Advertisement

Inspection of Crop-Weed Image Database Using Kapur’s Entropy and Spider Monkey Optimization

  • V. RajinikanthEmail author
  • Nilanjan Dey
  • Suresh Chandra Satapathy
  • K. Kamalanand
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1048)

Abstract

Image assessment measures are commonly employed in different domains to extract the helpful information to take essential decisions. This paper implements a soft-computing approach to examine the Benchmark Crop-Weed (BCW) images of Computer Vision Problems in Plant Phenotyping (CVPPP2014) challenge database. The proposed work executes a hybrid procedure based on Spider Monkey Optimization (SMO) algorithm and Kapur’s multi-thresholding and the Watershed Segmentation (WS) based extraction. After extracting the Crop-Weed regions of BCW pictures, the superiority of the proposed tool is then assessed by implementing a relative study among extracted segment and its related ground-truth. Additionally, the prominence of SMO is validated against the Bat-Algorithm (BA) and Firefly-Algorithm (FA). The outcome of this study authenticates that SMO-based technique is competent in examining the BCW pictures with significant accuracy and precision.

Keywords

Crop-Weed image Condition monitoring Spider Monkey Optimization Image assessment Validation 

References

  1. 1.
    Haug, S., Michaels, A., Biber, P., Ostermann, J.: Plant classification system for crop/weed discrimination without segmentation. In: IEEE Winter Conference on Applications of Computer Vision (WACV), IEEE, pp. 1142–1149 (2014).  https://doi.org/10.1109/wacv.2014.6835733
  2. 2.
    Bakhshipour, A., Jafari, A., Nassiri, S.M., Zare, D.: Weed segmentation using texture features extracted from wavelet sub-images. Biosys. Eng. 157, 1–12 (2017).  https://doi.org/10.1016/j.biosystemseng.2017.02.002CrossRefGoogle Scholar
  3. 3.
    Haug, S., Ostermann, J.: Plant classification for field robots: a machine vision approach. In: Computer Vision and Pattern Recognition in Environmental Informatics, pp. 248 (2016).  https://doi.org/10.4018/978-1-4666-9435-4.ch012
  4. 4.
    Burgos-Artizzu, X.P., Ribeiro, A., Guijarro, M., Pajares, G.: Real-time image processing for crop/weed discrimination in maize fields. Comput. Electron. Agric. 75(2), 337–346 (2011).  https://doi.org/10.1016/j.compag.2010.12.011CrossRefGoogle Scholar
  5. 5.
    Tellaeche, A., Pajares, G., Burgos-Artizzu, X.P., Ribeiro, A.: A computer vision approach for weeds identification through support vector machines. Appl. Soft Comput. 11, 908–915 (2011).  https://doi.org/10.1016/j.asoc.2010.01.011CrossRefzbMATHGoogle Scholar
  6. 6.
    Montalvo, M., Guerrero, J.M., Romeo, J., Emmi, L., Guijarro, M., Pajares, G.: Automatic expert system for weeds/crops identification in images from maize fields. Expert Syst. Appl. 40(1), 75–82 (2013).  https://doi.org/10.1016/j.eswa.2012.07.034CrossRefGoogle Scholar
  7. 7.
    Aitkenhead, M.J., Dalgetty, I.A., Mullins, C.E., McDonald, A.J.S., Strachan, N.J.C.: Weed and crop discrimination using image analysis and artificial intelligence methods. Comput. Electron. Agric. 39(3), 157–171 (2003).  https://doi.org/10.1016/s0168-1699(03)00076-0CrossRefGoogle Scholar
  8. 8.
    Herrera, P.J., Dorado, J., Ribeiro, A.: A novel approach for weed type classification based on shape descriptors and a fuzzy decision-making method. Sensors 14(8), 15304–15324 (2014).  https://doi.org/10.3390/s140815304CrossRefGoogle Scholar
  9. 9.
    Haug, S., Ostermann, J.: A crop/weed field image dataset for the evaluation of computer vision based precision agriculture tasks. Lect. Notes Comput. Sci. 8928, 105–116 (2014).  https://doi.org/10.1007/978-3-319-16220-1_8CrossRefGoogle Scholar
  10. 10.
    Bansal, J.C., Sharma, H., Jadon, S.S., Clerc, M.: Spider monkey optimization algorithm for numerical optimization. Memetic Comput. 6(1), 31–47 (2014)CrossRefGoogle Scholar
  11. 11.
    Sharma, H., Hazrati, G., Bansal, J.C.: Spider monkey optimization algorithm. In: Studies in Computational Intelligence, vol. 779, pp. 43–59 (2019).  https://doi.org/10.1007/978-3-319-91341-4_4Google Scholar
  12. 12.
    Gupta, K., Deep, K., Bansal, J.C.: Spider monkey optimization algorithm for constrained optimization problems. Soft. Comput. 21(23), 6933–6962 (2017)CrossRefGoogle Scholar
  13. 13.
    Gupta, K., Deep, K., Bansal, J.C.: Improving the local search ability of spider monkey optimization algorithm using quadratic approximation for unconstrained optimization. Comput. Intell. 33(2), 210–240 (2017)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Sharma, A., Sharma, H., Bhargava, A., Sharma, N., Bansal, J.C.: Optimal power flow analysis using Lévy flight spider monkey optimisation algorithm. Int. J. Artif. Intell. Soft Comput. 5(2), 320–352 (2016)CrossRefGoogle Scholar
  15. 15.
    Dey, et al.: Firefly algorithm for optimization of scaling factors during embedding of manifold medical information: an application in ophthalmology imaging. J. Med. Imaging Health Inform. 4(3), 384–394 (2014).  https://doi.org/10.1166/jmihi.2014.1265CrossRefGoogle Scholar
  16. 16.
    Satapathy, S.C., Raja, N.S.M., Rajinikanth, V., Ashour, A.S., Dey, N.: Multi-level image thresholding using Otsu and chaotic bat algorithm. Neural Comput. Appl. 29(12), 1285–1307 (2018).  https://doi.org/10.1007/s00521-016-2645-5CrossRefGoogle Scholar
  17. 17.
    Yang, X.S.: Nature-Inspired Metaheuristic Algorithms, 2nd edn. Luniver Press, Frome, UK (2011)Google Scholar
  18. 18.
    Kapur, J.N., Sahoo, P.K., Wong, A.K.C.: A new method for gray-level picture thresholding using the entropy of the histogram. Comput. Vision. Graph. Image Process. 29, 273–285 (1985)CrossRefGoogle Scholar
  19. 19.
    Dey, N., Rajinikanth, V., Ashour, A.S., Tavares, J.M.R.S.: Social group optimization supported segmentation and evaluation of skin melanoma images. Symmetry 10(2), 51 (2018).  https://doi.org/10.3390/sym10020051CrossRefzbMATHGoogle Scholar
  20. 20.
    Rajinikanth, V., Satapathy, S.C., Dey, N., Lin, H.: Evaluation of ischemic stroke region from CT/MR images using hybrid image processing techniques. In: Intelligent Multidimensional Data and Image Processing, pp. 194–219 (2018).  https://doi.org/10.4018/978-1-5225-5246-8.ch007
  21. 21.
    Deng, G., Li, Z.: An improved marker-controlled watershed crown segmentation algorithm based on high spatial resolution remote sensing imagery. Lect. Notes Electr. Eng. 128, 567–572 (2012)CrossRefGoogle Scholar
  22. 22.
    Rajinikanth, V., Dey, N., Satapathy, S.C., Ashour, A.S.: An approach to examine magnetic resonance angiography based on Tsallis entropy and deformable snake model. Futur. Gener. Comput. Syst. 85, 160–172 (2018).  https://doi.org/10.1016/j.future.2018.03.025CrossRefGoogle Scholar
  23. 23.
    Raja, N.S.M., Fernandes, S.L. Dey, N., Satapathy, S.C., Rajinikanth, V.: Contrast enhanced medical MRI evaluation using Tsallis entropy and region growing segmentation. J. Ambient. Intell. Humaniz. Comput. 1–12 (2018).  https://doi.org/10.1007/s12652-018-0854-8
  24. 24.
    Rajinikanth, V., Satapathy, S.C., Fernandes, S.L., Nachiappan, S.: Entropy based segmentation of tumor from brain MR images–a study with teaching learning based optimization. Pattern Recogn. Lett. 94, 87–95 (2017).  https://doi.org/10.1016/j.patrec.2017.05.028CrossRefGoogle Scholar
  25. 25.
    Rajinikanth, V., Raja, N.S.M., Satapathy, S.C., Dey, N., Devadhas, G.G.: Thermogram assisted detection and analysis of ductal carcinoma in situ (DCIS). In: International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT), IEEE, pp. 1641–1646 (2018).  https://doi.org/10.1109/icicict1.2017.8342817
  26. 26.
    AlShahrani, A.M., Al-Abad, M.A., Al-Malki, A.S., Ashour, A.S., Dey, N.: Automated system for crops recognition and classification. In: Computer Vision: Concepts, Methodologies, Tools, and Applications, pp. 1208–1223. IGI Global (2018).  https://doi.org/10.4018/978-1-5225-5204-8.ch050CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • V. Rajinikanth
    • 1
    Email author
  • Nilanjan Dey
    • 2
  • Suresh Chandra Satapathy
    • 3
  • K. Kamalanand
    • 4
  1. 1.St. Joseph’s AI GroupSt. Joseph’s College of EngineeringChennaiIndia
  2. 2.Department of Information TechnologyTechno India College of TechnologyKolkataIndia
  3. 3.School of Computer EngineeringKalinga Institute of Industrial Technology (Deemed to Be University)BhubaneswarIndia
  4. 4.Department of Instrumentation EngineeringM.I.T Campus, Anna UniversityChennaiIndia

Personalised recommendations