Advertisement

Challenges in Recognition of Online and Off-line Compound Handwritten Characters: A Review

  • Ratnashil N. KhobragadeEmail author
  • Nitin A. Koli
  • Vrushali T. Lanjewar
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 165)

Abstract

The recognition of character is the process which enables a computer to recognize handwritten and printed characters such as numbers, letters in a document as image and convert into digital, and machine-readable form that the computer can use. The huge collections of ancient script of written and printed documents are required to be preserved in an electronic file. The main purpose of this study is to recognize descendant scripts of Devanagari such as Pali, Marathi, and Hindi to recover the ancient damaged scripts and valuable documents for further research in related literature. In this article, we analyze different handwritten characters recognition done on non-Indic as well as Indic scripts; the evaluation of handwritten character recognition (HCR) tools and techniques are also presented.

Keywords

Indic script Character recognition Handwritten Feature extraction etc 

References

  1. 1.
    Mouhcine, R., Mustapha, A., Zouhir, M.: Recognition of cursive Arabic handwritten text using embedded training based on HMMs. J. Electr. Syst. Inform. Technol. 5(2), 245–251 (2018)CrossRefGoogle Scholar
  2. 2.
    Rao, N.V., Sastry, A.S., Chakravarthy, A.S., Kalyanchakravarthi, P.: Optical character recognition technique algorithms. J. Theor. Appl. Inform. Technol. 83(2), 275–282 (2016)Google Scholar
  3. 3.
    Cilia, N.D., De Stefano, C., Fontanella, F., di Freca, A.S: A ranking-based feature selection approach for handwritten character recognition. Pattern Recognit. Lett. (2018)Google Scholar
  4. 4.
    Raj, V.A., Jyothi, R.L., Anilkumar, A.: Grantha script recognition from ancient palm leaves using histogram of orientation shape context. In: 2017 International Conference on Computing Methodologies and Communication (ICCMC) (2017)Google Scholar
  5. 5.
    Laine, M., Nevalainen, O.: A standalone OCR system for mobile cameraphones. In: 2006 IEEE 17th International Symposium on Personal, Indoor and Mobile Radio Communications (2006)Google Scholar
  6. 6.
    Jangid, M., Srivastava, S.: Similar handwritten Devanagari character recognition by critical region estimation. In: 2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI) (2016)Google Scholar
  7. 7.
    Verma, V.K., Tiwari, P.K.: Removal of obstacles in Devanagari script for efficient optical character recognition. In: 2015 International Conference on Computational Intelligence and Communication Networks (CICN) (2015)Google Scholar
  8. 8.
    Welekar, R., Thakur, N.V.: Memetic algorithm used in character recognition. In: Panigrahi, B., Suganthan, P., Das, S. (eds.) Swarm, Evolutionary, and Memetic Computing. SEMCCO 2014. Lecture Notes in Computer Science, vol 8947 (2015)CrossRefGoogle Scholar
  9. 9.
    Khobragade, R.N., Koli, N.A., Makesar, M.S.: A survey on recognition of devnagari script. Int. J. Comput. Appl. Inform. Technol. II(I), IJCAIT (2013)Google Scholar
  10. 10.
    Guruprasad, P., Majumdar, J.: Multimodal recognition framework: an accurate and powerful Nandinagari handwritten character recognition model. Procedia Comput. Sci. 89, 836–844 (2016). ISSN: 1877-0509CrossRefGoogle Scholar
  11. 11.
    Bhandare, M.S., Kakade, A.S.: Handwritten (Marathi) compound character recognition. In: International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), pp. 1–4. Coimbatore (2015)Google Scholar
  12. 12.
    Golait, S.S., Malik, L.: Handwritten Marathi compound character segmentation using minutiae detection algorithm. Procedia Comput. Sci. 87, 18–24 (2016)CrossRefGoogle Scholar
  13. 13.
    Pramanik, R., Bag, S.: Shape decomposition-based handwritten compound character recognition for Bangla OCR. J. Vis. Commun. Image Represent. 50, 123–134 (2018). ISSN: 1047-3203CrossRefGoogle Scholar
  14. 14.
    Kumar, A., Lehal, G.: Automatic text correction for Devanagari OCR. Indian J. Sci. Technol. 9(45), 1–4 (2016)Google Scholar
  15. 15.
    Zunjarrao, T., Joshi, U.: Handwritten Marathi character recognition on an android device. Int. Res. J. Eng. Technol. (IRJET) 04(05), 3328–3332 (2017)Google Scholar
  16. 16.
    Jangid, M., Srivastava, S.: Accuracy enhancement of Devanagari character recognition by gray level normalization. In: Proceedings of the 7th International Conference on Computing Communication and Networking Technologies-ICCCNT 2016 (2016)Google Scholar
  17. 17.
    Vaidya, M.V., Joshi, Y.V.: Handwritten Numeral Identification System Using Pixel Level Distribution Features. Smart Innov. Syst. Technol. 2, 307–315 (2017)Google Scholar
  18. 18.
    Keysers, D., Deselaers, T., Rowley, H.A., Wang, L.-L., Carbune, V.: Multi-Language Online Handwriting Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1180–1194 (2017)CrossRefGoogle Scholar
  19. 19.
    Kumar, P., Saini, R., Roy, P.P., Pal, U.: A lexicon-free approach for 3D handwriting recognition using classifier combination. Pattern Recognit. Lett. 103, 1–7 (2018)CrossRefGoogle Scholar
  20. 20.
    Shahmoradi, S., Bagheri Shouraki, S.: Evaluation of a novel fuzzy sequential pattern recognition tool (fuzzy elastic matching machine) and its applications in speech and handwriting recognition. Appl. Soft Comput. 62, 315–327 (2018)CrossRefGoogle Scholar
  21. 21.
    Avadesh, M., Goyal, N.: Optical character recognition for Sanskrit using convolution neural networks. In: 2018 13th IAPR International Workshop on Document Analysis Systems (DAS) (2018)Google Scholar
  22. 22.
    Shitole, S., Jadhav, S.: Recognition of handwritten devanagari characters using linear discriminant analysis. In: 2018 2nd International Conference on Inventive Systems and Control (ICISC) (2018).  https://doi.org/10.1109/icisc.2018.8398991
  23. 23.
    Kshirsagar, G.B., Londhe, N.D.: Improving performance of Devanagari script input-based P300 speller using deep learning. IEEE Trans. Biomed. Eng. 1 (2018)Google Scholar
  24. 24.
    Sonawane, P.K., Shelke, S.: Handwritten Devanagari character classification using deep learning. In: 2018 International Conference on Information, Communication, Engineering and Technology (ICICET) (2018)Google Scholar
  25. 25.
    Welekar R., Thakur N.V.: Best bound population-based local search for memetic algorithm in view of character recognition. In: Yang, X.S., Sherratt, S., Dey, N., Joshi, A. (eds.) Third International Congress on Information and Communication Technology. Advances in Intelligent Systems and Computing, vol 797. Springer, Singapore (2019)Google Scholar
  26. 26.
    Priya, A., Mishra, S., Raj, S., Mandal, S., Datta, S.: Online and offline character recognition: a survey. In: 2016 International Conference on Communication and Signal Processing (ICCSP) (2016)Google Scholar
  27. 27.
    Dasgupta, J., Bhattacharya, K., Chanda, B.: A holistic approach for Off-line handwritten cursive word recognition using directional feature based on Arnold transform. Pattern Recognit. Lett. 79, 73–79 (2016)CrossRefGoogle Scholar
  28. 28.
    Kumar, V.: Online handwriting recognition problem: issues and techniques. MIT Int. J. Comput. Sci. Inform. Technol. 4(1), 16–24 16 (2014). ISSN 2230-7621© MIT PublicationsGoogle Scholar
  29. 29.
    Mantoro, T., Sobri, A.M., Usino, W.: Optical character recognition (OCR) performance in server-based mobile environment. In: 2013 International Conference on Advanced Computer Science Applications and Technologies (2013)Google Scholar
  30. 30.
    Hassen, H., Khemakhem, M.: A secured distributed OCR system in a pervasive environment with authentication as a service in the cloud. In: 2014 International Conference on Multimedia Computing and Systems (ICMCS) (2014)Google Scholar
  31. 31.
    Vajda, S., Rangoni, Y., Cecotti, H.: Semi-automatic ground truth generation using unsupervised clustering and limited manual labeling: application to handwritten character recognition. Pattern Recognit. Lett. 58, 23–28 (2015)CrossRefGoogle Scholar
  32. 32.
    Sarkhel, R., Das, N., Saha, A.K., Nasipuri, M.: A multi-objective approach towards cost effective isolated handwritten Bangla character and digit recognition. Pattern Recognit. 58, 172–189 (2016). ISSN: 0031-3203CrossRefGoogle Scholar
  33. 33.
    Kamble, P.M., Hegadi, R.S.: Handwritten marathi character recognition using R-HOG feature. Procedia Comput. Sci. 45, 266–274 (2015)CrossRefGoogle Scholar
  34. 34.
    Chacko, A.M.M.O., Dhanya, P.M.: Multiple classifier system for offline malayalam character recognition. Procedia Comput. Sci. 46, 86–92 (2015)CrossRefGoogle Scholar
  35. 35.
    Mane, D.T., Kulkarni, U.V.: Visualizing and understanding customized convolutional neural network for recognition of handwritten Marathi numerals. Procedia Comput. Sci. 132, 1123–1137 (2018). ISSN: 1877-0509CrossRefGoogle Scholar
  36. 36.
    Sabbour, N., Shafait, F.: A segmentation free approach to Arabic and Urdu OCR. Proc. SPIE—Int. Soc. Opt. Eng. 8658 (2013)Google Scholar
  37. 37.
    Alonso-Weber, J.M., Sesmero, M.P., Sanchis, A.: Combining additive input noise annealing and pattern transformations for improved handwritten character recognition. Expert Syst. Appl. 41(18), 8180–8188 (2014)CrossRefGoogle Scholar
  38. 38.
    Mandal, S., Prasanna, S.R.M., Sundaram, S.: GMM posterior features for improving online handwriting recognition. Expert Syst. Appl. 97, 421–433 (2018)CrossRefGoogle Scholar
  39. 39.
    Latif, G., Alghazo, J., Alzubaidi, L., Naseer, M.M., Alghazo, Y.: Deep convolutional neural network for recognition of unified multi-language handwritten numerals. In: 2018 IEEE 2nd International Workshop on Arabic and Derived Script Analysis and Recognition (ASAR) (2018)Google Scholar
  40. 40.
    Gautam, N., Sharma, R.S., Hazrati, G.: Akkhara-muni: an instance for classifying PALI characters. In: 2015 International Conference on Computational Intelligence and Communication Networks (CICN) (2015)Google Scholar
  41. 41.
    Pramanik, R., Raj, V., Bag, S.: Finding the optimum classifier: classification of segmentable components in offline handwritten Devanagari words. In: 2018 4th International Conference on Recent Advances in Information Technology (RAIT) (2018)Google Scholar
  42. 42.
    Das, N., Sarkar, R., Basu, S., Saha, P.K., Kundu, M., Nasipuri, M.: Handwritten Bangla character recognition using a soft computing paradigm embedded in two pass approach. Pattern Recogn. 48(6), 2054–2071 (2015)CrossRefGoogle Scholar
  43. 43.
    Dahake, K.R., Suralkar, S.R., Ramteke, S.P.: Optical character recognition for marathi text newsprint. Int. J. Comput. Appl. (IJCA Journal) 62 (2013)Google Scholar
  44. 44.
    Nehra, M.S., Nain, N., Ahmed, M., Choudhary, P., Modi, D.: Amalgamated approach for devanagari script corpus for OCR demographic purpose and XML for linguistic annotation. In: 2017 13th International Conference on Signal-Image Technology and Internet-Based Systems (SITIS) (2017)Google Scholar
  45. 45.
    Singh, N.: An efficient approach for handwritten Devanagari character recognition based on artificial neural network. In: 2018 5th International Conference on Signal Processing and Integrated Networks (SPIN) (2018)Google Scholar
  46. 46.
    Pal, U., Sharma, N., Wakabayashi, T., Kimura, F.: Handwritten numeral recognition of six popular indian scripts. In: Ninth International Conference on Document Analysis and Recognition (ICDAR 2007), vol 2 (2007)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Sant Gadge Baba Amravati UniversityAmravatiIndia

Personalised recommendations