Comprehensive Study on Diabetic Retinopathy

  • R. S. RajkumarEmail author
  • A. Grace Selvarani
  • S. Ranjithkumar
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1057)


Diabetes is a chronic disease that is found common nowadays among the working age groups. Diabetes affects various organs of human. Diabetic retinopathy (DR) is a disease which affecting the human eye leading to vision impairment caused by diabetes mellitus. No medication is still available to cure DR but can be controlled. Hence, there exists lot of literatures in detecting the DR automatically. Comprehensive study on the various DR detection algorithms and their performance metrics has been discussed in this paper.


Diabetic retinopathy Blood vessel segmentation Microaneurysms Exudates Lesions 


  1. 1.
    Abràmoff, M.D., Lou, Y., Erginay, A., Clarida, W., Amelon, R., Folk, J.C., Niemeijer, M.: Improved automated detection of DR on a publicly available dataset through integration of deep learning. Invest Ophthalmol Vis Sci 57(13), 5200–5206 (2016)CrossRefGoogle Scholar
  2. 2.
    Liskowski, P., Krawiec, K.: Segmenting retinal blood vessels with deep neural networks. IEEE Trans. Med. Imaging 35(11), 2369–2380 (2016)CrossRefGoogle Scholar
  3. 3.
    Early Treatment DR Study Research Group: Grading DR from stereoscopic color fundus photographs—an extension of the modified Airlie house classification: ETDRS report number 10. Ophthalmol. 98(5), 786–806 (1991)CrossRefGoogle Scholar
  4. 4.
  5. 5.
    Mateen, M., Wen,, J., Nasrullah, Song, S., Huang, Z.: Fundus image classification using VGG-19 architecture with PCA and SVD (2018). Scholar
  6. 6.
    Jan, O., Kolar, R., Budai, A., Angelopoulou, E.: Retinal vessel segmentation by improved matched filtering: evaluation on a new high-resolution fundus image database. IET Image Process. 7(4), 373–383 (2013)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Gulshan, V., Peng, L., Coram, M., Stumpe, M.C., Wu, D., Narayanaswamy, A., Venugopalan, S., Widner, K., Madams, T., Cuadros, J., Kim, R., Raman, R., Nelson, P.C., Mega, J.L., Webster, D.R.: Development and validation of a deep learning algorithm for detection of DR in retinal fundus photographs. JAMA 316(22), 2402–2410 (2016)CrossRefGoogle Scholar
  8. 8.
    Bajestani, N.S., Kamyad, A.V., Esfahani, E.N., Zare, A.: Prediction of retinopathy in diabetic patients using type-2 fuzzy regression model. Eur J Oper Res 264, 859–869 (2017)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Kande, G.B., Subbaiah, P.V., Savithri, T.S.: Unsupervised fuzzy based vessel segmentation in pathological digital fundus images. J. Med. Syst. 34(5), 849–858 (2010)CrossRefGoogle Scholar
  10. 10.
    Cinsdikici, M.G., Aydın, D.: Detection of blood vessels in ophthalmoscope images using MF/ANT (matched filter/ant colony) algorithm. Comput. Methods Programs Biomed. 96(2), 85–95 (2009)CrossRefGoogle Scholar
  11. 11.
    Sinthanayothin, C., Boyce, J.F., Cook, H.L., Williamson, T.H.: Automated localisation of the optic disc, fovea and retinal blood vessels from digital colour fundus images. Br. J. Ophthalmol. 83(8), 902–910 (1999)CrossRefGoogle Scholar
  12. 12.
    Ricci, E., Perfetti, R.: Retinal blood vessel segmentation using line operators and support vector classification. IEEE Trans. Med. Imaging 26(10), 1357–1365 (2007)CrossRefGoogle Scholar
  13. 13.
    Niemeijer, M., van Ginneken, B., Russell, S.R., Suttorp-Schulten, M.S.A., Abràmoff, M.: Automated detection and differentiation of drusen, exudates and cotton–wool spots in digital color fundus photographs for DR Diagnosis. In: Proceedings of Image Visual Computing New Zealand, vol. 48, pp. 2260–2267 (2007)Google Scholar
  14. 14.
    Garcia, M., Sanchez, C.I., Lopez, M.I., Abasolo, D., Hornero, R.: Neural network based detection of hard exudates in retinal images. Comput. Methods Programs Biomed. 93, 9–19 (2008)CrossRefGoogle Scholar
  15. 15.
    Islam, M., Dinh, A.V., Wahid, K.A.: Automated DR detection using sack of words approach. J. Biomed. Sci. Eng. 10, 86–96 (2017)CrossRefGoogle Scholar
  16. 16.
    Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training of deep networks. In: Advances in Neural Information Processing Systems, pp. 153–160 (2007)Google Scholar
  17. 17.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: Image net classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)Google Scholar
  18. 18.
    LeCun, Y., Bengio, Y.: Convolutional networks for images, speech and time series. In: The Handbook of Brain Theory and Neural Networks, vol. 3361(10), 1995(1995)Google Scholar
  19. 19.
    Pratta, H., Coenen, F., Broadbent, D.M., Harding, S.P., Zhenga, Y.: Proc. Comput. Sci. 90, 200–205 (2016)CrossRefGoogle Scholar
  20. 20.
    Osareh, A., Mirmehdi, M., Thomas, B., Markham, R: Classification and localisation of diabetic-related eye disease. In: European Conference on Computer Vision. Springer, Berlin, Heidelberg, pp. 502–516 (2002)CrossRefGoogle Scholar
  21. 21.
    Wang, Z., Yang, J.: DR Detection via Deep Convolutional Networks for Discriminative Localization and Visual Explanation (2017)Google Scholar
  22. 22.
    Roychowdhury, S., Koozekanani, D.D., Parhi, K.K.: Dream: DR analysis using machine learning. IEEE J. Biomed. Health Inf. 18(5), 1717–1728 (2014)CrossRefGoogle Scholar
  23. 23.
    Shen, L., Bai, L.: Abstract AdaBoost Gabor feature selection for classification. In: Proceedings of Image Visual Computing New Zealand, pp. 77–83(2004)Google Scholar
  24. 24.
    Labhade, J.D., Chouthmol, L.K., Deshmukh, S.: DR detection using soft computing techniques. In: IEEE: International Conference on Automatic Control and Dynamic Optimization Techniques (ICACDOT) (2016).
  25. 25.
    Rubini, S.S., Kunthavai, A.: DR detection based on eigen values of the Hessian matrix. Proc. Comput. Sci. 47, 311–318 (2015)CrossRefGoogle Scholar
  26. 26.
    Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Medical Image Computing and Computer–Assisted Intervention (MICCAI), vol. 1496. Lecture Notes in Computer Science, pp. 130–137 (1998). Online:
  27. 27.
    Yu, Y., Zhao, H.: Enhancement filter for computer-aided detection of pulmonary nodules on thoracic CT images. In: Proceedings of 6th International Conference on Intelligent Systems Design and Applications, pp. 1200–1205 (2006)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • R. S. Rajkumar
    • 1
    Email author
  • A. Grace Selvarani
    • 1
  • S. Ranjithkumar
    • 1
  1. 1.Sri Ramakrishna Engineering CollegeCoimbatoreIndia

Personalised recommendations