Advertisement

Free-Space Optics: A Shifting Paradigm in Optical Communication Systems in Difficult Terrains

  • PayalEmail author
  • Suresh Kumar
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1045)

Abstract

Free-space optical (FSO) communication is a high-speed technology that can be used to promote rapid deployment of ubiquitous wireless service at the geographical locations such as hilly areas, where radio frequency (RF) technology is inaccessible and laying of optical fibers is not physically and economically viable. FSO has gained significant importance due to several advantages such as extremely high bandwidth, unlicensed spectrum allocation, reduced power consumption about half of the RF, ease of deployment, improved channel security, and reduced size which is one-tenth of the diameter of RF antenna. However, along with many advantages of FSO, atmosphere poses a serious limitation on its performance causing absorption, scattering, scintillations, and atmospheric turbulences. This paper presents a comprehensive review of FSO technology. FSO basics along with its advantages over RF are described so that readers can easily get the concept of shifting from RF to optical communication. Further, the paper also highlights the challenges faced by FSO, various models to characterize atmospheric turbulence fluctuations, issues, and methods to overcome them.

Keywords

On–off keying (OOK) Subcarrier intensity modulation (SIM) Pulse position modulation (PPM) FSO Optical fiber cable (OFC) Line of sight (LOS) RF 

References

  1. 1.
    Neha, Kumar, S.: Free space optical communication: a review. Int. J. Electr. Electr. Comput. Syst. (IJEECS) 5(9), 4–8 (2016). ISSN 2348-117XGoogle Scholar
  2. 2.
    Chan, V.W.S.: Free-space optical communications. J. Lightwave Tech. 24(12), 4750–4762 (2006)CrossRefGoogle Scholar
  3. 3.
    Popoola, W.O., Ghassemlooy, Z., Lee, C.G., Boucouvalas, A.C.: Scintillation effect on intensity modulated laser communication systems—a laboratory demonstration. J. Opt. Laser Technol. 42(4), 682–692 (2009)CrossRefGoogle Scholar
  4. 4.
    Zhong, W.D., Fu, S., Lin, C.: Performance comparison of different modulation formats over free space optical (FSO) turbulence link with space diversity reception technique. IEEE photon. J. 1(6), 277–285 (2009)CrossRefGoogle Scholar
  5. 5.
    Rajbhandari, S., et al.: On the study of the FSO link performance under controlled Turbulence and Fog atmospheric condition. In: 11th International Conference on Telecommunications, ConTEL, G Raz, Austria, pp. 223–226 (2011)Google Scholar
  6. 6.
    Borah, D.K., Voelz, D.G.: Pointing error effects on free space optical communication links in the presence of atmospheric turbulence. J. Lightwave Technol. 27(18), 3965–3973 (2009)CrossRefGoogle Scholar
  7. 7.
    Kumar, S., Rathee, S., Arora, P., Sharma, D.: A comprehensive review on fiber bragg grating and photodetector in optical communication networks. J. Opt. Commun. DG Gruyter. 0(0), aop (2019)  https://doi.org/10.1515/joc-2018-0205
  8. 8.
    Bloom, S., Korevaar, E., Schuster, J., Willebrand, H.: Understanding the performance of free-space optics [Invited]. J. Opt. Netw. 2(6), 178–200 (2003)CrossRefGoogle Scholar
  9. 9.
    Williams, W.D., et al.: RF and optical communications: a comparison of high data rate returns from deep space in the 2020 timeframe. In: Technical Report: NASA/TM-2007-214459 (2007)Google Scholar
  10. 10.
    Neha, Kumar, S.: Role of modulators in free space optical communication. Int. J. Eng. Technol. Manage. Appl. Sci. (IJETMAS) 4(9), 92–96 (2016). ISSN 2349-4476Google Scholar
  11. 11.
    Henniger, H., Wilfert, O.: An introduction to free-space optical communications. J. Radio Eng. 19(2), 203–212 (2010)Google Scholar
  12. 12.
    Hansel, G., Kube, E.: Simulation in the design process of free space optical transmission systems. In: Proceedings of the 6th Workshop, Optics in Computing Technology, Paderborn (Germany), pp. 45–53 (2003)Google Scholar
  13. 13.
    Payal, Kumar, S.: Nonlinear impairments in fiber optic communication systems: analytical review. In: Futuristic Trends in Network and Communication Engineering. FTNCT-2018. Communications in Computer and Information Science, Springer, Singapore, vol. 958, pp. 28–44 (2019)  https://doi.org/10.1007/978-981-13-3804-5_3
  14. 14.
    Popoola, W., Ghassemlooy, Z., Awan, M.S., Leitgeb Piteti E.: Atmospheric Channel Effects on terrestrial free space optical communication link. In: ECAI 2009—International Conference 3rd edn, pp. 17–23 (2009)Google Scholar
  15. 15.
    Rouissat, M., Borsali, A.R., Chiak-Bled, M.E.: Free space optical channel characterization and modeling with focus on Algeria weather conditions. Int. J. Comp. Netw. Inf. Secur. 3, 17–23 (2012)Google Scholar
  16. 16.
    Achour, M.: Free-space optics wavelength selection: 10μ versus shorter wavelengths. In: Proceedings of SPIE (SPIE, Bellingham, WA), vol. 5160, pp. 234–246 (2003)  https://doi.org/10.1117/12.502483
  17. 17.
    Awan, M.S., Horwath, L.S., Muhammad, S.S., Leitgeb, E., Nadeem, F., Khan, M.S.: Characterization of fog and snow attenuations for free-space optical propagation. J. Commun. 4(8), 533–545 (2009)CrossRefGoogle Scholar
  18. 18.
    Sandalidis, H.G., Tsiftsis, T.A., Karagiannidis, G.K., Uysal, M.: BER performance of FSO links over strong atmospheric turbulence channels with pointing errors. IEEE Commun. Lett. 12(1), 44–46 (2008)CrossRefGoogle Scholar
  19. 19.
    Willebrand, H., Ghuman, B.S.: Free Space Optics: Enabling Optical Connectivity in Today’s Networks. Sams Publishing (2002)Google Scholar
  20. 20.
    Mahalati, R.N., Kahn, J.M.: Effect of fog on free-space optical links employing imaging receivers. Opt. Exp. 20(2), 1649–1661 (2012)CrossRefGoogle Scholar
  21. 21.
    Wainright, E., Refai, H.H., Sluss, J.J.: Wavelength diversity in free-space optics to alleviate fog effects. In: Proceedings of SPIE, vol. 5712, pp. 110–118 (2005)Google Scholar
  22. 22.
    Al Naboulsi, M., Sizun, H., De Fornel, F.: Fog attenuation prediction for optical and infrared waves. Opt. Eng. 43(2), 319–329 (2004)CrossRefGoogle Scholar
  23. 23.
    Kim, I.I., McArthur, B., Korevaar, E.: Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications. In: Proceedings of SPIE, vol. 4214, Boston, MA, USA (2001)Google Scholar
  24. 24.
    Grabner, M., Kvicera, V.: Fog attenuation dependence on atmospheric visibility at two wavelengths for FSO link planning. In: 2010 Loughborough Antennas & Propagation Conference, Loughborough, pp. 193–196 (2010)Google Scholar
  25. 25.
    Ijaz, M., Ghassemlooy, Z., Rajbhandari, S., Le Minh, H., Perez, J., Gholami, A.: Comparison of 830 nm and 1550 nm based free space optical communications link under controlled fog conditions. In: 8th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP), Poznan, pp. 1–5 (2012)Google Scholar
  26. 26.
    Andrej, L., et al.: Features and range of the FSO by use of the OFDM and QAM modulation in different atmospheric conditions. In: Proceedings of SPIE, vol. 9103, Wireless Sensing, Localization, and Processing IX, 91030O, pp. 1–10 (2014)Google Scholar
  27. 27.
    Ali, M., Ali, A.: Performance analysis of fog effect on free space optical communication system. IOSR J. Appl. Phys. 7(2), 16–24 (2015)Google Scholar
  28. 28.
    Fadhil, H.A., et al.: Optimization of free space optics parameters: an optimum solution for bad weather conditions. Optik 124(19), 3969–3973 (2013)CrossRefGoogle Scholar
  29. 29.
    Rahman, A.K., Anuar, M.S., Aljunid, S.A., Junita, M.N.: Study of rain attenuation consequence in free space optic transmission. In: Proceedings of the 2nd Malaysia Conference on Photonics Telecommunication Technologies (NCTT-MCP ’08), pp. 64–70, IEEE, Putrajaya, Malaysia (2008)Google Scholar
  30. 30.
    Suriza, A.Z., Rafiqul, I.M., Wajdi, A.K., Naji, A.W.: Proposed parameters of specific rain attenuation prediction for free space optics link operating in tropical region. J. Atmos. Solar Terres. Phys. 94, 93–99 (2013)CrossRefGoogle Scholar
  31. 31.
    Vavoulas, A., Sandalidis, H.G., Varoutas, D.: Weather effects on FSO network connectivity. J. Opt. Commun. Netw. 4(10), 734–740 (2012)CrossRefGoogle Scholar
  32. 32.
    Crane, R.K., Robinson, P.C.: ACTS propagation experiment: rain-rate distribution observations and prediction model comparisons. Proc. IEEE 86(6), 946–958 (1997)CrossRefGoogle Scholar
  33. 33.
    Al Naboulsi, M., Sizun H., De Fornel F.: Propagation of Optical and Infrared Waves in the Atmosphere. http://www.ursi.org/proceedings/procga05/pdf/F01P.7(01729).pdf
  34. 34.
    Al-Gailani, S.A., Mohammad, A.B., Shaddad, R.Q.: Enhancement of free space optical link in heavy rain attenuation using multiple beam concept. Opt. Int. J. Light Electron Opt. 124(21), 4798–4801 (2013)CrossRefGoogle Scholar
  35. 35.
    Andrews, L.C., Phillips, R.L., Hopen, C.Y.: Laser Beam Scintillation with Applications. SPIE Press (2001)Google Scholar
  36. 36.
    Ghassemlooy, Z., Popoola, W.O.: Terrestrial free-space optical communications. Optical Communications Research Group, NCR lab, Northumria University, Newcastle upon Tyne, 5(7), 195–212 (2014)Google Scholar
  37. 37.
    Andrews, L.: Field Guide to Atmospheric Optics. SPIE Press (2004)Google Scholar
  38. 38.
    Popoola, W.O., Ghassemlooy, Z.: BPSK subcarrier intensity modulated free-space optical communications in atmospheric turbulence. J. Lightwave Technol. 27(8), 967–973 (2009)CrossRefGoogle Scholar
  39. 39.
    Perlot, N., Fritzsche, D.: Aperture-averaging, theory and measurements. In: Proceedings of SPIE, Free-Space Laser Communication Technologies XVI, vol. 5338, pp. 233–242 (2004)Google Scholar
  40. 40.
    Wasiczko, L.M., Davis, C.C.: Aperture averaging of optical scintillations in the atmosphere: experimental results. In: Proceedings SPIE, Atmospheric Propagation II, vol. 5793, pp. 197–208 (2005)Google Scholar
  41. 41.
    Zhu, X., Kahn, J.M.: Maximum-likelihood spatial-diversity reception on correlated turbulent free-space optical channels. In: IEEE Conference Global Communication, San Francisco, CA, vol. 2, pp. 1237–1241 (2000)Google Scholar
  42. 42.
    Payal, Kumar, S., Sharma, D.: Performance analysis of NRZ and RZ modulation schemes in optical fiber link using EDFA. Int. J. Adv. Res. Comput. Sci. Softw. Eng. (IJARCSSE) 7(8), 161–168 (2017).  https://doi.org/10.23956/ijarcsse/v7i8/0102
  43. 43.
    Payal, Sharma, D., Kumar, S.: Analyzing EDFA performance using different pumping techniques. Int. J. Comput. Sci. Eng. 6(5), 195–202 (2018).  https://doi.org/10.26438/ijcse/v6i5.195202
  44. 44.
    Deepti, Payal, Kumar, S.: Performance evaluation of proposed WDM optical link using EDFA and FBG combination. J. Opt. Commun. DG Gruyter, 0(0), aop (2018).  https://doi.org/10.1515/joc-2018-0044
  45. 45.
    Sharma, D., Kumar, S.: Design and evaluation of OFDM based optical communication network. J. Eng. Appl. Sci. 12(Special Issue 2), 6227–6233 (2017).  https://doi.org/10.3923/jeasci.2017.6227.6233

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.University Institute of Engineering and TechnologyMaharshi Dayanand UniversityRohtakIndia

Personalised recommendations