Position Estimation Error Ripple Elimination for Model-Based Method

  • Gaolin Wang
  • Guoqiang Zhang
  • Dianguo Xu


The position sensorless control methods can be divided into two groups, the back-EMF-based methods [1–8] and the HF injection methods. According to Chap.  5, fundamental excitation methods based on EMF or flux-linkage model are frequently used for medium- and high-speed sensorless operation in industry applications. The second-order position observer, the full-order position observer, and the seamless hybrid control are proposed. Other fundamental excitation methods can be roughly categorized as the state observer, the Kalman filter, the disturbance observer, the MRAS observer, the sliding-mode observer (SMO), and the artificial intelligence-based estimation method [1]. However, there are some common shortcomings among these EMF-based methods.


  1. 1.
    Z. Q. Chen, M. Tomita, S. Doki, S. Okuma, An extended electromotive force model for sensorless control of interior permanent magnet synchronous motors. IEEE Trans. Ind. Electron. 50(2), 288–295 (April 2003)Google Scholar
  2. 2.
    R. W. Hejny, R. D. Lorenz, Evaluating the practical low-speed limits for back-EMF tracking-based sensorless speed control using drive stiffness as a key metric. IEEE Trans. Ind. Appl. 47(3), 1337–1343 (May/June 2011)Google Scholar
  3. 3.
    G. Wang, L. Ding, Z. Li, J. Xu, G. Zhang, H. Zhan, R. Ni, D. Xu, Enhanced position observer using second-order generalized integrator for sensorless interior permanent magnet synchronous motor drives. IEEE Trans. Energy Convers. 29(2), 486–495 (June 2014)Google Scholar
  4. 4.
    G. Wang, H. Zhan, G. Zhang, X. Gui, D. Xu, Adaptive compensation method of position estimation harmonic error for EMF-based observer in sensorless IPMSM drives. IEEE Trans. Power Electron. 29(6), 3055–3064 (June 2014)CrossRefGoogle Scholar
  5. 5.
    G. Wang, T. Li, G. Zhang, X. Gui, D. Xu, Position estimation error reduction using recursive-least-square adaptive filter for model-based sensorless interior permanent-magnet synchronous motor drives. IEEE Trans. Ind. Electron. 61(9), 5115–5125 (September 2014)CrossRefGoogle Scholar
  6. 6.
    G. Zhang, G. Wang, D. Xu, N. Zhao, ADALINE-network-based PLL for position sensorless interior permanent magnet synchronous motor drives. IEEE Trans. Power Electron. 31(2), 1450–1460 (February 2016)CrossRefGoogle Scholar
  7. 7.
    G. Zhang, G. Wang, D. Xu, R. Ni, C. Jia, Multiple-AVF cross-feedback-network-based position error harmonic fluctuation elimination for sensorless IPMSM drives. IEEE Trans. Ind. Electron. 63(2), 821–831 (February 2016)CrossRefGoogle Scholar
  8. 8.
    G. Wang, R. Yang, D. Xu, DSP-based control of sensorless IPMSM drives for wide-speed-range operation. IEEE Trans. Ind. Electron. 60(2), 720–727 (February 2013)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Y. Li, Z.Q. Zhu, D. Howe, C.M. Bingham, Improved rotor position estimation in extended back-EMF based sensorless PM brushless AC drives with magnetic saliency, in Electric Machines & Drives Conference, 2007. IEMDC’07, vol. 1, (IEEE International, Antalya, Turkey, 2007), pp. 214–219CrossRefGoogle Scholar
  10. 10.
    P. Rodriguez, A. Luna, R. S. Munoz-Aguilar, I. Etxeberria-Otadui, R. Teodorescu, F. Blaabjerg, A stationary reference frame grid synchronization system for three-phase grid-connected power converters under adverse grid conditions. IEEE Trans. Power Electron. 27(1), 99–112 (January 2012)CrossRefGoogle Scholar
  11. 11.
    Z. Qiao, T. Shi, Y. Wang, Y. Yan, C. Xia, X. He, New sliding-mode observer for position sensorless control of permanent-magnet synchronous motor. IEEE Trans. Ind. Electron. 60(2), 710–719 (Feburary 2013)CrossRefGoogle Scholar
  12. 12.
    M. I. Marei, E. F. El-Saadany, M. M. A. Salama, Envelope tracking techniques for flicker mitigation and voltage regulation. IEEE Trans. Power Del. 19(4), 1854–1861 (October 2004)CrossRefGoogle Scholar
  13. 13.
    S. Bolognani, S. Calligaro, and R. Petrella, Design issues and estimation errors analysis of back-EMF-based position and speed observer for SPM synchronous motors. IEEE J. Emerging Sel. Topics Power Electron. 2(2), 159–170 (June 2014)CrossRefGoogle Scholar
  14. 14.
    K. W. Martin, Complex signal processing is not complex. IEEE Trans. Circuits Syst. 51(9), 1823–1836 (September 2004)MathSciNetCrossRefGoogle Scholar
  15. 15.
    F. Briz, M. W. Degner, and R. D. Lorenz, Analysis and design of current regulators using complex vectors. IEEE Trans. Ind. Appl. 36(3), 817–825 (May/June 2000)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Gaolin Wang
    • 1
  • Guoqiang Zhang
    • 1
  • Dianguo Xu
    • 1
  1. 1.Harbin Institute of TechnologyHarbinChina

Personalised recommendations