An ECC with Probable Secure and Efficient Approach on Noncommutative Cryptography

  • Gautam KumarEmail author
  • Hemraj Saini
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1049)


An Elliptic Curve Cryptography (ECC) is used on the Noncommutative Cryptographic (NCC) principles. The security and strengths of the manuscript are resilient on these two cryptographic assumptions. The claims on the Noncommutative cryptographic scheme on monomials generated elements is considered be based on hidden subgroup or subfield problems that strengthen this manuscript, where original assumptions are hidden and its equivalents semiring takes part in the computation process. In relation to the same, the research gap is well designed on Dihedral orders of 6 and 8, but our contributions are in security- and length-based attacks enhancement over Dihedral order 12, reported in work done. We modeled the said strategies and represent the ideal security concerns for applications.


ECC Noncommutative cryptography Monomials generations Length based attacks 


  1. 1.
    W. Diffie, M.E. Hellman, New directions in cryptography. IEEE Trans. Inf. Theory 22, 644–654 (1976). Scholar
  2. 2.
    V.S. Miller, Use of elliptic curves in cryptography. Adv. Cryptol. 218, 417–426 (1986),
  3. 3.
    N. Koblitz, Elliptic curve cryptosystems. Math Comput. 48, 203–209 (1987). Scholar
  4. 4.
    P.W. Shor, Algorithms for quantum computation: discrete logarithms and factorings, in Proceedings of the 35th Annual Symposium on Foundations of Computer Science (1994), pp. 124–134.
  5. 5.
    A. Kitaev, Quantum measurements and the Abelian stabilizer problem, in Electronic Colloquium on Computational Complexity (1996),
  6. 6.
    S.H. Paeng, K.C. Ha, J.H. Kim, S. Chee, C. Park, New public key cryptosystem using finite non abelian groups. Lect. Notes Comput. Sci. 2139, 470–485 (2001)CrossRefGoogle Scholar
  7. 7.
    A. Joux, K. Nguyen, Separating decision Diffie-Hellman from Diffie-Hellman in cryptographic groups. Cryptology ePrint Archive, Report 2001/003 (2001),
  8. 8.
    C. Cocks, An identity based encryption scheme based on quadratic residues. Lect. Notes Comput. Sci. 2260, 360–363 (2001)MathSciNetCrossRefGoogle Scholar
  9. 9.
    S.S. Magliveras, D.R. Stinson, T.V. Trung, New approaches to designing public key cryptosystems using one-way functions and trapdoors in finite groups. J. Cryptol. 15(4), 285–297 (2002)MathSciNetCrossRefGoogle Scholar
  10. 10.
    K.H. Ko, D.H. Choi, M.S. Cho, J.W. Lee, New signature scheme using conjugacy problem. IACR Cryptology ePrint Archive 2002:168 (2002)Google Scholar
  11. 11.
    D. Grigoriev, I.V. Ponomarenko, On non-abelian homomorphic public-key cryptosystems. J. Math. Sci. (2002), cs.CR/0207079, arXiv:cs/0207079
  12. 12.
    J. Proos, C. Zalka, Shor’s discrete logarithm quantum algorithm for elliptic curve. Quantum Inf. Comput. 3, 317–344 (2003),
  13. 13.
    E. Lee, Braid groups in cryptology. ICICE Trans. Fundam. E87-A(5), 986–992 (2004)Google Scholar
  14. 14.
    D. Grigoriev, I. Ponomarenko, Constructions in public-key cryptography over matrix groups (2005), CoRR, abs/math/0506180, arXiv:math/0506180
  15. 15.
    M. Rotteler, Quantum algorithm: a survey of some recent results. Inf. Forensic Entw. 21, 3–20 (2006),
  16. 16.
    Z. Cao, X. Dong, L. Wang, New public key cryptosystems using polynomials over noncommutative rings. Int. J. Cryptol. Res. 9, 1–35 (2007),
  17. 17.
    J. Kubo, The dihedral group as a family group, in Quantum Field Theory and Beyond, ed. by W. Zimmermann, E. Seiler, K. Sibold (World Science Publication, Hackensack, NJ, 2008), pp. 46–63,
  18. 18.
    P.V. Reddy, G.S.G.N. Anjaneyulu, D.V.R. Reddy, M. Padmavathamma, New digital signature scheme using polynomials over noncommutative groups. Int. J. Comput. Sci. Netw. Secur. 8, 245–250 (2008),
  19. 19.
    D.N. Moldovyan, N.A. Moldovyan, A new hard problem over noncommutative finite groups for cryptographic protocols, in Lecture Notes in Computer Science, vol. 6258 (Springer, Heidelberg, New York, 2010), pp. 183–194Google Scholar
  20. 20.
    A.D. Myasnikov, A. Ushakov, Cryptanalysis of matrix conjugation schemes. J. Math. Cryptol. 8, 95–114 (2014). Scholar
  21. 21.
    K. Svozil, Non-contextual chocolate balls versus value indefinite quantum cryptography. Theoret. Comput. Sci. 560, 82–90 (2014)MathSciNetCrossRefGoogle Scholar
  22. 22.
    G. Kumar, H. Saini, Novel noncommutative cryptography scheme using extra special group. Secur. Commun. Netw. 2017, 1–21 (2017)CrossRefGoogle Scholar
  23. 23.
    M. Uno, M. Kano, Visual cryptography schemes with dihedral group access structure, in Proceedings of ISPEC’07 (Springer, 2007), pp. 344–359,
  24. 24.
    Z. Cao, New Directions of modern cryptography, in Noncommutative Cryptography (CRC Press, 2013)Google Scholar
  25. 25.
    B.C. Hall, Lie Groups, Lie Algebras, and Representations: An Elementary Introduction (Springer, New York, 2003),
  26. 26.
    D. Ruinskiy, A. Shamir, B. Tsaban, Length-based cryptanalysis: the case of Thompson’s group. J. Math. Cryptol. 1, 359–372 (2007). Scholar
  27. 27.
    A.D. Myasnikov, A. Ushakov, Length based attack and braid groups: cryptanalysis of Anshel-Anshel-Goldfeld key exchange protocol, in Lecture Notes in Computer Science, vol. 4450 (Springer, Heidelberg, 2007),

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.KL UniversityHyderabadIndia
  2. 2.Jaypee University of Information TechnologySolanIndia

Personalised recommendations