Advertisement

Molecular Mechanisms Associated with Drought and Heat Tolerance in Plants and Options for Crop Improvement for Combined Stress Tolerance

  • M. S. Parvathi
  • K. H. Dhanyalakshmi
  • K. N. NatarajaEmail author
Chapter
  • 54 Downloads

Abstract

Plant responses to biotic and abiotic stresses have been extensively studied in isolation. But, in their natural environments, plants are frequently exposed to combination of stresses. The recent studies using model as well as non-model systems indicate that plant responses to combined stresses are often unique and cannot be completely deduced from their responses to individual stresses. These responses are regulated by complex and distinct regulatory pathways, mediated by diverse genes, proteins, and metabolites, which might vary with plant species and with the intensity of stress experienced. A thorough understanding of these mechanisms is essential for improving crop tolerance to combined stresses. Drought and heat stress cause severe impact on crop growth and productivity, independently, and are more likely to coexist in field conditions, especially in the changing climate scenario. This chapter aims to brief the relevance of combined drought and heat stress, elucidate the underlying mechanisms under individual stresses as well as in combination, and highlight the options for crop improvement under combination of stresses.

Keywords

Drought Heat stress Combined stress Plant responses Crop improvement 

Notes

Acknowledgments

This work is partly supported by the Department of Biotechnology, Government of India, New Delhi (BT/TDS/121/SP20276/2016), RKVY-Government of India (No. DR/Prof. (S)/RKVY/Alloc./B-44/2017-18), and Indian Council of Agricultural Research (ICAR-CAAST- F.No./NAHEP/CAAST/2018-19), Government of India, New Delhi. DKH thanks the Department of Science and Technology (DST), Government of India, New Delhi, for providing DST-INSPIRE research fellowship (IF120808).

References

  1. Agrawal GK, Rakwal R, Iwahashi H (2002) Isolation of novel rice (Oryza sativa L.) multiple stress responsive MAP kinase gene, OsMSRMK2, whose mRNA accumulates rapidly in response to environmental cues. Biochem Biophys Res Commun 294:1009–1016PubMedCrossRefGoogle Scholar
  2. Agrawal GK, Agrawal SK, Shibato J, Iwahashi H, Rakwal R (2003) Novel rice MAP kinases OsMSRMK3 and OsWJUMK1 involved in encountering diverse environmental stresses and developmental regulation. Biochem Biophys Res Commun 300:775–783PubMedCrossRefGoogle Scholar
  3. Ashoub A, Baeumlisberger M, Neupaertl M, Karas M, Bruggemann W (2015) Characterization of common and distinctive adjustments of wild barley leaf proteome under drought acclimation, heat stress and their combination. Plant Mol Biol 87:459–471PubMedCrossRefGoogle Scholar
  4. Awasthi R, Kaushal N, Vadez V, Turner NC, Berger J, Siddique KH, Nayyar H (2014) Individual and combined effects of transient drought and heat stress on carbon assimilation and seed filling in chickpea. Funct Plant Biol 41(11):1148–1167CrossRefGoogle Scholar
  5. Awasthi R, Bhandari K, Nayyar H (2015) Temperature stress and redox homeostasis in agricultural crops. Front Environ Sci 3:11CrossRefGoogle Scholar
  6. Awasthi R, Gaur P, Turner NC, Vadez V, Siddique KH, Nayyar H (2017) Effects of individual and combined heat and drought stress during seed filling on the oxidative metabolism and yield of chickpea (Cicer arietinum) genotypes differing in heat and drought tolerance. Crop Pasture Sci 68(9):823–841CrossRefGoogle Scholar
  7. Babitha KC (2012) Development of multiple gene construct with regulatory genes and their functional validation. PhD thesis, University of Agricultural Sciences, BangaloreGoogle Scholar
  8. Bae H, Kim SK, Cho SK, Kang BG, Kim WT (2011) Overexpression of OsRDCP1, a rice RING domain-containing E3 ubiquitin ligase, increased tolerance to drought stress in rice (Oryza sativa L.). Plant Sci 180:775–782PubMedCrossRefGoogle Scholar
  9. Barnabas B, Jager K, Feher A (2008) The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ 31(1):11–38PubMedPubMedCentralGoogle Scholar
  10. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297PubMedCrossRefGoogle Scholar
  11. Basu S, Ramegowda V, Kumar A, Pereira A (2016) Plant adaptation to drought stress. F1000Research 5:1554CrossRefGoogle Scholar
  12. Battisti DS, Naylor RL (2009) Historical warnings of future food insecurity with unprecedented seasonal heat. Science 323(5911):240–244PubMedCrossRefGoogle Scholar
  13. Beauclair L, Yu A, Bouche N (2010) microRNA-directed cleavage and translational repression of the copper chaperone for superoxide dismutase mRNA in Arabidopsis. Plant J 62(3):454–462PubMedCrossRefGoogle Scholar
  14. Bechtold U, Field B (2018) Molecular mechanisms controlling plant growth during abiotic stress. J Exp Bot 69(11):2753–2758PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bhatt D, Saxena SC, Jain S, Dobriyal AK, Majee M, Arora S (2012) Cloning, expression and functional validation of drought inducible ascorbate peroxidase (Ec-apx1) from Eleusine coracana. Mol Biol Rep 40(2):1155–1165PubMedCrossRefGoogle Scholar
  16. Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In: Gruissem W, Buchannan B, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 1158–1249Google Scholar
  17. Caarls L, Pieterse CM, VanWees SC (2015) How salicylic acid takes transcriptional control over jasmonic acid signaling. Front Plant Sci 6:170PubMedPubMedCentralCrossRefGoogle Scholar
  18. Carmo-Silva AE, Gore MA, Andrade-Sanchez P, French AN, Hunsaker DJ, Salvucci ME (2012) Decreased CO2 availability and inactivation of Rubisco limit photosynthesis in cotton plants under heat and drought stress in the field. Environ Exp Bot 83:1–11CrossRefGoogle Scholar
  19. Castiglioni P, Warner D, Bensen RJ, Anstrom DC, Harrison J, Stoecker M, Abad M, Kumar G, Salvador S, D’Ordine R, Navarro S (2008) Bacterial RNA chaperones confer abiotic stress tolerance in plants and improved grain yield in maize under water-limited conditions. Plant Physiol 147(2):446–455PubMedPubMedCentralCrossRefGoogle Scholar
  20. Charng YY, Liu HC, Liu NY, Chi WT, Wang CN, Chang SH, Wang TT (2007) A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis. Plant Physiol 143(1):251–262PubMedPubMedCentralCrossRefGoogle Scholar
  21. Chen JB, Yang JW, Zhang ZY, Feng XF, Wang SM (2013) Two P5CS genes from common bean exhibiting different tolerance to salt stress in transgenic Arabidopsis. J Genet 92(3):461–469PubMedCrossRefPubMedCentralGoogle Scholar
  22. Chen YS, Lo SF, Sun PK, Lu CA, Ho TH (2015) Yu SM (2015) A late embryogenesis abundant protein HVA1 regulated by an inducible promoter enhances root growth and abiotic stress tolerance in rice without yield penalty. Plant Biotechnol J 13(1):105–116PubMedCrossRefGoogle Scholar
  23. Chinnusamy V, Schumaker K, Zhu JK (2004) Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. J Exp Bot 55:225–236PubMedCrossRefGoogle Scholar
  24. Choi JY, Seo YS, Kim SJ, Kim WT, Shin JS (2011) Constitutive expression of CaXTH3, a hot pepper xyloglucan endotransglucosylase/hydrolase, enhanced tolerance to salt and drought stresses without phenotypic defects in tomato plants (Solanum lycopersicum cv. Dotaerang). Plant Cell Rep 30:867–877PubMedCrossRefGoogle Scholar
  25. Correia B, Hancock RD, Amaral J, Gomez-Cadenas A, Valledor L, Pinto GC (2018) Combined drought and heat activates protective responses in Eucalyptus globulus that are not activated when subjected to drought or heat stress alone. Front Plant Sci 9:819Google Scholar
  26. Ding H, He J, Wu Y, Wu XX, Ge C, Wang Y, Zhong S, Peiter E, Liang JS, Xu W (2018) The tomato mitogen-activated protein kinase SlMPK1 is as a negative regulator of the high temperature stress response. Plant Physiol:00067Google Scholar
  27. Dreesen FE, De-Boeck HJ, Janssens IA, Nijs I (2012) Summer heat and drought extremes trigger unexpected changes in productivity of a temperate annual/biannual plant community. Environ Exp Bot 79:21–30CrossRefGoogle Scholar
  28. Droillard M, Boudsocq M, Barbier-Brygoo H, Lauriere C (2002) Different protein kinase families are activated by osmotic stresses in Arabidopsis thaliana cell suspensions. Involvement of the MAP kinases AtMPK3 and AtMPK6. FEBS Lett 527:43–50Google Scholar
  29. Duan J, Cai W (2012) OsLEA3-2, an abiotic stress induced gene of rice plays a key role in salt and drought tolerance. PLoS One 7(9):e45117PubMedPubMedCentralCrossRefGoogle Scholar
  30. Fang Y, Xiong L (2015) General mechanisms of drought response and their application in drought resistance improvement in plants. Cell Mol Life Sci 72(4):673–689PubMedCrossRefGoogle Scholar
  31. Fang YJ, Liao KF, Du H, Xu Y, Song HZ, Li XH, Xiong L (2015) A stress-responsive NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice. J Exp Bot 66:6803–6817PubMedPubMedCentralCrossRefGoogle Scholar
  32. Fraser CM, Chapple C (2011) The phenylpropanoid pathway in Arabidopsis. Arab Book 9:e0152CrossRefGoogle Scholar
  33. Fu J, Momcilovic I, Clemente TE, Nersesian N, Trick HN, Ristic Z (2008) Heterologous expression of a plastid EF-Tu reduces protein thermal aggregation and enhances CO2 fixation in wheat (Triticum aestivum) following heat stress. Plant Mol Biol 68:277–288PubMedCrossRefGoogle Scholar
  34. Gamuyao R, Chin JH, Pariasca-Tanaka J, Pesaresi P, Catausan S, Dalid C, Slamet-Loedin I, Tecson-Mendoza EM, Wissuwa M, Heuer S (2012) The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency. Nature 488(7412):535PubMedCrossRefGoogle Scholar
  35. Ghanti KKS, Sujata KG, Vijay Kumar BM, Nataraja KN, Janardhan RK, Srinath RM, Kishor PK (2011) Heterologous expression of P5CS gene in chickpea enhances salt tolerance without affecting yield. Biol Plant 55:634–640CrossRefGoogle Scholar
  36. Giri J, Vij S, Dansana PK, Tyagi AK (2011) Rice A20/AN1 zinc-finger containing stress-associated proteins (SAP1/11) and a receptor-like cytoplasmic kinase (OsRLCK253) interact via A20 zinc-finger and confer abiotic stress tolerance in transgenic Arabidopsis plants. New Phytol 191(3):721–732PubMedCrossRefPubMedCentralGoogle Scholar
  37. Go YS, Kim H, Kim HJ, Suh MC (2014) Arabidopsis cuticular wax biosynthesis is negatively regulated by the DEWAX gene encoding an AP2/ERF-type transcription factor. Plant Cell 26:1666–1680PubMedPubMedCentralCrossRefGoogle Scholar
  38. Goel D, Singh AK, Yadav V, Babbar SB, Murata N, Bansal KC (2011) Transformation of tomato with a bacterial codA gene enhances tolerance to salt and water stresses. J Plant Physiol 168(11):1286–1294PubMedCrossRefPubMedCentralGoogle Scholar
  39. Grigorova B, Vassileva V, Klimchuk D, Vaseva I, Demirevska K, Feller U (2012) Drought, high temperature, and their combination affect ultrastructure of chloroplasts and mitochondria in wheat (Triticum aestivum L.) leaves. J Plant Interact 7:204–213CrossRefGoogle Scholar
  40. Guo M, Liu JH, Ma X, Luo DX, Gong ZH, Lu MH (2016) The plant heat stress transcription factors (HSFs): structure, regulation, and function in response to abiotic stresses. Front Plant Sci 7:114PubMedPubMedCentralGoogle Scholar
  41. Hamidou F, Halilou O, Vadez V (2013) Assessment of groundnut under combined heat and drought stress. J Agron Crop Sci 199:1–11CrossRefGoogle Scholar
  42. Hema R, Vemanna RS, Sreeramulu S, Reddy CP, Senthil-Kumar M, Udayakumar M (2014) Stable expression of mtlD Gene imparts multiple stress tolerance in finger millet. PLoS One 9(6):e99110PubMedPubMedCentralCrossRefGoogle Scholar
  43. Hirayama T, Shinozaki K (2010) Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J 61:1041–1052PubMedPubMedCentralCrossRefGoogle Scholar
  44. Hong B, Ma C, Yang Y, Wang T, Yamaguchi-Shinozaki K, Gao J (2009) Over-expression of AtDREB1A in chrysanthemum enhances tolerance to heat stress. Plant Mol Biol 70(3):231–240PubMedCrossRefGoogle Scholar
  45. Hu X, Li Y, Li C, Yang H, Wang W, Lu M (2010) Characterization of small heat shock proteins associated with maize tolerance to combined drought and heat stress. J Plant Growth Regul 29(4):455–464CrossRefGoogle Scholar
  46. Huang YC, Niu CY, Yang CR, Jinn TL (2016) The heat-stress factor HSFA6b connects ABA signaling and ABA-mediated heat responses. Plant Physiol:00860Google Scholar
  47. Hubbard M, Germida JJ, Vujanovic V (2014) Fungal endophytes enhance wheat heat and drought tolerance in terms of grain yield and second-generation seed viability. J Appl Microbiol 116(1):109–122PubMedCrossRefGoogle Scholar
  48. Ichimura K, Mizoguchi T, Yoshida R, Yuasa T, Shinozaki K (2000) Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6. Plant J 24:655–665PubMedCrossRefGoogle Scholar
  49. IPCC (2014) Summary for policymakers. In: Field CB, Barros VR, Dokken DJ (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 1–32Google Scholar
  50. Ji CY, Jin R, Xu Z, Kim HS, Lee CJ, Kang L, Kim SE, Lee HU, Lee JS, Kang CH, Chi YH (2017) Overexpression of Arabidopsis P3B increases heat and low temperature stress tolerance in transgenic sweet potato. BMC Plant Biol 17(1):139PubMedPubMedCentralCrossRefGoogle Scholar
  51. Jia J, Zhou J, Shi W, Cao X, Luo J, Polle A, Luo ZB (2017) Comparative transcriptomic analysis reveals the roles of overlapping heat−/drought-responsive genes in poplars exposed to high temperature and drought. Sci Rep 7:43215PubMedPubMedCentralCrossRefGoogle Scholar
  52. Jiang SY, Bhalla R, Ramamoorthy R, Luan HF, Venkatesh PN, Cai M, Ramachandran S (2012) Over-expression of OSRIP18 increases drought and salt tolerance in transgenic rice plants. Transgenic Res 21(4):785–795PubMedCrossRefGoogle Scholar
  53. Johnson SM, Lim FL, Finkler A, Fromm H, Slabas AR, Knight MR (2014) Transcriptomic analysis of Sorghum bicolor responding to combined heat and drought stress. BMC Genomics 15(1):456PubMedPubMedCentralCrossRefGoogle Scholar
  54. Jonak C, Kiegerl S, Ligterink W, Barker PJ, Huskisson NS, Hirt H (1996) Stress signaling in plants: a mitogen-activated protein kinase pathway is activated by cold and drought. Proc Natl Acad Sci USA 93:11274–11279PubMedCrossRefGoogle Scholar
  55. Joshi R, Wani SH, Singh B, Bohra A, Dar ZA, Lone AA, Pareek A, Singla-Pareek SL (2016) Transcription factors and plants response to drought stress: current understanding and future directions. Front Plant Sci 7:1029PubMedPubMedCentralCrossRefGoogle Scholar
  56. Karaba A, Dixit S, Greco R, Aharoni A, Trijatmiko KR, Marsch-Martinez N, Krishnan A, Nataraja KN, Udayakumar M, Pereira A (2007) Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene. Proc Natl Acad Sci USA 104(39):15270–15275PubMedCrossRefGoogle Scholar
  57. Keles Y, Oncel I (2002) Response of antioxidative defence system to temperature and water stress combinations in wheat seedlings. Plant Sci 163:783–790CrossRefGoogle Scholar
  58. Kidokoro S, Watanabe K, Ohori T, Moriwaki T, Maruyama K, Mizoi J, Myint Phyu Sin Htwe N, Fujita Y, Sekita S, Shinozaki K, Yamaguchi-Shinozaki K (2015) Soybean DREB 1/CBF-type transcription factors function in heat and drought as well as cold stress-responsive gene expression. Plant J 81(3):505–518PubMedCrossRefGoogle Scholar
  59. Killi D, Bussotti F, Raschi A, Haworth M (2017) Adaptation to high temperature mitigates the impact of water deficit during combined heat and drought stress in C3 sunflower and C4 maize varieties with contrasting drought tolerance. Physiol Plant 159(2):130–147PubMedCrossRefGoogle Scholar
  60. Kim M, Sato S, Sasaki K, Saburi S, Matsui H, Imai R (2013) COLD SHOCK DOMAIN PROTEIN 3 is involved in salt and drought stress tolerance in Arabidopsis. FEBS Open Bio 3:438–442PubMedPubMedCentralCrossRefGoogle Scholar
  61. Koussevitzky S, Suzuki N, Huntington S, Armijo L, Sha W, Cortes D, Shulaev V, Mittler R (2008) Ascorbate peroxidase 1 plays a key role in the response of Arabidopsis thaliana to stress combination. J Biol Chem 283:34197–34203PubMedCrossRefGoogle Scholar
  62. Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63(4):1593–1608PubMedPubMedCentralCrossRefGoogle Scholar
  63. Krasensky J, Broyart C, Rabanal FA, Jonak C (2014) The redox-sensitive chloroplast trehalose-6-phosphatephosphatase AtTPPD regulates salt stress tolerance. Antioxid Redox Signal 21(9):1289–1304PubMedPubMedCentralCrossRefGoogle Scholar
  64. Kumar K, Rao KP, Sharma P, Sinha AK (2008) Differential regulation of rice mitogen activated protein kinase kinase (MKK) by abiotic stress. Plant Physiol Biochem 46:891–897PubMedCrossRefGoogle Scholar
  65. Lamaoui M, Jemo M, Datla R, Bekkaoui F (2018) Heat and drought stresses in crops and approaches for their mitigation. Front Chem 6:26PubMedPubMedCentralCrossRefGoogle Scholar
  66. Lata C, Prasad M (2011) Role of DREBs in regulation of abiotic stress responses in plants. J Exp Bot 62:4731–4748PubMedCrossRefGoogle Scholar
  67. Lata C, Muthamilarasan M, Prasad M (2015) Drought stress responses and signal transduction in plants. In: Pandey GK (ed) Elucidation of abiotic stress signaling in plants.  https://doi.org/10.1007/978-1-4939-2540-7_7 CrossRefGoogle Scholar
  68. Lata R, Chowdhury S, Gond SK, White JF Jr (2018) Induction of abiotic stress tolerance in plants by endophytic microbes. Lett Appl Microbiol 66(4):268–276PubMedPubMedCentralCrossRefGoogle Scholar
  69. Lawas LMF, Zuther E, Jagadish SVK, Hincha DK (2018) Molecular mechanisms of combined heat and drought stress resilience in cereals. Curr Opin Plant Biol.  https://doi.org/10.1016/j.pbi.2018.04.002 PubMedCrossRefGoogle Scholar
  70. Li H-W, Zang B-S, Deng X-W, Wang X-P (2011) Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice. Planta 234:1007–1018PubMedCrossRefGoogle Scholar
  71. Li X, Guo C, Gu J, Duan W, Zhao M, Ma C, Du X, Lu W, Xiao K (2014a) Overexpression of VP, a vacuolar H+-pyrophosphatase gene in wheat (Triticum aestivum L.), improves tobacco plant growth under Pi and N deprivation, high salinity, and drought. J Exp Bot 65(2):683–696Google Scholar
  72. Li X, Yang Y, Sun X, Lin H, Chen J, Ren J, Hu X, Yang Y (2014b) Comparative physiological and proteomic analyses of poplar (Populus yunnanensis) plantlets exposed to high temperature and drought. PLoS One 9:e107605PubMedPubMedCentralCrossRefGoogle Scholar
  73. Liang Z, Chen K, Li T, Zhang Y, Wang Y, Zhao Q, Liu J, Zhang H, Liu C, Ran Y, Gao C (2017) Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat Commun 8:14261PubMedPubMedCentralCrossRefGoogle Scholar
  74. Lim SD, Cho HY, Park YC, Ham DJ, Lee JK, Jang CS (2013) The rice RING finger E3 ligase, OsHCI1, drives nuclear export of multiple substrate proteins and its heterogeneous overexpression enhances acquired thermotolerance. J Exp Bot 64:2899–2914PubMedPubMedCentralCrossRefGoogle Scholar
  75. Link V, Sinha AK, Vashista P, Hofmann MG, Proels RK, Ehness R, Roitsch T (2002) A heat-activated MAP kinase in tomato: a possible regulator of the heat stress response. FEBS Lett 531(2):179–183PubMedCrossRefGoogle Scholar
  76. Liu JG, Qin QL, Zhang Z, Peng RH, Xiong AS, Chen JM, Yao QH (2009) OsHSF7 gene in rice, Oryza sativa L., encodes a transcription factor that functions as a high temperature receptive and responsive factor. BMB Rep 42(1):16–21PubMedCrossRefGoogle Scholar
  77. Liu G, Li X, Jin S, Liu X, Zhu L, Nie Y, Zhang X (2014) Overexpression of rice NAC gene SNAC1 improves drought and salt tolerance by enhancing root development and reducing transpiration rate in transgenic cotton. PLoS One 9(1):e86895PubMedPubMedCentralCrossRefGoogle Scholar
  78. Liu Z, Xin M, Qin J, Peng H, Ni Z, Yao Y, Sun Q (2015) Temporal transcriptome profiling reveals expression partitioning of homeologous genes contributing to heat and drought acclimation in wheat (Triticum aestivum L.). BMC Plant Biol 15(1):152Google Scholar
  79. Liu JP, Zhang C, Wei C, Liu X, Wang M, Yu F, Xie Q, Tu J (2016) The RING finger ubiquitin E3 ligase OsHTAS enhances heat tolerance by promoting H2O2-induced stomatal closure in rice. Plant Physiol 170:429–443PubMedCrossRefGoogle Scholar
  80. Liu Z, Qin J, Tian X, Xu S, Wang Y, Li H, Wang X, Peng H, Yao Y, Hu Z, Ni Z (2018) Global profiling of alternative splicing landscape responsive to drought, heat and their combination in wheat (Triticum aestivum L.). Plant Biotechnol J 16(3):714–726PubMedPubMedCentralCrossRefGoogle Scholar
  81. Lobell DB, Schlenker W, Costa-Roberts J (2011) Climate trends and global crop production since 1980. Science:1204531Google Scholar
  82. Machado S, Paulsen GM (2001) Combined effects of drought and high temperature on water relations of wheat and sorghum. Plant Soil 233(2):179–187CrossRefGoogle Scholar
  83. Martinez-Atienza J, Jiang X, Garciadeblas B, Mendoza I, Zhu JK, Pardo JM, Quintero FJ (2007) Conservation of the salt overly sensitive pathway in rice. Plant Physiol 143:1001–1012PubMedPubMedCentralCrossRefGoogle Scholar
  84. Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19PubMedPubMedCentralCrossRefGoogle Scholar
  85. Mizoguchi T, Irie K, Hirayama T, Hayashida N, Yamaguchi-Shinozaki K, Matsumoto K, Shinozaki K (1996) A gene encoding a mitogen-activated protein kinase kinase kinase is induced simultaneously with genes for a mitogen-activated protein kinase and an S6 ribosomal protein kinase by touch, cold, and water stress in Arabidopsis thaliana. Proc Natl Acad Sci USA 93:765–769CrossRefGoogle Scholar
  86. Moeder W, Ung H, Mosher S, Yoshika K (2010) SA-ABA antagonism in defense responses. Plant Signal Behav 5:1231–1233PubMedPubMedCentralCrossRefGoogle Scholar
  87. Moustafa K, Lefebvre-De Vos D, Leprince A-S, Savoure A, Lauriere C (2008) Analysis of the Arabidopsis mitogen-activated protein kinase families: organ specificity and transcriptional regulation upon water stresses. Sch Res Exch 2008:12.  https://doi.org/10.3814/2008/143656 CrossRefGoogle Scholar
  88. Nataraja KN, Parvathi MS (2016) Tolerance to drought stress in plants: unravelling the signaling networks. In: Hossain MA, Wani SH, Bhattachajee S, Burritt DJ, Tran L-SP (eds) Drought stress tolerance in plants, vol 2 – molecular and genetic perspectives. Springer, ChamGoogle Scholar
  89. Nataraja KN, Madhura BG, Parvathi MS (2017) Omics: Modern tools for precise understanding of drought adaptation in plants. In: Zargar SM, Rai V (eds) Plant OMICS and crop breeding. Taylor and Francis AAP Inc, CanadaGoogle Scholar
  90. Nguyen CC, Nakaminami K, Matsui A, Kobayashi S, Kurihara Y, Toyooka K, Tanaka M, Seki M (2016) Oligouridylate binding protein 1b plays an integral role in plant heat stress tolerance. Front Plant Sci 7:853PubMedPubMedCentralGoogle Scholar
  91. Ning J, Li X, Hicks LM, Xiong L (2010) A raf-like MAPKKK gene DSM1 mediates drought resistance through reactive oxygen species scavenging in rice. Plant Physiol 152:876–890PubMedPubMedCentralCrossRefGoogle Scholar
  92. Pandey P, Ramegowda V, Senthil-Kumar M (2015) Shared and unique responses of plants to multiple individual stresses and stress combinations: physiological and molecular mechanisms. Front Plant Sci 6:723PubMedPubMedCentralCrossRefGoogle Scholar
  93. Parankusam S, Adimulam SS, Bhatnagar-Mathur P, Sharma KK (2017) Nitric oxide (NO) in plant heat stress tolerance: current knowledge and perspectives. Front Plant Sci 8:1582PubMedPubMedCentralCrossRefGoogle Scholar
  94. Parvathi MS, Nataraja KN (2016) Emerging tools, concepts and ideas to track the modulator genes underlying plant drought adaptive traits: an overview. Plant Signal Behav 11(1):e1074370CrossRefGoogle Scholar
  95. Parvathi MS, Nataraja KN (2017) Simultaneous expression of stress regulatory genes for abiotic stress tolerance. In: Muthappa S-K (ed) Plant tolerance to individual and concurrent stresses. Springer, New DelhiGoogle Scholar
  96. Parvathi MS, Sreevathsa R, Rama N, Nataraja KN (2015) Simultaneous expression of AhBTF3, AhNFYA7and EcZF modulates acclimation responses to abiotic stresses in rice (Oryza sativa L). Procedia Environ Sci 29:236–237CrossRefGoogle Scholar
  97. Pasapula V, Shen G, Kuppu S, Paez-Valencia J, Mendoza M, Hou P, Chen J, Qiu X, Zhu L, Zhang X, Auld D, Blumwald E, Zhang H, Gaxiola R, Payton P (2011) Expression of an Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) in cotton improves drought- and salt tolerance and increases fibre yield in the field conditions. Plant Biotechnol J 9:88–99CrossRefGoogle Scholar
  98. Pei L, Wang J, Li K, Li Y, Li B, Gao F, Yang A (2012) Overexpression of Thellungiella halophila H+-pyrophosphatase gene improves low phosphate tolerance in maize. PLoS One 7:e43501PubMedPubMedCentralCrossRefGoogle Scholar
  99. Prasad PVV, Pisipati SR, Momcilovic I, Ristic Z (2011) Independent and combined effects of high temperature and drought stress during grain filling on plant yield and chloroplast EF-Tu expression in spring wheat. J Agron Crop Sci 197(6):430–441CrossRefGoogle Scholar
  100. Prasch CM, Sonnewald U (2013) Simultaneous application of heat, drought and virus to Arabidopsis thaliana plants reveals significant shifts in signaling networks. Plant Physiol 162(4):1849–1866Google Scholar
  101. Pruthvi V, Narasimhan R, Nataraja KN (2014) Simultaneous expression of abiotic stress responsive transcription factors, AtDREB2A, AtHB7 and AtABF3 improves salinity and drought tolerance in peanut (Arachis hypogaea L.). PLoS One 9(12):e111152PubMedPubMedCentralCrossRefGoogle Scholar
  102. Ramegowda V, Basu S, Krishnan A, Pereira A (2014) Rice GROWTH UNDER DROUGHT KINASE is required for drought tolerance and grain yield under normal and drought stress conditions. Plant Physiol 166(3):1634–1645PubMedPubMedCentralCrossRefGoogle Scholar
  103. Rampino P, Mita G, Fasano P, Borrelli GM, Aprile A, Dalessandro G, De Bellis L, Perrotta C (2012) Novel durum wheat genes up-regulated in response to a combination of heat and drought stress. Plant Physiol Biochem 56:72–78PubMedCrossRefPubMedCentralGoogle Scholar
  104. Ramu VS, Swetha TN, Sheela SH, Babitha CK, Rohini S, Reddy MK, Tuteja N, Reddy CP, Prasad TG, Udayakumar M (2016) Simultaneous expression of regulatory genes associated with specific drought-adaptive traits improves drought adaptation in peanut. Plant Biotechnol J 14:1008–1020PubMedCrossRefPubMedCentralGoogle Scholar
  105. Rasmussen S, Barah P, Suarez-Rodriguez MC, Bressendorff S, Friis P, Costantino P, Bones AM, Nielsen HB, Mundy J (2013) Transcriptome responses to combinations of stresses in Arabidopsis. Plant Physiol 161(4):1783–1794PubMedPubMedCentralCrossRefGoogle Scholar
  106. Ray S, Agarwal P, Arora R, Kapoor S, Tyagi AK (2007) Expression analysis of calcium-dependent protein kinase gene family during reproductive development and abiotic stress conditions in rice (Oryza sativa L. ssp. indica). Mol Gen Genomics 278:493–505Google Scholar
  107. Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP (2002) Prediction of plant microRNA targets. Cell 110(4):513–520PubMedCrossRefGoogle Scholar
  108. Rizhsky L, Liang H, Mittler R (2002) The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol 130:1143–1151PubMedPubMedCentralCrossRefGoogle Scholar
  109. Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S, Mittler R (2004) When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol 134:1683–1696PubMedPubMedCentralCrossRefGoogle Scholar
  110. Rollins JA, Habte E, Templer SE, Colvy T, Schmidt J, Von Korff M (2013) Leaf proteome alterations in the context of physiological and morphological responses to drought and heat stress in barley (Hordeum vulgare L.). J Exp Bot 64:3201–3212PubMedPubMedCentralCrossRefGoogle Scholar
  111. Saibo NJM, Lourenco T, Oliveira MM (2009) Transcription factors and regulation of photosynthetic and related metabolism under environmental stresses. Ann Bot 103:609–623PubMedCrossRefPubMedCentralGoogle Scholar
  112. Sainz M, Diaz P, Monza J, Borsani O (2010) Heat stress results in loss of chloroplast Cu/Zn superoxide dismutase and increased damage to Photosystem II in combined drought-heat stressed Lotus japonicus. Physiol Plant 140(1):46–56PubMedCrossRefPubMedCentralGoogle Scholar
  113. Sajeevan RS, Nataraja KN, Shivashankara KS, Pallavi N, Gurumurthy DS, Shivanna MB (2017) Expression of Arabidopsis SHN1 in Indian Mulberry (Morus indica L.) increases leaf surface wax content and reduces post-harvest water loss. Front. Plant Sci 8:418Google Scholar
  114. Sangamesh MB, Jambagi S, Vasanthakumari MM, Shetty NJ, Kolte H, Ravikanth G, Nataraja KN, Shaanker RU (2018) Thermotolerance of fungal endophytes isolated from plants adapted to the Thar Desert, India. Symbiosis 75(2):135–147CrossRefGoogle Scholar
  115. Sato H, Todaka D, Kudo M, Mizoi J, Kidokoro S, Zhao Y, Shinozaki K, Yamaguchi-Shinozaki K (2016) The Arabidopsis transcriptional regulator DPB 3-1 enhances heat stress tolerance without growth retardation in rice. Plant Biotechnol J 14(8):1756–1767PubMedPubMedCentralCrossRefGoogle Scholar
  116. Schachtman DP, Goodger JQ (2008) Chemical root to shoot signaling under drought. Trends Plant Sci 13(6):281–287PubMedPubMedCentralCrossRefGoogle Scholar
  117. Sehgal A, Sita K, Kumar J, Singh S, Siddique KH, Nayyar H (2017) Effects of drought, heat and their interaction on the growth, yield and photosynthetic function of lentil (Lens culinaris Medikus) genotypes varying in heat and drought sensitivity. Front Plant Sci 8:1776Google Scholar
  118. Shah NH, Paulsen GM (2003) Interaction of drought and high temperature on photosynthesis and grain-filling of wheat. Plant Soil 257(1):219–226CrossRefGoogle Scholar
  119. Shao HB, Chu LY, Jaleel CA, Manivannan P, Panneerselvam R, Shao MA (2009) Understanding water deficit stress-induced changes in the basic metabolism of higher plants–biotechnologically and sustainably improving agriculture and the ecoenvironment in arid regions of the globe. Crit Rev Biotechnol 29(2):131–151PubMedPubMedCentralCrossRefGoogle Scholar
  120. Shi J, Zhang L, An H, Wu C, Guo X (2011) GhMPK16, a novel stress-responsive group D MAPK gene from cotton, is involved in disease resistance and drought sensitivity. BMC Mol Biol 12:22PubMedPubMedCentralCrossRefGoogle Scholar
  121. Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58(2):221–227CrossRefGoogle Scholar
  122. Shriram V, Kumar V, Devarumath RM, Khare TS, Wani SH (2016) MicroRNAs as potential targets for abiotic stress tolerance in plants. Front Plant Sci 7:817PubMedPubMedCentralCrossRefGoogle Scholar
  123. Sita K, Sehgal A, Hanumantha Rao B, Nair RM, Vara Prasad PV, Kumar S, Gaur PM, Farooq M, Siddique KH, Varshney RK, Nayyar H (2017) Food legumes and rising temperatures: effects, adaptive functional mechanisms specific to reproductive growth stage and strategies to improve heat tolerance. Front Plant Sci 8:658CrossRefGoogle Scholar
  124. Song J, Liu Q, Hu B, Wu W (2017) Photoreceptor PhyB involved in Arabidopsistemperature perception and heat-tolerance formation. Int J Mol Sci 18(6):1194PubMedCentralCrossRefPubMedGoogle Scholar
  125. Sprenger H, Kurowsky C, Horn R, Serban A, Seddig S, Rudack K, Fischer A, Walther D, Zuther E, Köhl K, Hincha DK (2016) The drought response of potato reference cultivars with contrasting tolerance. Plant Cell Environ 39:2370–2389PubMedCrossRefGoogle Scholar
  126. Suzuki N, Sejima H, Tam R, Schlauch K, Mittler R (2011) Identification of the MBF1 heat-response regulon of Arabidopsis thaliana. Plant J 66(5):844–851PubMedCrossRefGoogle Scholar
  127. Suzuki N, Rivero RM, Shulaev V, Blumwald E, Mittler R (2014) Abiotic and biotic stress combinations. New Phytol 203:32–43PubMedCrossRefGoogle Scholar
  128. Tanaka H, Osakabe Y, Katsura S, Mizuno S, Maruyama K, Kusakabe K, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) Abiotic stress-inducible receptor-like kinases negatively control ABA signaling in Arabidopsis. Plant J 70(4):599–613PubMedCrossRefGoogle Scholar
  129. Teige M, Scheikl E, Eulgem T, Doczi R, Ichimura K, Shinozaki K, Dangl JL, Hirt H (2004) The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Mol Cell 15:141–152PubMedCrossRefGoogle Scholar
  130. Templer SE, Ammon A, Pscheidt D, Ciobotea O, Schuy C, McCollum C, Sonnewald U, Hanemann A, Forster J, Ordon F, von Korff M (2017) Metabolite profiling of barley flag leaves under drought and combined heat and drought stress reveals metabolic QTLs for metabolites associated with antioxidant defense. J Exp Bot 68(7):1697–1713PubMedPubMedCentralCrossRefGoogle Scholar
  131. Tuteja N, Sahoo RK, Garg B, Tuteja R (2013) OsSUV3 dual helicase functions in salinity stress tolerance by maintaining photosynthesis and antioxidant machinery in rice (Oryza sativa L. cv. IR64). Plant J 76(1):115–127Google Scholar
  132. Tuteja N, Banu MSA, Huda KMK, Gill SS, Jain P, Pham XH, Tuteja R (2014) Pea p68, a DEAD-box helicase, provides salinity stress tolerance in transgenic tobacco by reducing oxidative stress and improving photosynthesis machinery. PLoS One 9(5):e98287PubMedPubMedCentralCrossRefGoogle Scholar
  133. Valente MA, Faria JA, Soares-Ramos JR, Reis PA, Pinheiro GL, Piovesan ND, Morais AT, Menezes CC, Cano MA, Fietto LG, Loureiro ME, Aragao FJ, Fontes EP (2009) The ER luminal binding protein (BiP) mediates an increase in drought tolerance in soybean and delays drought-induced leaf senescence in soybean and tobacco. J Exp Bot 60:533–546PubMedCrossRefGoogle Scholar
  134. Vemanna RS, Babitha KC, Rao HMH, Sathyanarayanagupta SK, Sarangi SK, Nataraja KN, Udayakumar M (2013) Modified multisite gateway cloning strategy for consolidation of genes in plants. Mol Biotechnol 53(2):129–138PubMedCrossRefGoogle Scholar
  135. Vile D, Pervent M, Belluau M, Vasseur F, Bresson J, Muller B, Granier C, Simonneau T (2012) Arabidopsis growth under prolonged high temperature and water deficit: independent or interactive effects? Plant Cell Environ 35(4):702–718PubMedCrossRefGoogle Scholar
  136. Voytas DF (2013) Plant genome engineering with sequence-specific nucleases. Annu Rev Plant Biol 64:327–350PubMedCrossRefGoogle Scholar
  137. Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61(3):199–223CrossRefGoogle Scholar
  138. Wang M, Zhang Y, Wang J, Wu X, Guo X (2007) A novel MAP kinase gene in cotton (Gossypium hirsutum L.), GhMAPK, is involved in response to diverse environmental stresses. J Biochem Mol Biol 40:325–332CrossRefGoogle Scholar
  139. Wang J, Ding H, Zhang A et al (2010) A novel mitogen-activated protein kinase gene in maize (Zea mays), ZmMPK3, is involved in response to diverse environmental cues. J Integr Plant Biol 52:442–452Google Scholar
  140. Wang A, Yu X, Mao Y, Liu Y, Liu G, Liu Y, Niu X (2015) Overexpression of a small heat-shock-protein gene enhances tolerance to abiotic stresses in rice. Plant Breed 134(4):384–393CrossRefGoogle Scholar
  141. Wani SH, Kumar V, Shriram V, Sah SK (2016) Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J 4(3):162–176CrossRefGoogle Scholar
  142. Wardlaw IF (2002) Interaction between drought and chronic high temperature during kernel filling in wheat in a controlled environment. Ann Bot 90(4):469–476PubMedPubMedCentralCrossRefGoogle Scholar
  143. Wen JQ, Oono K, Imai R (2002) Two novel mitogen-activated protein signaling components, OsMEK1 and OsMAP1, are involved in a moderate low-temperature signaling pathway in rice. Plant Physiol 129:1880–1891PubMedPubMedCentralCrossRefGoogle Scholar
  144. Xiao BZ, Chen X, Xiang CB, Tang N, Zhang QF, Xiong LZ (2009) Evaluation of seven function known candidate genes for their effects on improving drought resistance of transgenic rice under field conditions. Mol Plant 2:73–83PubMedCrossRefGoogle Scholar
  145. Xiong L, Yang Y (2003) Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell 15:745–759PubMedPubMedCentralCrossRefGoogle Scholar
  146. Yang S, Vanderbeld B, Wan J, Huang Y (2010a) Narrowing down the targets: towards successful genetic engineering of drought-tolerant crops. Mol Plant 3(3):469–490PubMedCrossRefGoogle Scholar
  147. Yang L, Ji W, Zhu Y, Gao P, Li Y, Cai H, Bai X, Guo D (2010b) GsCBRLK, a calcium/calmodulin-binding receptor-like kinase, is a positive regulator of plant tolerance to salt and ABA stress. J Exp Bot 61(9):2519–2533PubMedCrossRefGoogle Scholar
  148. Yu L, Nie J, Cao C, Jin Y, Yan M, Wang F, Liu J, Xiao Y, Liang Y, Zhang W (2010) Phosphatidic acid mediates salt stress response by regulation of MPK6 in Arabidopsis thaliana. New Phytol 188:762–773PubMedCrossRefGoogle Scholar
  149. Zandalinas SI, Rivero RM, Martinez V, Gomez-Cadenas A, Arbona V (2016a) Tolerance of citrus plants to the combination of high temperatures and drought is associated to the increase in transpiration modulated by a reduction in abscisic acid levels. BMC Plant Biol 16(1):105PubMedPubMedCentralCrossRefGoogle Scholar
  150. Zandalinas SI, Balfagon D, Arbona V, Gomez-Cadenas A, Inupakutika MA, Mittler R (2016b) ABA is required for the accumulation of APX1 and MBF1c during a combination of water deficit and heat stress. J Exp Bot 67(18):5381–5390PubMedPubMedCentralCrossRefGoogle Scholar
  151. Zandalinas SI, Sales C, Beltran J, Gomez-Cadenas A, Arbona V (2017) Activation of secondary metabolism in citrus plants is associated to sensitivity to combined drought and high temperatures. Front Plant Sci 7:1954PubMedPubMedCentralCrossRefGoogle Scholar
  152. Zandalinas SI, Mittler R, Balfagon D, Arbona V, Gomez-Cadenas A (2018) Plant adaptations to the combination of drought and high temperatures. Physiol Plant 162(1):2–12PubMedCrossRefGoogle Scholar
  153. Zang X, Geng X, Wang F, Liu Z, Zhang L, Zhao Y, Tian X, Ni Z, Yao Y, Xin M, Hu Z (2017) Overexpression of wheat ferritin gene TaFER-5B enhances tolerance to heat stress and other abiotic stresses associated with the ROS scavenging. BMC Plant Biol 17(1):14PubMedPubMedCentralCrossRefGoogle Scholar
  154. Zhang M, Li G, Huang W, Bi T, Chen G, Tanz Z, Su W, Sun W (2010) Proteomic study of Carissa spinarum in response to combined heat and drought stress. Proteomics 10:3117–3129PubMedCrossRefGoogle Scholar
  155. Zhang S, Wang S, Lv J, Liu Z, Wang Y, Ma N, Meng Q (2017) SUMO E3 ligase SlSIZ1 facilitates heat tolerance in tomato. Plant Cell Physiol 59:58–71CrossRefGoogle Scholar
  156. Zhao F, Zhang D, Zhao Y, Wang W, Yang H, Tai F, Li C, Hu X (2016) The difference of physiological and proteomic changes in maize leaves adaptation to drought, heat, and combined both stresses. Front Plant Sci 7:1471PubMedPubMedCentralGoogle Scholar
  157. Zhao Z, Niu S, Fan G, Dend M, Wang Y (2018) Genome-Wide analysis of gene and microRNA expression in diploid and autotetraploid Paulownia fortunei (Seem) Hemsl. under drought stress by transcriptome, microRNA, and degradome sequencing. Forests 9(2):88CrossRefGoogle Scholar
  158. Zhou S, Hu W, Deng X, Ma Z, Chen L, Huang C, Wang C, Wang J, He Y, Yang G, He G (2012) Overexpression of the wheat aquaporin gene, TaAQP7 , enhances drought tolerance in transgenic tobacco. PLoS One 7:e52439PubMedPubMedCentralCrossRefGoogle Scholar
  159. Zhu L, Guo J, Zhu J, Zhou C (2014) Enhanced expression of EsWAX1 improves drought tolerance with increased accumulation of cuticular wax and ascorbic acid in transgenic Arabidopsis. Plant Physiol Biochem 75:24–35PubMedCrossRefGoogle Scholar
  160. Zinta G, AbdElgawad H, Domagalska MA, Vergauwen L, Knapen D, Nijs I, Janssens IA, Beemster GT, Asard H (2014) Physiological, biochemical, and genome-wide transcriptional analysis reveals that elevated CO2 mitigates the impact of combined heat wave and drought stress in Arabidopsis thaliana at multiple organizational levels. Glob Chang Biol 20:3670–3685PubMedCrossRefGoogle Scholar
  161. Zinta G, AbdElgawad H, Peshev D, Weedon JT, Van den Ende W, Nijs I, Janssens IA, Beemster GT, Asard H (2018) Dynamics of metabolic responses to periods of combined heat and drought in Arabidopsis thaliana under ambient and elevated atmospheric CO2. J Exp Bot 69(8):2159–2170PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • M. S. Parvathi
    • 1
  • K. H. Dhanyalakshmi
    • 1
  • K. N. Nataraja
    • 1
    Email author
  1. 1.Department of Crop PhysiologyUniversity of Agricultural SciencesBengaluruIndia

Personalised recommendations