Business-Driven Blockchain-Mempool Model for Cooperative Optimization in Smart Grids

  • Marius StübsEmail author
  • Wolf Posdorfer
  • Julian Kalinowski
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 165)


Smart Grid control can be represented as a set of optimization problems. Aggregators, called Virtual Power Plants, are using dispatch schedules as solutions to these optimization problems. Power generation of distributed energy resources has to match the consumption of the electrical load distributed over the grid. An established method of optimizing Smart Grid control is to calculate an optimal solution as a schedule vector over all controllable generators and loads. In this paper, we describe a distributed way of verifying and agreeing upon a solution for this optimization problem. In order to meet the high standards regarding authentication and accountability, we incorporate blockchain technology and propose a Mempool model for benevolent selection criteria.


Blockchain Mempool Smart Grid Virtual Power Plant 


  1. 1.
    Harmouch, F.Z., Krami, N., Benhaddou, D., Hmina, N., Zayer, E., Margoum, E.H.: Survey of multiagents systems application in microgrids. In: 2016 International Conference on Electrical and Information Technologies (ICEIT), pp. 270–275. IEEE (2016)Google Scholar
  2. 2.
    Münsing, E., Mather, J., Moura, S.: Blockchains for decentralized optimization of energy resources in microgrid networks. In: 2017 IEEE Conference on Control Technology and Applications (CCTA), pp. 2164–2171. IEEE (2017)Google Scholar
  3. 3.
    Atzeni, I., Ordóñez, L.G., Scutari, G., Palomar, D.P., Fonollosa, J.R.: Noncooperative and cooperative optimization of distributed energy generation and storage in the demand-side of the smart grid. IEEE Trans. Signal Process. 61(10), 2454–2472 (2013)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Li, Z., Kang, J., Yu, R., Ye, D., Deng, Q., Zhang, Y.: Consortium blockchain for secure energy trading in industrial internet of things. IEEE Trans. Ind. Inform. 14(8), 3690–3700 (2018)Google Scholar
  5. 5.
    Pudjianto, D., Ramsay, C., Strbac, G.: Virtual power plant and system integration of distributed energy resources. IET Renew. Power Gener. 1(1), 10–16 (2007)CrossRefGoogle Scholar
  6. 6.
    Stübs, M.: IT-security in self-organizing decentralized virtual power plants: student research abstract. In: Proceedings of the 33rd Annual ACM Symposium on Applied Computing, pp. 431–432. ACM (2018)Google Scholar
  7. 7.
    Aitzhan, N.Z., Svetinovic, D.: Security and privacy in decentralized energy trading through multi-signatures, blockchain and anonymous messaging streams. IEEE Trans. Dependable Secur. Comput. 15(5), 840–852 (2018)CrossRefGoogle Scholar
  8. 8.
    Zhang, Y., Rahbari-Asr, N., Duan, J., Chow, M.Y.: Day-ahead smart grid cooperative distributed energy scheduling with renewable and storage integration. IEEE Trans. Sustain. Energy 7(4), 1739–1748 (2016)CrossRefGoogle Scholar
  9. 9.
    Antonopoulos, A.M.: Mastering Bitcoin: Unlocking Digital Cryptocurrencies. O’Reilly Media, Inc. (2014)Google Scholar
  10. 10.
    Posdorfer, W., Kalinowski, J., Bornholdt, H., Lamersdorf, W.: Decentralized billing and subcontracting of application services for cloud environment providers. In: International Workshop on Engineering Service-Oriented Applications and Cloud Services—WESOACS. Springer (2018)Google Scholar
  11. 11.
    Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System (2008)Google Scholar
  12. 12.
    Buterin, V., et al.: A Next-Generation Smart Contract and Decentralized Application Platform (2014)Google Scholar
  13. 13.
    Wood, G.: Ethereum: A Secure Decentralised Generalised Transaction Ledger (2018)Google Scholar
  14. 14.
    David, B.M., Gazi, P., Kiayias, A., Russell, A.: Ouroboros praos: an adaptively-secure, semi-synchronous proof-of-stake protocol. IACR Cryptol. ePrint Arch. 2017, 573 (2017)zbMATHGoogle Scholar
  15. 15.
    Jain, A., Arora, S., Shukla, Y., Patil, T., Sawant-Patil, S.: Proof of stake with casper the friendly finality gadget protocol for fair validation consensus in ethereum. Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol. (2018)Google Scholar
  16. 16.
    King, S., Nadal, S.: Ppcoin: Peer-to-Peer Crypto-Currency with Proof-of-Stake (2012)Google Scholar
  17. 17.
    Castro, M., Liskov, B., et al.: Practical byzantine fault tolerance. OSDI 99, 173–186 (1999)Google Scholar
  18. 18.
    Lampson, B., Sturgis, H.E.: Crash recovery in a distributed data storage system. Technical Report, Xerox Palo Alto Research Center (Jan 1979)Google Scholar
  19. 19.
    Kwon, J.: Tendermint: Consensus Without Mining (2014)Google Scholar
  20. 20.
    Pontiveros, B.B.F., Norvill, R., State, R.: Monitoring the transaction selection policy of bitcoin mining pools. In: NOMS 2018–2018 IEEE/IFIP Network Operations and Management Symposium. IEEE (2018)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Marius Stübs
    • 1
    Email author
  • Wolf Posdorfer
    • 2
  • Julian Kalinowski
    • 2
  1. 1.Security and Privacy Working GroupUniversity of HamburgHamburgGermany
  2. 2.Distributed Systems Working GroupUniversity of HamburgHamburgGermany

Personalised recommendations