Advertisement

Performance Analysis and Optimization of Process Parameters in WEDM for Inconel 625 Using TLBO Couple with FIS

  • Anshuman KumarEmail author
  • Chinmaya P. Mohanty
  • R. K. Bhuyan
  • Abdul Munaf Shaik
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1048)

Abstract

The present investigation highlights an experimental study and optimization of machining outcomes characteristics (such as MRR and Ra) during WEDM process of Inconel 625. The present work examined the effects of wire electrode materials, such as Zn-coated brass electrode (ZCBE) and uncoated brass electrode (UBE) on work material during WEDM process. Based on L16 orthogonal array, the experiment was performed in consideration with four process factor: spark-on time (Son), flushing pressure (Pf), wire-tension (Tw), and discharge current (Dc), within selected experimental domain. The additional objective of present investigation is to develop a multi-response optimization tool for selection of satisfactory process parameter setting during WEDM of Inconel 625. Nonlinear regression model was applied to formulate statistical models for multi-objective optimization using, fuzzy inference system (FIS) combination with TLBO for fulfill this objective. Finally, the satisfactory process parameter obtained by TLBO was compared with the genetic algorithm (GA) individually and found out that, the TLBO algorithm was found to be simpler, effective, and time-saving approach while solving multi-objective problems.

Keywords

WEDM MRR Surface roughness FIS TLBO GA 

References

  1. 1.
    Tarng, Y., Ma, S., Chung, L.: Determination of optimal cutting parameters in wire electrical discharge machining. Int. J. Mach. Tools Manuf. 35(12), 1693–1701 (1995)CrossRefGoogle Scholar
  2. 2.
    Spedding, T.A., Wang, Z.: Parametric optimization and surface characterization of wire electrical discharge machining process. Precision Eng. 20(1), 5–15 (1997)CrossRefGoogle Scholar
  3. 3.
    Kumar, A., Majumder, H., Vivekananda, K., Maity, K.: NSGA-II approach for multi-objective optimization of wire electrical discharge machining process parameter on inconel 718. Mater. Today Proc. 4(2), 2194–2202 (2017)CrossRefGoogle Scholar
  4. 4.
    Scott, D., Boyina, S., Rajurkar, K.: Analysis and optimization of parameter combinations in wire electrical discharge machining. Int. J. Prod. Res. 29(11), 2189–2207 (1991)CrossRefGoogle Scholar
  5. 5.
    Kumar, A., Abhishek, K.: Influence of process parameters on MRR, kerf width and surface roughness during WEDM on Inconel 718: performance analysis of electrode tool material. Int. J. Ind. Syst. Eng. 30(3), 298–315 (2018)Google Scholar
  6. 6.
    Bobbili, R., Madhu, V., Gogia, A.: Effect of wire-EDM machining parameters on surface roughness and material removal rate of high strength armor steel. Mater. Manuf. Process. 28(4), 364–368 (2013)CrossRefGoogle Scholar
  7. 7.
    Prohaszka, J., Mamalis, A., Vaxevanidis, N.: The effect of electrode material on machinability in wire electro-discharge machining. J. Mater. Process. Technol. 69(1), 233–237 (1997)CrossRefGoogle Scholar
  8. 8.
    Antar, M., Soo, S., Aspinwall, D., Jones, D., Perez, R.: Productivity and workpiece surface integrity when WEDM aerospace alloys using coated wires. Procedia Eng. 19, 3–8 (2011)CrossRefGoogle Scholar
  9. 9.
    Kumar, A., Abhishek, K., Vivekananda, K., Maity, K.: Effect of wire electrode materials on die-corner accuracy for Wire Electrical Discharge Machining (WEDM) of Inconel 718. Mater. Today Proc. 5(5), 12641–12648 (2018)CrossRefGoogle Scholar
  10. 10.
    Kumar, A., Abhishek, K., Vivekananda, K., Upadhyay, C.: Experimental study and optimization of process parameters during WEDM taper cutting. In: Soft Computing for Problem Solving, pp. 721–736. Springer (2019)Google Scholar
  11. 11.
    Varun, A., Venkaiah, N.: Simultaneous optimization of WEDM responses using grey relational analysis coupled with genetic algorithm while machining EN 353. Int. J. Adv. Manuf. Technol. 76(1–4), 675–690 (2015)CrossRefGoogle Scholar
  12. 12.
    Zadeh, L.A.: A fuzzy-algorithmic approach to the definition of complex or imprecise concepts. Int. J. Man Mach. Stud. 8(3), 249–291 (1976)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Verma, R.K., Abhishek, K., Datta, S., Mahapatra, S.S.: Fuzzy rule based optimization in machining of FRP composites. Turk. J. Fuzzy Syst. 2(2), 99–121 (2011)Google Scholar
  14. 14.
    Rao, R.V., Savsani, V.J., Vakharia, D.: Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput. Aided Des. 43(3), 303–315 (2011)CrossRefGoogle Scholar
  15. 15.
    Rao, R.V., Savsani, V.J., Vakharia, D.: Teaching–learning-based optimization: an optimization method for continuous non-linear large scale problems. Inf. Sci. 183(1), 1–15 (2012)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Rao, R.V.: Parameter optimization of machining processes using TLBO algorithm. In: Teaching Learning Based Optimization Algorithm, pp. 181–190. Springer (2016)Google Scholar
  17. 17.
    Golshan, A., Ghodsiyeh, D., Izman, S.: Multi-objective optimization of wire electrical discharge machining process using evolutionary computation method: effect of cutting variation. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 0954405414523593 (2014)Google Scholar
  18. 18.
    Palanikumar, K.: Surface roughness model for machining glass fiber reinforced plastics by PCD tool using fuzzy logics. J. Reinf. Plast. Compos. 28(18), 2273–2286 (2009)CrossRefGoogle Scholar
  19. 19.
    Kaveh, A., Talatahari, S.: Optimum design of skeletal structures using imperialist competitive algorithm. Comput. Struct. 88(21–22), 1220–1229 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Anshuman Kumar
    • 1
    Email author
  • Chinmaya P. Mohanty
    • 2
  • R. K. Bhuyan
    • 1
  • Abdul Munaf Shaik
    • 1
  1. 1.Department of Mechanical EngineeringKoneru Lakshmaiah Education FoundationVaddeswaramIndia
  2. 2.School of Mechanical EngineeringVellore Institute of TechnologyVelloreIndia

Personalised recommendations