Skip to main content

Cerium Oxide-Based Nanozymes in Biology and Medicine

  • Conference paper
  • First Online:
Advances in Spectroscopy: Molecules to Materials

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 236))

Abstract

Biological enzymes are excellent biocatalysts because they display high specificity to their substrates and accelerate the rate of biochemical reactions to many folds. Despite these and several other advantages, the catalytic performances of natural enzymes are found to be compromised when exposed to heavy metals-based inhibitors and different conditions of their optimum temperature and pH. The high cost of synthesis, isolation, and purification are some of the typical constraints over their broad-spectrum utility. However, nanoparticle-based biological enzyme mimetic is currently growing exponentially with particular interest to the biological applications. Although there are several types of nanomaterials discovered for displaying various biological enzyme-like activities, this chapter comprehensively covers the cerium oxide nanoparticles (nanoceria)-based enzyme mimetic systems and related biological applications. Recently, nanoceria has been explored for possessing the superoxide dismutase, catalase, peroxidase, and oxidase enzyme-like activities. Nanoceria has reported to exhibit antioxidant (ability to inhibit oxidative stress) as well as prooxidant (ability to generate reactive oxygen species) activities. These enzyme mimetic activities can be tuned by modulating the synthesis process and surface modification of nanoceria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Raliya, T.S. Chadha, K. Haddad, P. Biswas, Curr. Pharm. Des. 22(17), 2481–2490 (2016)

    Article  Google Scholar 

  2. S. Andreescu, M. Ornatska, J.S. Erlichman, A. Estevez, J. Leiter, Fine Particles in Medicine and Pharmacy (Springer, 2012), pp. 57–100

    Google Scholar 

  3. C. Cha, S.R. Shin, N. Annabi, M.R. Dokmeci, A. Khademhosseini, ACS Nano 7(4), 2891–2897 (2013)

    Article  Google Scholar 

  4. A.P. Ramos, M.A.E. Cruz, C.B. Tovani, P. Ciancaglini, Biophys. Rev. 9(2), 79–89 (2017)

    Article  Google Scholar 

  5. S. Singh, Biointerphases 11(4), 04B202 (2016)

    Article  Google Scholar 

  6. C. Korsvik, S. Patil, S. Seal, W.T. Self, Chem. Commun. 10, 1056–1058 (2007)

    Article  Google Scholar 

  7. E.G. Heckert, A.S. Karakoti, S. Seal, W.T. Self, Biomaterials 29(18), 2705–2709 (2008)

    Article  Google Scholar 

  8. G. Wang, J. Zhang, X. He, Z. Zhang, Y. Zhao, Chin. J. Chem. Phys. 35(6), 791–800 (2017)

    Article  Google Scholar 

  9. M. Nolan, S. Grigoleit, D.C. Sayle, S.C. Parker, G.W. Watson, ‎Surf. Sci. 576(1–3), 217–229 (2005)

    Google Scholar 

  10. H. Younus, Int. J. Med. Sci. 12(3), 88 (2018)

    Google Scholar 

  11. A. Karakoti, S. Singh, J.M. Dowding, S. Seal, W.T. Self, Chem. Soc. Rev. 39(11), 4422–4432 (2010)

    Article  Google Scholar 

  12. J.M. Lu, P.H. Lin, Q. Yao, C. Chen, J. Cell Mol. Med. 14(4), 840–860 (2010)

    Article  Google Scholar 

  13. J. Perry, D. Shin, E. Getzoff, J. Tainer, Biochim. Biophys. Acta Proteins Proteom. 1804(2), 245–262 (2010)

    Article  Google Scholar 

  14. S. Deshpande, S. Patil, S.V. Kuchibhatla, S. Seal, Appl. Phys. Lett. 87(13), 133113 (2005)

    Article  ADS  Google Scholar 

  15. Y. Li, X. He, J.J. Yin, Y. Ma, P. Zhang, J. Li, Y. Ding, J. Zhang, Y. Zhao, Z. Chai, Angew. Chem. 127(6), 1852–1855 (2015)

    Article  Google Scholar 

  16. A.S. Karakoti, S. Singh, A. Kumar, M. Malinska, S.V. Kuchibhatla, K. Wozniak, W.T. Self, S. Seal, J. Am. Chem. Soc. 131(40), 14144–14145 (2009)

    Article  Google Scholar 

  17. V. Singh, S. Singh, S. Das, A. Kumar, W.T. Self, S. Seal, Nanoscale 4(8), 2597–2605 (2012)

    Article  ADS  Google Scholar 

  18. S. Singh, T. Dosani, A.S. Karakoti, A. Kumar, S. Seal, W.T. Self, Biomaterials 32(28), 6745–6753 (2011)

    Article  Google Scholar 

  19. P. Chelikani, I. Fita, P.C. Loewen, Cell. Mol. Life Sci. 61(2), 192–208 (2004)

    Article  Google Scholar 

  20. C.D. Putnam, A.S. Arvai, Y. Bourne, J.A. Tainer, J. Mol. Biol. 296(1), 295–309 (2000)

    Article  Google Scholar 

  21. G.F. Gaetani, A. Ferraris, M. Rolfo, R. Mangerini, S. Arena, H. Kirkman, Blood 87(4), 1595–1599 (1996)

    Article  Google Scholar 

  22. J.A. Imlay, Annu. Rev. Microbiol. 57(1), 395–418 (2003)

    Article  Google Scholar 

  23. P. Nicholls, I. Fita, P.C. Loewen, Adv. Inorg. Chem. 51, 51–106 (2000)

    Article  Google Scholar 

  24. M. Alfonso-Prieto, X. Biarnés, P. Vidossich, C. Rovira, J. Am. Chem. Soc. 131(33), 11751–11761 (2009)

    Article  Google Scholar 

  25. T. Pirmohamed, J.M. Dowding, S. Singh, B. Wasserman, E. Heckert, A.S. Karakoti, J.E. King, S. Seal, W.T. Self, Chem. Comm. 46(16), 2736–2738 (2010)

    Article  Google Scholar 

  26. I. Celardo, M. De Nicola, C. Mandoli, J.Z. Pedersen, E. Traversa, L. Ghibelli, ACS Nano 5(6), 4537–4549 (2011)

    Article  Google Scholar 

  27. R. Singh, S. Singh, Colloids Surf. B 132, 78–84 (2015)

    Article  Google Scholar 

  28. R. Singh, S. Singh, Colloids Surf. B 175, 625–635 (2019)

    Article  Google Scholar 

  29. W.J. Streit, C.A. Kincaid-Colton, Sci. Am. 273(5), 54–61 (1995)

    Article  ADS  Google Scholar 

  30. B. Lipinski, Oxid. Med. Cell. Longev. 2011, 809696 (2011)

    Article  Google Scholar 

  31. M. Iketani, I. Ohsawa, Curr. Neuropharmacol. 15(2), 324–331 (2017)

    Article  Google Scholar 

  32. Y. Xue, Q. Luan, D. Yang, X. Yao, K. Zhou, J. Phys. Chem. C 115(11), 4433–4438 (2011)

    Google Scholar 

  33. A.B. Knott, E. Bossy-Wetzel, Antioxid. Redox Signal. 11(3), 541–553 (2009)

    Article  Google Scholar 

  34. B. Freeman, Chest 105(3), 79S–84S (1994)

    Article  Google Scholar 

  35. J.M. Dowding, T. Dosani, A. Kumar, S. Seal, W.T. Self, Chem. Comm. 48(40), 4896–4898 (2012)

    Article  Google Scholar 

  36. J.M. Dowding, S. Das, A. Kumar, T. Dosani, R. McCormack, A. Gupta, T.X. Sayle, D.C. Sayle, L. von Kalm, S. Seal, ACS Nano 7(6), 4855–4868 (2013)

    Article  Google Scholar 

  37. H. Raper, Physiol. Rev. 8(2), 245–282 (1928)

    Article  Google Scholar 

  38. A. Asati, S. Santra, C. Kaittanis, S. Nath, J.M. Perez, Angew. Chem. 121(13), 2344–2348 (2009)

    Article  Google Scholar 

  39. D. Yang, M. Fa, L. Gao, R. Zhao, Y. Luo, X. Yao, Nanotechnology 29(38), 385101 (2018)

    Article  ADS  Google Scholar 

  40. H. Cheng, S. Lin, F. Muhammad, Y.W. Lin, H. Wei, ACS Sen. 1(11), 1336–1343 (2016)

    Article  Google Scholar 

  41. E. van Bloois, D.E.T. Pazmiño, R.T. Winter, M.W. Fraaije, Appl. Microbiol. Biotechnol. 86(5), 1419–1430 (2010)

    Article  Google Scholar 

  42. X. Jiao, H. Song, H. Zhao, W. Bai, L. Zhang, Y. Lv, Anal. Methods 4(10), 3261–3267 (2012)

    Article  Google Scholar 

  43. A. Asati, C. Kaittanis, S. Santra, J.M. Perez, Anal. Chem. 83(7), 2547–2553 (2011)

    Article  Google Scholar 

  44. F. Charbgoo, M.B. Ahmad, M. Darroudi, Int. J. Nanomedicine 12, 1401 (2017)

    Article  Google Scholar 

  45. G. Vinothkumar, A.I. Lalitha, K. Suresh Babu, Inorg. Chem. 58(1), 349–358 (2018)

    Google Scholar 

  46. H. Kay, Plasma phosphatase II. J. Biol. Chem. 89(1), 249–266 (1930)

    Google Scholar 

  47. M.H. Kuchma, C.B. Komanski, J. Colon, A. Teblum, A.E. Masunov, B. Alvarado, S. Babu, S. Seal, J. Summy, C.H. Baker, Nanomed-Nanotechnol 6(6), 738–744 (2010)

    Article  Google Scholar 

  48. A. Dhall, A. Burns, J. Dowding, S. Das, S. Seal, W. Self, Environ. Sci. Nano 4(8), 1742–1749 (2017)

    Google Scholar 

  49. A.N. Bigley, F.M. Raushel, Biochim. Biophys. Acta Bioenerg. 1834(1), 443–453 (2013)

    Article  Google Scholar 

  50. A.A. Vernekar, T. Das, G. Mugesh, Angew. Chem. 55(4), 1412–1416 (2016)

    Article  Google Scholar 

  51. K. Reed, A. Cormack, A. Kulkarni, M. Mayton, D. Sayle, F. Klaessig, B. Stadler, Environ. Sci. Nano 1(5), 390–405 (2014)

    Google Scholar 

  52. R.A. Yokel, S. Hussain, S. Garantziotis, P. Demokritou, V. Castranova, F.R. Cassee, Environ. Sci. Nano 1(5), 406–428 (2014)

    Google Scholar 

  53. L. De Marzi, A. Monaco, J. De Lapuente, D. Ramos, M. Borras, M. Di Gioacchino, S. Santucci, A. Poma, Int. J. Mol. Sci. 14(2), 3065–3077 (2013)

    Article  Google Scholar 

  54. S. Hussain, F. Al-Nsour, A.B. Rice, J. Marshburn, B. Yingling, Z. Ji, J.I. Zink, N.J. Walker, S. Garantziotis, ACS Nano 6(7), 5820–5829 (2012)

    Article  Google Scholar 

  55. S. Mittal, A.K. Pandey, Biomed. Res. Int. 2014 (2014)

    Google Scholar 

  56. Z. Ji, X. Wang, H. Zhang, S. Lin, H. Meng, B. Sun, S. George, T. Xia, A.E. Nel, J.I. Zink, ACS Nano 6(6), 5366–5380 (2012)

    Article  Google Scholar 

  57. L. Peng, X. He, P. Zhang, J. Zhang, Y. Li, J. Zhang, Y. Ma, Y. Ding, Z. Wu, Z. Chai, Int. J. Mol. Sci. 15(4), 6072–6085 (2014)

    Article  Google Scholar 

  58. A.S. Karakoti, P. Munusamy, K. Hostetler, V. Kodali, S. Kuchibhatla, G. Orr, J.G. Pounds, J.G. Teeguarden, B.D. Thrall, D.R. Baer, Surf. Interface Anal. 44(8), 882–889 (2012)

    Article  Google Scholar 

  59. A.S. Chernov, D.A. Reshetnikov, A.L. Popov, N.R. Popova, I.V. Savintseva, V.K. Ivanov, Nano Hybrids Compos. 13 (2017)

    Google Scholar 

  60. X. Cai, S. Seal, J.F. McGinnis, Mol. Vis. 22, 1176 (2016)

    Google Scholar 

  61. B.K. Gaiser, T.F. Fernandes, M.A. Jepson, J.R. Lead, C.R. Tyler, M. Baalousha, A. Biswas, G.J. Britton, P.A. Cole, B.D. Johnston, Environ. Toxicol. Chem. 31(1), 144–154 (2012)

    Article  Google Scholar 

  62. E.G. Heckert, S. Seal, W.T. Self, Environ. Sci. Technol. 42(13), 5014–5019 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The financial assistance for the Centre for Nanotechnology Research and Applications (CENTRA) by The Gujarat Institute for Chemical Technology (GICT) is thankfully acknowledged. S. Singh would like to acknowledge the financial support from Ahmedabad University as Seed Grant (AU/SG/SAS/DBLS/17-18/03) and the Department of Science and Technology, Science and Engineering Research Board (SERB) (Grant No.: ILS/SERB/2015-16/01) to Sanjay Singh under the scheme of Start-Up Research Grant (Young Scientists) in Life Sciences. N.Yadav thank Council of Scientific and Industrial Research (CSIR) for providing Junior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Singh .

Editor information

Editors and Affiliations

Ethics declarations

Authors declare that there is no conflict of interest with the work reported in this chapter.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yadav, N., Patel, V., Singh, S. (2019). Cerium Oxide-Based Nanozymes in Biology and Medicine. In: Singh, D., Das, S., Materny, A. (eds) Advances in Spectroscopy: Molecules to Materials. Springer Proceedings in Physics, vol 236. Springer, Singapore. https://doi.org/10.1007/978-981-15-0202-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0202-6_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0201-9

  • Online ISBN: 978-981-15-0202-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics