water footprint of wine: An Italian case study. The Science of the Total Environment, 490, 748–756.CrossRefGoogle Scholar
  9. 9.
    Haro, M. E., Navarro, I., Thompson, R., & Jimenez, B. (2014). Estimation of the water footprint of sugarcane in Mexico: Is ethanol production an environmentally feasible fuel option? Journal of Water and Climate Change, 5, 70–80.CrossRefGoogle Scholar
  10. 10.
    Zonderland-Thomassen, M. A., Lieffering, M., & Ledgard, S. F. (2014). Water footprint of beef cattle and sheep produced in New Zealand: Water scarcity and eutrophication impacts. Journal of Cleaner Production, 73, 253–262.CrossRefGoogle Scholar
  11. 11.
    Mekonnen, M. M., & Hoekstra, A. Y. (2014). Water conservation through trade: The case of Kenya. Water International, 39, 451–468.CrossRefGoogle Scholar
  12. 12.
    Winter, J. A., Allamano, P., & Claps, P. (2014). Virtuous and vicious virtual water trade with application to Italy. PLoS One, 9, e93084.CrossRefGoogle Scholar
  13. 13.
    Feng, K., Hubacek, K., Pfister, S., Yu, Y., & Sun, L. (2014). Virtual scarce water in China. Environmental Science & Technology, 48, 7704–7713.CrossRefGoogle Scholar
  14. 14.
    Cazcarro, I., Hoekstra, A. Y., & Choliz, J. S. (2014). The water footprint of tourism in Spain. Tourism Management, 40, 90–101.CrossRefGoogle Scholar
  15. 15.
    El-Sadek, A. (2010). Virtual water trade as a solution for water scarcity in Egypt. Water Resources Management, 24, 2437–2448.CrossRefGoogle Scholar
  16. 16.
    Zhang, Z. Y., Yang, H., & Shi, M. J. (2011). Analyses of water footprint of Beijing in an interregional input-output framework. Ecological Economics, 70, 2494–2502.CrossRefGoogle Scholar
  17. 17.
    Mubako, S., Lahiri, S., & Lant, C. (2013). Input-output analysis of virtual water transfers: Case study of California and Illinois. Ecological Economics, 93, 230–238.CrossRefGoogle Scholar
  18. 18.
    Mekonnen, M. M., Hoekstra, A. Y., & Becht, R. (2012). Mitigating the water footprint of export cut flowers from the Lake Naivasha Basin, Kenya. Water Resources Management, 26, 3725–3742.CrossRefGoogle Scholar
  19. 19.
    Nana, E., Corbari, C., & Bocchiola, D. (2014). A model for crop yield and water footprint assessment: Study of maize in the Po valley. Agricultural Systems, 127, 139–149.CrossRefGoogle Scholar
  20. 20.
    Pena, C. A., & Huijbregts, M. A. J. (2014). The blue water footprint of primary copper production in northern Chile. Journal of Industrial Ecology, 18, 49–58.CrossRefGoogle Scholar
  21. 21.
    Perez-Blanco, C. D., & Thaler, T. (2014). An input-output assessment of water productivity in the castile and Leon region (Spain). Water, 6, 929–944.CrossRefGoogle Scholar
  22. 22.
    Zoumides, C., Bruggeman, A., Hadjikakou, M., & Zachariadis, T. (2014). Policy-relevant indicators for semi-arid nations: The water footprint of crop production and supply utilization of Cyprus. Ecological Indicators, 43, 205–214.CrossRefGoogle Scholar
  23. 23.
    Ma, Z., & Zhang, J. L. (2008). Analysis on virtual water in Zhangye City using regional input-output model. Statistical Research, 5, 65–70 (in Chinese).Google Scholar
  24. 24.
    Zhao, X., Yang, H., Yang, Z. F., Chen, B., & Qin, Y. (2010). Applying the input-output method to account for water footprint and virtual water trade in the Haihe River basin in China. Environmental Science & Technology, 44, 9150–9156.CrossRefGoogle Scholar
  25. 25.
    Cao, Y. Q., Jiang, L., Zhang, W. N., & Liu, L. (2010). Case study of virtual water for agricultural products in Beijing-Tianjin-Hebei region of Haihe River basin. Journal of Economics of Water Resources, 5, 11–14 (in Chinese).Google Scholar
  26. 26.
    Li, J. F., & Shu, X. L. (2012). Subdividing virtual water of farm produce in Shiyang River basin. Journal of Irrigation and Drainage, 31, 113–116.Google Scholar
  27. 27.
    Zhuo, L., Mekonnen, M. M., Hoekstra, A. Y., & Wada, Y. (2016). Inter- and intra-annual variation of water footprint of crops and blue water scarcity in the Yellow River basin (1961-2009). Advances in Water Resources, 87, 29–41.CrossRefGoogle Scholar
  28. 28.
    Zeng, Z., Liu, J., Koeneman, P. H., Zarate, E., & Hoekstra, A. Y. (2012). Assessing water footprint at river basin level: A case study for the Heihe River basin in Northwest China. Hydrology and Earth System Sciences, 16, 2771–2781.CrossRefGoogle Scholar
  29. 29.
    Montesinos, P., Camacho, E., Campos, B., & Rodriguez-Diaz, J. A. (2011). Analysis of virtual irrigation water. Application to water resources management in a Mediterranean River basin. Water Resources Management, 25, 1635–1651.CrossRefGoogle Scholar
  30. 30.
    Fang, S. F., Pei, H. A., Liu, Z. H., Beven, K., & Wei, Z. C. (2010). Water resources assessment and regional virtual water potential in the Turpan Basin, China. Water Resources Management, 24, 3321–3332.CrossRefGoogle Scholar
  31. 31.
    Aldaya, M. M., Allan, J. A., & Hoekstra, A. Y. (2010). Strategic importance of green water in international crop trade. Ecological Economics, 69, 887–894.CrossRefGoogle Scholar
  32. 32.
    Vanham, D., & Bidoglio, G. (2014). The water footprint of agricultural products in European river basins. Environmental Research Letters, 9, 1–11.CrossRefGoogle Scholar
  33. 33.
    Mao, X. F., & Yang, Z. F. (2012). Ecological network analysis for virtual water trade system: A case study for the Baiyangdian Basin in Northern China. Ecological Informatics, 10, 17–24.CrossRefGoogle Scholar
  34. 34.
    Ma, J., Hoekstra, A. Y., Wang, H., Chapagain, A. K., & Wang, D. (2006). Virtual versus real water transfers within China. Philosophical Transactions of the Royal Society B Biological Sciences, 361, 835–842.CrossRefGoogle Scholar
  35. 35.
    Antonelli, M., Roson, R., & Sartori, M. (2012). Systemic input-output computation of green and blue virtual water ‘Flows’ with an illustration for the Mediterranean region. Water Resources Management, 26, 4133–4146.CrossRefGoogle Scholar
  36. 36.
    Zeitoun, M., Allan, J. A., & Mohieldeen, Y. (2010). Virtual water ‘flows’ of the Nile Basin, 1998-2004: A first approximation and implications for water security. Global Environmental Change-Human and Policy Dimensions, 20, 229–242.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.School of Public AdministrationZhejiang University of Finance and EconomicsHangzhouChina
  2. 2.School of EnvironmentBeijing Normal UniversityBeijingChina

Personalised recommendations