Advertisement

Microalgae Nutraceuticals: The Role of Lutein in Human Health

  • M. Vila Spinola
  • E. Díaz-Santos
Chapter
  • 337 Downloads

Abstract

Lutein is a carotenoid compound belonging to the xanthophyll family whose more attractive bioactivity is its antioxidant capacity. This carotenoid is mainly distributed in vegetables and fruits and is present within the macula lutea as a pigment responsible of the yellow hue. Lutein has been widely found in the pigmentation of animal tissues as well as considered as an important nutraceutical and used for the coloration of foods, drugs, and cosmetics. Recently, lutein has been found to be effective in the prevention of age-related macular degeneration, cataracts, cardiovascular diseases, and certain types of cancer, having attracted thus great attention in relation to human health. At this time, the main source for an industrial-scale production of lutein is marigold oleoresin although, each time more, continuous reports concerning lutein-producing microalgae pose the question if those microorganisms could become a feasible alternative. In fact, several microalgae strains, such as Scenedesmus almeriensis, Chlorella zofingiensis, or Muriellopsis sp., have higher lutein content than most marigold cultivars and have been shown to yield productivities hundreds of times higher than marigold crops on a per square meter basis, suggesting that, in the current state of the art, microalgae could compete with marigold or other lutein producers. The potential of the lutein as nutraceutical and its role in metabolic functions related to human health as well as its production from microalgae are reviewed in this chapter.

Keywords

Lutein Antioxidant Human health Macular degeneration Microalgae 

References

  1. Alam, M. A., & Wang, Z. (Eds.). (2019). Microalgae biotechnology for development of biofuel and wastewater treatment (pp. 1–655). New York, NY: Springer.Google Scholar
  2. An, G., & Cho, E. (2003). Preparation of the red yeast, Xanthophyllomyces dendrorhous, as feed additive with increased availability of astaxanthin. Biotechnology Letters, 25, 767–771.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Bermejo, E., Ruiz-Domínguez, M. C., Cuaresma, M., Vaquero, I., Ramos-Merchante, A., Vega, J. M., Vílchez, C., & Garbayo, I. (2018). Production of lutein, and polyunsaturated fatty acids by the acidophilic eukaryotic microalga Coccomyxa onubensis under abiotic stress by salt or ultraviolet light. Journal of Bioscience and Bioengineering, 125(6), 669–675.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Bosma, T. L., Dole, J. M., & Maness, N. O. (2003). Optimizing marigold (Tagetes erecta L.) petal and pigment yield crop science. Abstract. Crop Ecology, Management & Quality, 43(6), 2118–2124.Google Scholar
  5. Breithaupt, D. E., Bamedi, A., & Wirt, U. (2002a). Carotenol fatty acid esters: Easy substrates for digestive enzymes. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, 132, 721–728.CrossRefGoogle Scholar
  6. Breithaupt, D. E., Wirt, U., & Bamedi, A. (2002b). Differentiation between lutein monoester regioisomers and detection of lutein diesters from marigold flowers (Tagetes erecta L.) and several fruits by liquid chromatography-mass spectrometry. Journal of Agricultural and Food Chemistry, 50, 66–70.PubMedCrossRefPubMedCentralGoogle Scholar
  7. Buscemi, S., Corleo, D., Di Pace, F., Petroni, M. L., Satriano, A., & Marchesini, G. (2018). The effect of lutein on eye and extra-eye health. Nutrients, 10(9), 1321.  https://doi.org/10.3390/nu10091321.CrossRefPubMedCentralGoogle Scholar
  8. Capa-Robles, W., Paniagua-Michel, J., & Soto, J. O. (2009). The biosynthesis and accumulation of beta-carotene in Dunaliella salina proceed via the glyceraldehyde 3-phosphate/pyruvate pathway. Natural Product Research, 23(11), 1021–1028.PubMedCrossRefPubMedCentralGoogle Scholar
  9. Casal, C., Cuaresma, M., Vega, J. M., & Vilchez, C. (2011). Enhanced productivity of a lutein enriched novel acidophile microalga grown on urea. Marine Drugs, 9(1), 29–42.CrossRefGoogle Scholar
  10. Cerón, C. M., Campos, I., Sánchez, J. F., Acién, F. G., Molina, E., & Fernández-Sevilla, J. M. (2008). Recovery of lutein from microalgae biomass: Development of a process for Scenedesmus almeriensis biomass. Journal of Agricultural and Food Chemistry, 56(24), 11761–11766.  https://doi.org/10.1021/jf8025875.CrossRefPubMedGoogle Scholar
  11. Chen, C. Y., Ho, S. H., Liu, C. C., & Chang, J. S. (2017). Enhancing lutein production with Chlorella sorokiniana Mb-1 by optimizing acetate and nitrate concentrations under mixotrophic growth. Journal of the Taiwan Institute of Chemical Engineers, 79(Suppl. C), 88–96.CrossRefGoogle Scholar
  12. Chen, J. H., Chen, C. Y., Hasunuma, T., Kondo, A., Chang, C. H., Ng, I. S., & Chang, J. S. (2019). Enhancing lutein production with mixotrophic cultivation of Chlorella sorokiniana MB-1-M12 using different bioprocess operation strategies. Bioresource Technology, 278, 17–25.PubMedCrossRefGoogle Scholar
  13. Chitchumroonchokchai, C., Schwartz, S. J., & Failla, M. L. (2004). Assessment of lutein bioavailability from meals and a supplement using simulated digestion and caco-2 human intestinal cells. Journal of Nutrition, 134, 2280–2286.PubMedCrossRefGoogle Scholar
  14. Chung, R. W. S., Leanderson, P., Lundberg, A. K., & Jonasson, L. (2017). Lutein exerts anti-inflammatory effects in patients with coronary artery disease. Atherosclerosis, 262, 87–93.  https://doi.org/10.1016/j.atherosclerosis.2017.05.008.CrossRefPubMedGoogle Scholar
  15. Cordero, B. F., Obraztsova, I., Couso, I., Leon, R., Vargas, M. A., & Rodriguez, H. (2011). Enhancement of lutein production in Chlorella sorokiniana (Chorophyta) by improvement of culture conditions and random mutagenesis. Marine Drugs, 9(9), 1607–1624.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Del Campo, J. A., Moreno, J., Rodriguez, H., Vargas, M. A., Rivas, J., & Guerrero, M. G. (2000). Carotenoid content of chlorophycean microalgae: Factors determining lutein accumulation in Muriellopsis sp. (Chlorophyta). Journal of Biotechnology, 76, 51–59.PubMedCrossRefGoogle Scholar
  17. Díaz-Santos, E. (2019). Towards the genetic manipulation of microalgae to improve the carbon dioxide fixation and the production of biofuels: Present status and future prospect. In M. Alam & Z. Wang (Eds.), Microalgae biotechnology for development of biofuel and wastewater treatment. Singapore: Springer.  https://doi.org/10.1007/978-981-13-2264-8_7.CrossRefGoogle Scholar
  18. Farrow, W. M., & Tabenkin, K. (1966). Process for the preparation of lutein. U.S. Patent No. 3,280,502.Google Scholar
  19. Fernandez, R. X. E., Shier, N. W., & Watkins, B. A. (2000). Effect of alkali saponification, enzymatic hydrolysis and storage time on the total carotenoid concentration of Costa Rica crude palm oil. Journal of Food Composition and Analysis, 13, 179–187.CrossRefGoogle Scholar
  20. Fernandez-Sevilla, J. M., Fernandez, F. G. A., & Grima, E. M. (2010). Biotechnological production of lutein and its applications. Applied Microbiology and Biotechnology, 86, 27–40.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Fernández-Sevilla, J. M., Acién Fernández, F. G., & Molina Grima, E. (2010). Biotechnological production of lutein and its applications. Applied Microbiology and Biotechnology, 86, 27–40.  https://doi.org/10.1007/s00253-009-2420-y.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Francisco, D. V., & Octavio, P. L. (1996). Correlation of HPLC and AOAC methods to assess the all-trans-lutein content in marigold flowers. Journal of the Science of Food and Agriculture, 72, 283–290.CrossRefGoogle Scholar
  23. Gao, C., Xiong, W., Zhang, Y., Yuan, W., & Wu, Q. (2008). Rapid quantitation of lipid in microalgae by time-domain nuclear magnetic resonance. Journal of Microbiological Methods, 75(3), 437–440.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Gong, M., Wang, Y., & Bassi, A. (2017). Process analysis and modelling of a single-step lutein extraction method for wet microalgae. Applied Microbiology and Biotechnology, 101, 80–89.  https://doi.org/10.1007/s00253-017-8496-x.CrossRefGoogle Scholar
  25. Gong, X., Smith, J. R., Swanson, H. M., & Rubin, L. P. (2018). Carotenoid lutein selectively inhibits breast cancer cell growth and potentiates the effect of chemotherapeutic agents through ROS-mediated mechanisms. Molecules, 23, 905.PubMedCentralCrossRefGoogle Scholar
  26. Granado, F., Olmedilla, B., Gil-Martinez, E., & Blanco, I. A. (2001). Fast, reliable and low-cost saponification protocol for analysis of carotenoids in vegetables. Journal of Food Composition and Analysis, 14, 479–489.CrossRefGoogle Scholar
  27. Granado, F., Olmedilla, B., & Blanco, I. (2002). Serum depletion and bioavailability of lutein in type I diabetic patients. European Journal of Nutrition, 41, 47–53.PubMedCrossRefGoogle Scholar
  28. Granado, F., Olmedilla, B., & Blanco, I. (2003). Nutritional and clinical relevance of lutein in human health. The British Journal of Nutrition, 90(3), 487–502.  https://doi.org/10.1079/BJN2003927.CrossRefPubMedGoogle Scholar
  29. Grether-Beck, S., Marini, A., Jaenicke, T., Stahl, W., & Krutmann, J. (2017). Molecular evidence that oral supplementation with lycopene or lutein protects human skin against ultraviolet radiation: Results from a double-blinded, placebo-controlled, crossover study. British Journal of Dermatology, 176, 1231–1240.  https://doi.org/10.1111/bjd.15080.CrossRefPubMedGoogle Scholar
  30. Hejazi, M. A., De Lamarliere, C., Rocha, J. M. S., Vermuë, M., Tramper, J., & Wijffels, R. H. (2002). Selective extraction of carotenoids from the microalga Dunaliella salina with retention of viability. Biotechnology and Bioengineering, 79, 29–36.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Ho, S. H., Chan, M. C., Liu, C. C., Chen, C. Y., Lee, W. L., Lee, D. J., & Chang, J. S. (2014). Enhancing lutein productivity of an indigenous microalga Scenedesmus obliquus FSP-3 using light-related strategies. Bioresource Technology, 152, 275–282.Google Scholar
  32. Huang, W., Lin, Y., He, M., Gong, Y., & Huang, J. (2018). Induced high-yield production of zeaxanthin, lutein, and β-carotene by a mutant of Chlorella zofingiensis. Journal of Agricultural and Food Chemistry, 66(4), 891–897.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Jian-Hao, L., Duu-Jong, L., & Jo-Shu, C. (2015). Lutein production from biomass: Marigold flowers versus microalgae. Bioresource Technology, 184, 421–428.CrossRefGoogle Scholar
  34. Khachik, F. (1999). Process for extraction and purification of lutein, zeaxanthin and rare carotenoids from marigold flowers and plants. Publication number: WO1999020587A1. U.S. Patent No. 7,173,145.Google Scholar
  35. Kimura, M., Rodriguez-Amaya, D. B., & Godoy, H. T. (1990). Assessment of the saponification step in the quantitative determination of carotenoids and provitamins A. Food Chemistry, 35, 187–195.CrossRefGoogle Scholar
  36. Koh, H.-H., Murray, I. J., Nolan, D., Carden, D., Feather, J., & Beatty, S. (2004). Plasma and macular responses to lutein supplement in subjects with and without age-related maculopathy: a pilot study. Experimental Eye Research, 79(1), 21–27.Google Scholar
  37. Koushan, K., Rusovici, R., Li, W., Ferguson, L. R., & Chalam, K. V. (2013). The role of lutein in eye-related disease. Nutrients, 5(5), 1823–1839.  https://doi.org/10.3390/nu5051823.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Kull, D. R., & Pfander, H. (1997). Isolation and structure elucidation of two (Z)-isomers of lutein from the petals of rape (Brassica napus). Journal of Agricultural and Food Chemistry, 45, 4201–4203.CrossRefGoogle Scholar
  39. Landrum, J. T., Bone, R. A., Joa, H., Kilburn, M. D., Moore, L. L., & Sprague, K. E. A. (1997). One year study of the macular pigment: The effect of 140 days of a lutein supplement. Experimental Eye Research, 65, 57–62.PubMedCrossRefGoogle Scholar
  40. Larsen, E., & Christensen, L. P. (2005). Simple saponification method for the quantitative determination of carotenoids in green vegetables. Journal of Agricultural and Food Chemistry, 53, 6598–6602.PubMedCrossRefGoogle Scholar
  41. Li, H., Jiang, Y., & Chen, F. (2002). Isolation and purification of lutein from the microalga Chlorella vulgaris by extraction after saponification. Journal of Agricultural and Food Chemistry, 50, 1070–1072.PubMedCrossRefPubMedCentralGoogle Scholar
  42. Liang, S. X., Tang, D. C., & Yang, Y. Z. (2007). Comparative studies of fresh flower yield and lutein content of marigold. Northern Horticulture, 6, 124–125.Google Scholar
  43. Liao, S. M., Zheng, W., Zhu, J., et al. (2017). Specific correlation between the major chromosome 10q26 haplotype conferring risk for age-related macular degeneration and the expression of HTRA1. Molecular Vision, 23, 318–333.PubMedPubMedCentralGoogle Scholar
  44. Lin, J. H., Lee, D. J., & Chang, J. S. (2015). Lutein production from biomass: Marigold flowers versus microalgae. Bioresource Technology, 184, 421–428.PubMedCrossRefGoogle Scholar
  45. Ma, R., Zhao, X., Xie, Y., Ho, S. H., & Chen, J. (2019). Enhancing lutein productivity of Chlamydomonas sp. via high-intensity light exposure with corresponding carotenogenic genes expression profiles. Bioresource Technology, 275, 416–420.PubMedCrossRefPubMedCentralGoogle Scholar
  46. Maci, S., & Santos, R. (2015). The beneficial role of lutein and zeaxanthin in cataracts. Nutrafoods, 14, 63.  https://doi.org/10.1007/s13749-015-0014-0.CrossRefGoogle Scholar
  47. Manayi, A., Abdollahi, M., Raman, T., Nabayi, S. F., Habtemariam, S., Daglia, M., & NAbayi, S. M. (2016). Lutein and cataract: From bench to bedside. Critical Reviews in Biotechnology, 36(5), 829–839.PubMedCrossRefPubMedCentralGoogle Scholar
  48. Maria, A. G., Graziano, R., & D’Orazio, N. (2015). Carotenoids: Potential allies of cardiovascular health. Food & Nutrition Research, 59, 1.  https://doi.org/10.3402/fnr.v59.26762.CrossRefGoogle Scholar
  49. März, U. (2015). FOD025E-The Global Market for Carotenoids. In: BCC Research.Google Scholar
  50. McWilliams, A. (2018). The global market for carotenoids. FOD025F. BCC research report overview. Wellesley, MA: BCC Publishing.Google Scholar
  51. Mendes-Pinto, M. M., Raposo, M. F. J., Bowen, J., Young, A. J., & Morais, R. (2001). Evaluation of different cell disruption processes on encysted cells of Haematococcus pluvialis: Effects on astaxanthin recovery and implications for bio-availability. Journal of Applied Phycology, 13, 19–24.CrossRefGoogle Scholar
  52. Natchigal, A. M., Stringheta, A. C. O., Bertoldi, M. C., & Stringheta, P. C. (2012). Quantification and characterization of lutein from Tagetes (Tagetes patula L.) and Calendula (Calendula officinalis L.) flowers. Acta Horticulturae, 939, 309–314.CrossRefGoogle Scholar
  53. Nonomura, A. M. (1987). Process for producing a naturally-derived carotene/oil composition by direct extraction from algae. U.S. Patent No. 4,680,314.Google Scholar
  54. Park, P. K., Kim, E. Y., & Chu, K. H. (2007). Chemical disruption of yeast cells for the isolation of carotenoid pigments. Separation and Purification Technology, 53, 148–152.CrossRefGoogle Scholar
  55. Pennington, K. L., & DeAngelis, M. M. (2016). Epidemiology of age-related macular degeneration (AMD): Associations with cardiovascular disease phenotypes and lipid factors. Eye and Vision, 3, 34.  https://doi.org/10.1186/s40662-016-0063-5.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Perrone, S., Tei, M., Longini, M., & Buonocore, G. (2016). The multiple facets of lutein: A call for further investigation in the perinatal period. Oxidative Medicine and Cellular Longevity, 2016, 1–8.  https://doi.org/10.1155/2016/5381540.CrossRefGoogle Scholar
  57. Pintea, A., Bele, C., Andrei, S., & Socaciu, C. (2003). HPLC analysis of carotenoids in four varieties of Calendula officinalis L. flowers. Acta Biologica Szegediensis, 47, 37–40.Google Scholar
  58. Rodolfi, L., Chini Zittelli, G., Bassi, N., Padovani, G., Biondi, N., Bonini, G., & Tredici, M. R. (2009). Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnology and Bioengineering, 102, 100–112.PubMedCrossRefGoogle Scholar
  59. Rodrigues, D. B., Mercadantea, Z. A., & Mariutti, B. L. R. (2019). Marigold carotenoids: Much more than lutein esters. Food Research International, 119, 653–664.PubMedCrossRefGoogle Scholar
  60. Roukas, T., & Mantzouridou, F. (2001). An improved method for extraction of β-carotene from Blakeslea trispora. Applied Biochemistry and Biotechnology, 90, 37–45.PubMedCrossRefPubMedCentralGoogle Scholar
  61. Ruane M. (1977). Extraction of caroteniferous materials from algae. Australia Patent No. 72,395,74.Google Scholar
  62. Sathasivam, R., & Ki, J. S. (2018). A review of the biological activities of microalgal carotenoids and their potential use in healthcare and cosmetic industries. Marine Drugs, 16(1), 26.  https://doi.org/10.3390/md16010026.CrossRefPubMedCentralGoogle Scholar
  63. Schwender, J., Gemünden, C., & Lichtenthaler, H. K. (2001). Chlorophyta exclusively use the 1-deoxyxylulose 5-phosphate/2-C-methylerythritol 4-phosphate pathway for the biosynthesis of isoprenoids. Planta, 212(3), 416–423.PubMedCrossRefPubMedCentralGoogle Scholar
  64. Seddon, J. M., Ajani, U. A., Sperduto, R. D., Hiller, R., Blair, N., Burton, T. C., Farber, M. D., Gragoudas, E. S., Haller, J., et al. (1994). Dietary carotenoids, vitamins A, C, and E, and advanced age-related macular degeneration. Eye Disease Case-Control Study Group. JAMA, 272, 1413–1420.PubMedCrossRefPubMedCentralGoogle Scholar
  65. Shi, X. M., Jiang, Y., & Chen, F. (2002). High-yield production of lutein by the green microalga Chlorella protothecoides in heterotrophic fed-batch culture. Biotechnology Progress, 18, 723–772.PubMedCrossRefPubMedCentralGoogle Scholar
  66. Sommerburg, O., Keunen, J. E., Bird, A. C., & van Kuijk, F. J. (1998). Fruits and vegetables that are sources for lutein and zeaxanthin: The macular pigment in human eyes. The British Journal of Ophthalmology, 82(8), 907–910.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Subagio, A., Sari, P., & Morita, N. (2001). Simultaneous determination of (+)-catechin and (-)-epicatechin in cacao and its products by high-performance liquid chromatography with electrochemical detection. Phytochemical Analysis, 12(4), 271–276.PubMedCrossRefPubMedCentralGoogle Scholar
  68. Sun, Z., Li, T., Zhou, Z., & Jiang, Y. (2015). Microalgae as a source of lutein: Chemistry, biosynthesis and carotenogenesis. In C. Posten & S. Feng Chen (Eds.), Microalgae biotechnology. Advances in biochemical engineering/biotechnology (p. 153). New York, NY: Springer.Google Scholar
  69. Trumbo, P. R., & Ellwood, K. C. (2006). Lutein and zeaxanthin intakes and risk of age-related macular degeneration and cataracts: An evaluation using the Food and Drug Administration’s evidence-based review system for health claims. The American Journal of Clinical Nutrition, 84(5), 971–974.  https://doi.org/10.1093/ajcn/84.5.971.CrossRefPubMedPubMedCentralGoogle Scholar
  70. Varela, J. C., Pereira, H., Vila, M., & León, R. (2015). Production of carotenoids by microalgae: Achievements and challenges. Photosynthesis Research, 125(3), 423–436. Review. Erratum in: Photosynth Res. 2016;127(2):285–286.PubMedCrossRefPubMedCentralGoogle Scholar
  71. Wei, D., Chen, F., Chen, G., Zhang, X., Liu, L., & Zhang, H. (2008). Enhanced production of lutein in heterotrophic Chlorella protothecoides by oxidative stress. Science in China. Series C, Life Sciences, 51(12), 1088–1093.PubMedCrossRefPubMedCentralGoogle Scholar
  72. Woodall, A. A., Lee, S. W., Weesie, R. J., Jackson, M. J., & Britton, G. (1997). Oxidation of carotenoids by free radicals: Relationship between structure and reactivity. Biochimica et Biophysica Acta, General Subjects, 1336, 33–42.CrossRefGoogle Scholar
  73. Xiao, Y., He, X., Ma, Q., Lu, Y., Bai, F., Dai, J., & Wu, Q. (2018). Photosynthetic accumulation of lutein in Auxenochlorella protothecoides after heterotrophic growth. Marine Drugs, 16(8), E283.PubMedCrossRefPubMedCentralGoogle Scholar
  74. Xie, Y., Ho, S. H., Chen, C. N. N., Chen, C. Y., Ng, I. S., Jing, K. J., Chang, J. S., & Lu, Y. (2013). Phototrophic cultivation of a thermo-tolerant Desmodesmus sp. for lutein production: Effects of nitrate concentration, light intensity and fed-batch operation. Bioresource Technology, 144, 435–444.PubMedCrossRefPubMedCentralGoogle Scholar
  75. Xie, Y., Zhao, X., Chen, J., Yang, X., Ho, S. H., Wang, B., Chang, J. S., & Shen, Y. (2017). Enhancing cell growth and lutein productivity of Desmodesmus sp. F51 by optimal utilization of inorganic carbon sources and ammonium salt. Bioresource Technology, 244(Pt 1), 664–671.  https://doi.org/10.1016/j.biortech.2017.08.022.CrossRefPubMedPubMedCentralGoogle Scholar
  76. Xie, Y., Lu, K., Zhao, X., Ma, R., Chen, J., & Ho, S. H. (2019). Manipulating nutritional conditions and salinity-gradient stress for enhanced lutein production in marine microalga Chlamydomonas sp. Biotechnology Journal, 14(4), e1800380.PubMedCrossRefPubMedCentralGoogle Scholar
  77. Yen, H. W., Hu, I. C., Chen, C. Y., Ho, S. H., Lee, D. J., & Chang, J. S. (2013). Microalgae-based biorefinery-from biofuels to natural products. Bioresource Technology, 135, 166–174.PubMedCrossRefPubMedCentralGoogle Scholar
  78. Zhao, X., Ma, R., Liu, X., Ho, S.-H., Xie, Y., & Chen, J. (2019). Strategies related to light quality and temperature to improve lutein production of marine microalga Chlamydomonas sp. Bioprocess and Biosystems Engineering, 42(3), 435–443.Google Scholar
  79. Zielińska, M. A., Wesołowska, A., Pawlus, B., & Hamułka, J. (2017). Health effects of carotenoids during pregnancy and lactation. Nutrients, 9(8), 838.  https://doi.org/10.3390/nu9080838.CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • M. Vila Spinola
    • 1
  • E. Díaz-Santos
    • 2
  1. 1.Laboratory of Biochemistry, Faculty of Experimental Sciences, Marine International Campus of Excellence (CEIMAR)University of HuelvaHuelvaSpain
  2. 2.Laboratory of Biology and Biotechnology of Cyanobacteria, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-SudUniversité Paris-SaclayGif-sur-Yvette CedexFrance

Personalised recommendations