Advertisement

Recent Research Advances in Black and White Visual Cryptography Schemes

  • T. E. JishaEmail author
  • Thomas Monoth
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1048)

Abstract

Visual Cryptography (VC) is a type of image secret sharing scheme which decrypts an original secret image with Human Visual System (HVS). In this, the original image can be alienated into n shadows or shares and allocated to n participants; stacking any k shares reveals the secret image which ensures the security measures. In this paper, we examined the recent research advances in black and white VCSs. We reviewed the existing techniques and a comparative study of VC for binary images is presented. The study is performed with respect to different parameters and draws the current barriers related to the visual cryptography schemes.

Keywords

Visual cryptography scheme Pixel expansion General access structure Basis matrices 

References

  1. 1.
    Naor, M., Shamir, A.: Visual cryptography, advances in cryptology-eurocrypt’94. LNCS 950, 1–12 (1995)Google Scholar
  2. 2.
    Pandey, D., Kumar, A., Singh, Y.: Feature and future of visual cryptography based schemes. In: Quality, Reliability, Security and Robustness in Heterogeneous Networks, Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol. 115, pp. 816–830. Springer, Berlin (2013).  https://doi.org/10.1007/978-3-642-37949-9_71Google Scholar
  3. 3.
    Monoth, T., Babu Anto P, “Analysis and design of tamperproof and contrast-enhanced secret sharing based on visual cryptography schemes, Ph.D Thesis, Kannur University, Kerala, India, (2012). (http:// shodhganga.inflibnet.ac.in)Google Scholar
  4. 4.
    Blundo, C., Cimatob, S., De Santisa, A.: Visual cryptography schemes with optimal pixel expansion. Theor. Comput. Sci. 369(1-3), 169–182 (2006), (Elsevier) ( https://doi.org/10.1016/j.tcs.2006.08.008)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Ito, R., Kuwakado, H., Tanaka, H.: Image size invariant visual cryptography. IEICE Trans. Fundam. E82-A, 10 (1999)Google Scholar
  6. 6.
    Tzeng, W.G., Hu, C.M.: A new approach for visual cryptography. Des. Codes Cryptogr. 27(3), 207–227 (2002).  https://doi.org/10.1023/A:1019939020426MathSciNetCrossRefGoogle Scholar
  7. 7.
    Yang, C.N.: New visual secret sharing schemes using probabilistic method. Pattern Recognit. Lett. 25(4), 481–494 (2004), (Elsevier)CrossRefGoogle Scholar
  8. 8.
    Blundo, Carlo, Cimato, Stelvio, De Santis, Alfredo: Visual cryptography schemes with optimal pixel expansion. Theoret. Comput. Sci. 369, 169–182 (2006).  https://doi.org/10.1016/j.tcs.2006.08.008. (Elsevier)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Klein, A., Wessler, M.: Extended visual cryptography schemes. Inf. Comput. 205(5), 716–732 (2007).  https://doi.org/10.1016/j.ic.2006.12.005. (Elsevier)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Hajiabolhassan, Hossein, Cheraghi, Abbas: Bounds for visual cryptography schemes. Discret. Appl. Math. 158(6), 659–665 (2010).  https://doi.org/10.1016/j.dam.2009.12.005. (Elsevier)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Liu, Feng, ChuanKun, Wu, Lin, XiJun: A new definition of the contrast of visual cryptography scheme. Inf. Process. Lett. 110(7), 241–246 (2010).  https://doi.org/10.1016/j.ipl.2010.01.003. (Elsevier)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Lee, Kai-Hui, Chiu, Pei-Ling: A high contrast and capacity efficient visual cryptography scheme for the encryption of multiple secret images. Opt. Commun. 284(12), 2730–2741 (2011).  https://doi.org/10.1016/j.optcom.2011.01.077. (Elsevier)CrossRefGoogle Scholar
  13. 13.
    Liu, Feng, guo, Teng, Wu, ChuanKun, Qian, Lina: Improving the visual quality of size invariant visual cryptography scheme. J. Vis. Commun. Image Represent. 23(2), 331–342 (2012).  https://doi.org/10.1016/j.jvcir.2011.11.003. (Elsevier)CrossRefGoogle Scholar
  14. 14.
    Petrauskiene, V., Aleksa, A., Fedaravicius, A., Ragulskis, M.: Dynamic visual cryptography for optical control of vibration generation equipment. Opt. Lasers Eng. 50, 869–876 (2012) (Elsevier)CrossRefGoogle Scholar
  15. 15.
    Yan, Xuehu, Wang, Shen, Niu, Xiamu: Threshold construction from specific cases in visual cryptography without the pixel expansion. Sig. Process. 105, 389–398 (2014).  https://doi.org/10.1016/j.sigpro.2014.06.011. (Elsevier)CrossRefGoogle Scholar
  16. 16.
    D’Arco, P., De Prisco, R., De Santis, A.: Measure-independent characterization of contrast optimal visual cryptography schemes. J. Syst. Softw. 95, 89–99 (2014).  https://doi.org/10.1016/j.jss.2014.03.079. (Elsevier)CrossRefzbMATHGoogle Scholar
  17. 17.
    Chiu, Pei-Ling, Lee, Kai-Hui: User-friendly threshold visual cryptography with complementary cover images. Sig. Process. 108, 476–488 (2015).  https://doi.org/10.1016/j.sigpro.2014.09.032. (Elsevier)CrossRefGoogle Scholar
  18. 18.
    Lee, Jung-San, Chang, Chin-Chen, Huynh, Ngoc-Tu, Tsai, Hsin-Yi: Preserving user-friendly shadow and high-contrast quality for multiple visual secret sharing technique. Digit. Signal Proc. 40, 131–139 (2015).  https://doi.org/10.1016/j.dsp.2015.02.012. (Elsevier)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Duanhao, Ou, Sun, Wei, Xiaotian, Wu: Non-expansible XOR-based visual cryptography scheme with meaningful shares. Sig. Process. 108, 604–621 (2015).  https://doi.org/10.1016/j.sigpro.2014.10.011. (Elsevier)CrossRefGoogle Scholar
  20. 20.
    Palevicius, Paulius, Ragulskis, Minvydas: Image communication scheme based on dynamic visual cryptography and computer generated holography. Opt. Commun. 335, 161–167 (2015).  https://doi.org/10.1016/j.optcom.2014.09.041. (Elsevier)CrossRefGoogle Scholar
  21. 21.
    Miss, H.M., Miss, P.V.: Fuzzy logic based image encryption for confidential data transfer using (2, 2) secret sharing scheme. Procedia Comput. Sci. 78, 632–639. (2016).  https://doi.org/10.1016/j.procs.2016.02.110 (Elsevier)CrossRefGoogle Scholar
  22. 22.
    Hodeish, Mahmoud E., Bukauskas, Linas, Humbe, Vikas T.: An optimal (k, n) visual secret sharing scheme for information security. Procedia Comput. Sci. 93, 760–767 (2016).  https://doi.org/10.1016/j.procs.2016.07.288. (Elsevier)CrossRefGoogle Scholar
  23. 23.
    Lakshmanan, R., Arumugam, S.: Des. Codes Cryptogr. 82(3), 629–645 (2017).  https://doi.org/10.1007/s10623-016-0181-z. (Springer)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Singh, Priyanka, Raman, Balasubramanian, Misra, Manoj: A (n, n) threshold non-expansible XOR based visual cryptography with unique meaningful shares. Sig. Process. (2017).  https://doi.org/10.1016/j.sigpro.2017.06.015CrossRefGoogle Scholar
  25. 25.
    Yang, Ching-Nung, Xiaotian, Wu, Chou, Yung-Chien, Zhangjie, Fu: Constructions of general (k, n) reversible AMBTC-based visual cryptography with two decryption options. J. Vis. Commun. Image Represent. 48, 182–194 (2017).  https://doi.org/10.1016/j.jvcir.2017.06.012CrossRefGoogle Scholar
  26. 26.
    Guo, Teng, Zhou, LinNa: Constructing visual cryptography scheme by hypergraph decomposition. Procedia Comput. Sci. 131, 336–343 (2018).  https://doi.org/10.1016/j.procs.2018.04.172. (Elsevier)CrossRefGoogle Scholar
  27. 27.
    Hua, Hao, Liu, Yuling, Wang, Yongwei, Chang, Dexian, Leng, Qiang: Visual cryptography based multilevel protection scheme for visualization of network security situation. Procedia Comput. Sci. 131, 204–212 (2018).  https://doi.org/10.1016/j.procs.2018.04.204. (Elsevier)CrossRefGoogle Scholar
  28. 28.
    Jia, X., Wang, D., Nie, D., Zhang, C.: Collaborative visual cryptography schemes. IEEE Trans. Circuits Syst. Video Technol. 28(5), 1056–1070 (2018).  https://doi.org/10.1109/tcsvt.2016.2631404. (IEEE)CrossRefGoogle Scholar
  29. 29.
    Shivani, S., Agarwal, S.: VPVC: verifiable progressive visual cryptography. Pattern Anal Appl. 21(1), 139–166 (2018).  https://doi.org/10.1007/s10044-016-0571-x. (SpringerLink)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Information TechnologyKannur UniversityKannurIndia
  2. 2.Department of Computer ScienceMary Matha Arts & Science College, Kannur UniversityWayanadIndia

Personalised recommendations