Advertisement

Agronomic Crops Response and Tolerance to Allelopathic Stress

  • Hamideh Bakhshayeshan-Agdam
  • Seyed Yahya Salehi-LisarEmail author
Chapter
  • 55 Downloads

Abstract

Under agricultural situations, plants are often exposed to various environmental stresses, including biotic and abiotic stresses. Allelopathy is one of the most important interactions among plants. Nowadays, allelopathy is known as one of the biotic stresses affecting growth and development of plants, especially crops. Responsible compounds in allelopathy named allelochemicals are derived from the secondary metabolism of plants and are species and tissue specific. These compounds are released from the plants into the environment as leachates, volatiles, and root exudates and from biomass decomposition. Their action mechanism affecting the receiver plants also differs. Some of these compounds, such as volatile compounds, directly impact the receiver plant, while other compounds need microorganism’s intermediation. Allelopathic stress is a multidimensional stress, and in receiver plants, it occurs at molecular, biochemical, physiological, morphological, and eventually ecological levels. In addition, it can negatively affect the quantity and quality of growth in agronomic crops. Plants have several resistance mechanisms to counteract the adverse effects of this phenomenon at physiological, biochemical, and molecular levels that all these mechanisms lead to the detoxification of allelochemicals. Generally, allelochemical’s detoxification processes were aimed to facilitate allelochemicals’ outlet from the cells that eventually leads to normal cell functions. Environmental stresses, viz., drought, deficiency and toxicity of nutrients, temperature stress, light stress, and biotic stresses can affect allelopathy and also influence it. Herbicide application in agricultural fields causes changes in plant’s allelopathic interactions as well. Already, allelopathy has become a suitable tool for the transgenic plant production with desirable traits via biotechnology techniques, which promise the production of resistant cultivars to a variety of stresses.

Keywords

Allelopathy Allelochemical Plant interaction Crop Yield 

Abbreviations

ABA

abscisic acid

C4H

cinnamate-4-hydroxylase

COMT

caffeic acid O-methyltransferases

CTK

cytokinin

F5H

ferulic acid 5-hydroxylase

IAA

indoleacetic acid

MDA

malondialdehyde

PAL

phenylalanine ammonia lyase

PDMS

polydimethylsiloxane

QTL

quantitative trait locus

RAPD

random amplification of polymorphic DNA

ROS

reactive oxygen species

STME

silicone tube micro-extraction

References

  1. Abenavoli MR, Sorgona A, Sidari M, Badiani M, Fuggi A (2003) Coumarin inhibits the growth of carrot (Daucus carota L. cv. Saint Valery) cells in suspension culture. J Plant Physiol 160:227–237PubMedCrossRefGoogle Scholar
  2. Abenavoli MR, Lupini A, Oliva S, Sorgona A (2010) Allelochemical effects on net nitrate uptake and plasma membrane H+-ATPase activity in maize seedlings. Biol Plant 54:149–153CrossRefGoogle Scholar
  3. Abrahim D, Francischini AC, Pergo EM, Kelmer-Bracht AM, Ishii-Iwamoto EL (2003a) Effects of alpha-pinene on the mitochondrial respiration of maize seedlings. Plant Physiol Biochem 41:985–991CrossRefGoogle Scholar
  4. Abrahim D, Takahashi L, Kelmer-Bracht AM, Ishii-Iwamoto EL (2003b) Effects of phenolic acids and monoterpenes on the mitochondrial respiration of soybean hypocotyl axes. Allelopath J 11:21–30Google Scholar
  5. Achigan-Dako AG, Sogbohossou OED, Maundu P (2014) Current knowledge on Amaranthus spp.: research avenues for improved nutritional value and yield in leafy amaranthus in sub-Saharan Africa. Euphytica Springer Press 197:1–15Google Scholar
  6. Ahrabi F, Enteshari S, Moradshahi A (2011) Allelopathic potential of Para-hydroxybenzoic acid and coumarin on canola: talaieh cultivar. J Med Plant Res 5:5104–5109Google Scholar
  7. Albuquerque MB, Santos RC, Lima LM, Melo Filho PDA, Nogueira RJMC, Câmara CAG et al (2010) Allelopathy, an alternative tool to improve cropping systems. Rev Agron Sust Dev 31:379–395CrossRefGoogle Scholar
  8. Anaya AL (1999) Allelopathy as a tool in the management of biotic resources in agroecosystems. Crit Rev Plant Sci 18:697–739CrossRefGoogle Scholar
  9. Andrew IKS, Storkey J, Sparkes DL (2015) A review of the potential for competitive cereal cultivars as a tool in integrated weed management. Weed Res 55:239–248PubMedPubMedCentralCrossRefGoogle Scholar
  10. Baerson SR, Sanchez-Moreiras A, Pedrol-Bonjoch N, Schulz M, Kagan IA, Agarwal AK et al (2005) Detoxification and transcriptome response in Arabidopsis seedlings exposed to the allelochemical benzoxazolin-2(3H)-one. J Biol Chem 280:21867–21881PubMedCrossRefPubMedCentralGoogle Scholar
  11. Bais HP, Vepachedu R, Gilroy S, Callaway RM, Vivanco JM (2003) Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science 301:1377–1380PubMedCrossRefPubMedCentralGoogle Scholar
  12. Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bakkali F, Averbeck S, Averbeck D, Idaomar M (2008) Biological effects of essential oils-a review. Food Chem Toxicol 46:446–475PubMedCrossRefPubMedCentralGoogle Scholar
  14. Barazani O, Friedman J (1999) Allelopathic bacteria and their impact on higher plants. Crit Rev Plant Sci 18:741–755CrossRefGoogle Scholar
  15. Barros de Morais CS, Silva Dos Santos LA, Vieira Rossetto CA (2014) Oil radish development agronomic affected by sunflower plants reduces. Biosci J 30:117–128Google Scholar
  16. Barto EK, Cipollini D (2009) Half-lives and field soil concentrations of Alliaria petiolata secondary metabolites. Chemosphere 76:71–75PubMedCrossRefPubMedCentralGoogle Scholar
  17. Batish DR, Singh HP, Kaur S, Kohli RK, Yadav SS (2008) Caffeic acid affects early growth, and morphogenetic response of hypocotyls cuttings of mung bean (Phaseolus aureus). J Plant Physiol 165:297–305PubMedCrossRefPubMedCentralGoogle Scholar
  18. Belz RG (2007) Allelopathy in crop/weed interactions–an update. Pest Manag Sci 63:308–326PubMedCrossRefPubMedCentralGoogle Scholar
  19. Bergmark CL, Jackson WA, Volk RJ, Blum U (1992) Differential inhibition by ferulic acid of nitrate and ammonium uptake in Zea mays L. Plant Physiol 98:639–645PubMedPubMedCentralCrossRefGoogle Scholar
  20. Bertholdsson NO (2004) Variation in allelopathic activity over 100 years of barley selection and breeding. Weed Res 44:78–86CrossRefGoogle Scholar
  21. Bertholdsson NO (2010) Breeding spring wheat for improved allelopathic potential. Weed Res 50:49–57CrossRefGoogle Scholar
  22. Bhadoria P (2011) Allelopathy: a natural way towards weed management. Am J Exp Agric 1:7–20Google Scholar
  23. Bhowmik PC, Doll JD (1982) Corn and soybean response to allelopathic effects of weed and crop residues. Agron J 74:601–606CrossRefGoogle Scholar
  24. Borella J, Martinazzo EG, Aumonde TZ, Do Amarante L, De Moraes DM, Villela FA (2014) Performance of radish seeds and seedlings under action of aqueous extract of leaves of Trema micrantha (Ulmaceae). Biosci J 30:108–116Google Scholar
  25. Bradow JM, Connick JWJ (1987) Allelochemicals from palmer amaranth, Amaranthus palmeri S. Wats. J Chem Ecol 13:185–202PubMedCrossRefPubMedCentralGoogle Scholar
  26. Burgos NR, Talbert RE, Kim KS, Kuk YI (2004) Growth inhibition and root ultrastructure of cucumber seedlings exposed to allelochemicals from rye (Secale cereale). J Chem Ecol 30:671–689PubMedCrossRefPubMedCentralGoogle Scholar
  27. Cai SL, Mu XQ (2012) Allelopathic potential of aqueous leaf extracts of Datura stramonium L. on seed germination, seedling growth and root anatomy of Glycine max (L.) Merrill. Allelopath J 30:235–245Google Scholar
  28. Chadwick M, Trewin H, Gawthrop F, Wagstaff C (2013) Sesquiterpenoids lactones: benefits to plants and people. Int J Mol Sci 14:12780–12805PubMedPubMedCentralCrossRefGoogle Scholar
  29. Chaimovitsh D, Abu-Abied M, Belausov E, Rubin B, Dudai N, Sadot E (2010) Microtubules are an intracellular target of the plant terpene citral. Plant J 61:399–408PubMedCrossRefPubMedCentralGoogle Scholar
  30. Chaimovitsh D, Rogovoy Stelmakh O, Altshuler O, Belausov E, Abu-Abied M, Rubin B et al (2012) The relative effect of citral on mitotic microtubules in wheat roots and BY2 cells. Plant Biol 14:354–364PubMedCrossRefPubMedCentralGoogle Scholar
  31. Cheema ZA, Khaliq A (2000) Use of sorghum allelopathic properties to control weeds in irrigated wheat in a semi arid region of Punjab. Agric Ecosyst Environ 79:105–112CrossRefGoogle Scholar
  32. Cheema ZA, Khaliq A, Saeed S (2004) Weed control in maize (Zea mays L.) through sorghum allelopathy. J Sustain Agric 23:73–86CrossRefGoogle Scholar
  33. Cheema Z, Farooq M, Khaliq A (2013) Application of allelopathy in crop production: success story from Pakistan. In: Cheema ZA, Farooq M, Wahid A (eds) Allelopathy. Springer-Verlag Press, Berlin/Heidelberg, pp 113–143CrossRefGoogle Scholar
  34. Cheng TS (2012) The toxic effects of diethylphthalate on the activity of glutamine synthetase in greater duck weed (Spirodela polyrhiza L.). Aquat Toxicol 124–125:171–178PubMedCrossRefPubMedCentralGoogle Scholar
  35. Cheng ZH, Wang CH, Xiao XM, Khan MA (2011) Allelopathic effects of decomposing garlic stalk on some vegetable crops. Afr J Biotechnol 10:15514–15520Google Scholar
  36. Chou CH (1999) Roles of allelopathy in plant biodiversity and sustainable agriculture. Crit Rev Plant Sci 18:609–636CrossRefGoogle Scholar
  37. Cruz Ortega R, Anaya AL, Ramos L (1988) Effects of allelopathic compounds of corn pollen on respiration and cell division of watermelon. J Chem Ecol 14:71–86PubMedCrossRefPubMedCentralGoogle Scholar
  38. Dayan FE, Howell J, Weidenhamer JD (2009) Dynamic root exudation of sorgoleone and its in planta mechanism of action. J Exp Bot 60:2107–2117PubMedPubMedCentralCrossRefGoogle Scholar
  39. Dehghani F, Yahyaabadi S, Ranjbar M (2014) Allelopathic potential of petal, leaf and seed extracts of sunflower different ecotypes on Zea mays. Int J Biosci 5:136–144CrossRefGoogle Scholar
  40. Demuner AJ, Barbosa LCA, Chinelatto LS, Reis C, Silva AA (2005) Sorption and persistence of sorgoleone in red-yellow latosol. Q Nova 28:451–455CrossRefGoogle Scholar
  41. Dhima KV, Vasilakoglou IB, Eleftherohorinos IG, Lithourgidis AS (2006) Allelopathic potential of winter cereals and their cover crop mulch effect on grass weed suppression and corn development. Crop Sci 46:345–352CrossRefGoogle Scholar
  42. Dietz M, Machill S, Hoffmann HC, Schmidtke K (2013) Inhibitory effects of plantago lanceolata L. on soil N mineralization. Plant Soil 368:445–458CrossRefGoogle Scholar
  43. Ding J, Sun Y, Xiao CL, Shi K, Zhou YH, Yu JQ (2007) Physiological basis of different allelopathic reactions of cucumber and figleaf gourd plants to cinnamic acid. J Exp Bot 58:3765–3773PubMedCrossRefPubMedCentralGoogle Scholar
  44. dos Santos WD, Ferrarese M, de Lourdes L, Ferrarese-Filho O (2008) Ferulic acid: an allelochemical troublemaker. Funct Plant Sci Biotechnol 2:47–55Google Scholar
  45. Dudai N, Poljakoff-Mayber A, Mayer AM, Putievsky E, Lerner HR (1999) Essential oils as allelochemicals and their potential use as bioherbicides. J Chem Ecol 25:1079–1089CrossRefGoogle Scholar
  46. Duke SO, Scheffler BE, Dayan FE (2001) Strategies for using transgenes to produce allelopathic crops. Weed Technol 15:826–834CrossRefGoogle Scholar
  47. Einhellig FA (1995) Allelopathy-current status and future goals. In: Inderjit A, Dakshini KMM, Einhellig FA (eds) Allelopathy: organisms, processes, and applications. American Chemical Society Press, Washington, DC, pp 1–24Google Scholar
  48. Einhellig FA (1996) Interactions involving allelopathy in cropping system. Agron J 69:13–23Google Scholar
  49. Fang C, Zhuang Y, Xu T, Li Y, Li Y, Lin W (2013) Changes in rice allelopathy and rhizosphere microflora by inhibiting rice phenylalanine ammonia-lyase gene expression. J Chem Ecol 39:204–212PubMedCrossRefPubMedCentralGoogle Scholar
  50. Fang C, Li Y, Li C, Li B, Ren Y, Zheng H et al (2015) Identification and comparative analysis of microRNAs in barnyardgrass (Echinochloa crusgalli) in response to rice allelopathy. Plant Cell Environ 38:1368–1381PubMedCrossRefPubMedCentralGoogle Scholar
  51. Farhoudi R, Lee DJ (2013) Allelopathic effects of barley extract (Hordeum vulgare) on sucrose synthase activity, lipid peroxidation and antioxidant enzymatic activities of Hordeum spontoneum and Avena ludoviciana. Plant Nat Sci Indian B 83:447–452Google Scholar
  52. Farhoudi R, Zangane HS, Saeedipour S (2012) Allelopathical effect of barley [Hordeum vulgare (L.) cv. Karon] on germination and lipid peroxidation of wild mustard seedling. Res Crop 13:467–471Google Scholar
  53. Farooq M, Jabran K, Cheema ZA, Wahid A, Siddique KH (2011) The role of allelopathy in agricultural pest management. Pest Manag Sci 67:493–506PubMedCrossRefPubMedCentralGoogle Scholar
  54. Farooq M, Bajwa AA, Cheema SA, Cheema ZA (2013) Application of allelopathy in crop production. Int J Agric Biol 15:1367–1378Google Scholar
  55. Fernandez C, Santonja M, Gros R, Monnier Y, Chomel M, Baldy V et al (2013) Allelochemicals of Pinus halepensis as drivers of biodiversity in Mediterranean open mosaic habitats during the colonization stage of secondary succession. J Chem Ecol 39:298–311PubMedCrossRefPubMedCentralGoogle Scholar
  56. Field B, Jordan F, Osbourn A (2006) First encounters–deployment of defence-related natural products by plants. New Phytol 172:193–207PubMedCrossRefPubMedCentralGoogle Scholar
  57. Fragasso M, Iannucci A, Papa R (2013) Durum wheat and allelopathy: toward wheat breeding for natural weed management. Front Plant Sci 4:375PubMedPubMedCentralCrossRefGoogle Scholar
  58. Gealy DR, Yan W (2012) Weed suppression potential of ‘Rondo’ and other Indica rice germplasm lines. Weed Technol 26:517–524CrossRefGoogle Scholar
  59. Geng GD, Zhang SQ, Cheng ZH (2009) Effects of different allelochemicals on mineral elements absorption of tomato root. China Veget 4:48–51Google Scholar
  60. Gimsing AL, Baelum J, Dayan FE, Locke MA, Sejero LH, Jacobsen CS (2009) Mineralization of the allelochemical sorgoleone in soil. Chemosphere 76:1041–1047PubMedCrossRefGoogle Scholar
  61. Gioria M, Osborne BA (2014) Resource competition in plant invasions: emerging patterns and research needs. Front Plant Sci 5:501PubMedPubMedCentralCrossRefGoogle Scholar
  62. Gniazdowska A, Bogatek R (2005) Allelopathic interactions between plants. Multi site action of allelochemicals. Acta Physiol Plant 27:395–407CrossRefGoogle Scholar
  63. Gniazdowska A, Krasuska U, Andrzejczak O, Soltys D (2015) Allelopathic compounds as oxidative stress agents: yes or no. In: Gupta KJ, Igamberdiev AU (eds) Reactive oxygen and nitrogen species signaling and communication in plants. Licensee Springer Press, New YorkGoogle Scholar
  64. Golisz A, Sugano M, Fujii Y (2008) Microarray expression profiling of Arabidopsis thaliana L. in response to allelochemicals identified in buckwheat. J Exp Bot 59:3099–3109PubMedPubMedCentralCrossRefGoogle Scholar
  65. Golisz A, Sugano M, Hiradate S, Fujii Y (2011) Microarray analysis of Arabidopsis plants in response to allelochemical L-DOPA. Planta 233:231–240PubMedCrossRefGoogle Scholar
  66. Gonzalez VM, Kazimir J, Nimbal C, Weston LA, Cheniae GM (1997) Inhibition of a photosystem II electron transfer reaction by the natural product sorgoleone. J Agric Food Chem 45:1415–1421CrossRefGoogle Scholar
  67. Grana E, Sotelo T, Diaz-Tielas C, Araniti F, Krasuska U, Bogatek R et al (2013) Citral induces auxin and ethylene-mediated malformations and arrests cell division in Arabidopsis thaliana roots. J Chem Ecol 39:271–282PubMedCrossRefGoogle Scholar
  68. Gu Y, Wang P, Kong CH (2009) Urease, invertase, dehydrogenase and polyphenoloxidase activities in paddy soil influenced by allelopathic rice variety. Eur J Soil Biol 45:436–441CrossRefGoogle Scholar
  69. Guillon M (2003) Herbicidal composition comprising an allelopathic substance and method of use thereof. European patent No 1110456. Nogueres, France: European Patent OfficeGoogle Scholar
  70. Haddadchi GR, Gerivani Z (2009) Effects of phenolic extracts of canola (Brassica napuse L.) on germination and physiological responses of soybean (Glycin max L.) seedlings. Int J Plant Prod 3:63–74Google Scholar
  71. Haddadchi GR, Massoodi Khorasani F (2006) Allelopathic effects of aqueous extracts of Sinapis arvensison growth and related physiological and biochemical responses of Brassica napus. J Sci (Univ Tehran) 32:23–28Google Scholar
  72. Haider G, Cheema ZA, Farooq M, Wahid A (2015) Performance and nitrogen use of wheat cultivars in response to application of allelopathic crop residues and 3, 4-dimethylpyrazole phosphate. Int J Agric Biol 17:261–270Google Scholar
  73. Hallak AMG, Davide LC, Souza IF (1999) Effects of sorghum (Sorghum bicolor L.) root exudates on the cell cycle of the bean plant (Phaseolus vulgaris L.) root. Genet Mol Biol 22:95–99CrossRefGoogle Scholar
  74. Han X, Cheng ZH, Meng HW, Yang XL, Ahmad I (2013) Allelopathic effect of decomposed garlic (Allium Sativum L.) stalk on lettuce (L. Sativa Var. Crispa L.). Pak J Bot 45:225–233Google Scholar
  75. Harper JL (1964) The individual in the population. J Ecol 52(Suppl):149–158CrossRefGoogle Scholar
  76. Harun MAYA, Robinson RW, Johnson J, Uddin MN (2014) Allelopathic potential of Chrysanthemoides monilifera subsp. Monilifera (boneseed): a novel weapon in the invasion processes. S Afr J Bot 93:157–166CrossRefGoogle Scholar
  77. He HB, Wang HB, Fang CX, Lin ZH, Yu ZM, Lin WX (2012a) Separation of allelopathy from resource competition using rice/barnyardgrass mixed-cultures. PLoS One 7:37201CrossRefGoogle Scholar
  78. He H, Wang H, Fang C, Wu H, Guo X, Liu C et al (2012b) Barnyard grass stress up regulates the biosynthesis of phenolic compounds in allelopathic rice. J Plant Physiol 169:1747–1753PubMedCrossRefPubMedCentralGoogle Scholar
  79. Hejl AM, Koster KL (2004a) The allelochemical sorgoleone inhibits root H+-ATPase and water uptake. J Chem Ecol 30:2181–2191CrossRefGoogle Scholar
  80. Hejl AM, Koster KL (2004b) Juglone disrupts root plasma membrane H+-ATPase activity and impairs water uptake, root respiration, and growth in soybean (Glycine max) and corn (Zea mays). J Chem Ecol 30:453–471PubMedCrossRefPubMedCentralGoogle Scholar
  81. Huang LF, Song LX, Xia XJ, Mao WH, Shi K, Zhou YH et al (2013) Plant-soil feedbacks and soil sickness: from mechanisms to application in agriculture. J Chem Ecol 39:232–242PubMedCrossRefPubMedCentralGoogle Scholar
  82. Iannucci A, Fragasso M, Platani C, Papa R (2013) Plant growth and phenolic compounds in the rhizosphere soil of wild oat (Avena fatua L.). Front Plant Sci 4:509PubMedPubMedCentralCrossRefGoogle Scholar
  83. Ihsan MZ, Khaliq A, Mahmood A, Naeem M, El-Nakhlawy F, Alghabari F (2015) Field evaluation of allelopathic plant extracts alongside herbicides on weed management indices and weed-crop regression analysis in maize. Weed Biol Manag 15:78–86CrossRefGoogle Scholar
  84. Inderjit Callaway RM, Vivanco JM (2006) Can plant biochemistry contribute to understanding of invasion ecology? Trends Plant Sci 11:574–580PubMedCrossRefPubMedCentralGoogle Scholar
  85. Inderjit del Moral R (1997) Is separating resource competition from allelopathy realistic? Bot Rev 63:221–230CrossRefGoogle Scholar
  86. Inderjit DMM, Einhellig FA (1993) Allelopathy: organism, processes and applications. Am Chem Soc 123:7518–7533Google Scholar
  87. Inderjit Nilsen ET (2003) Bioassays and field studies for allelopathy in terrestrial plants: progress and problems. Crit Rev Plant Sci 22:221–238CrossRefGoogle Scholar
  88. Inderjit Wardle DA, Karban R, Callaway RM (2011) The ecosystem and evolutionary contexts of allelopathy. Trends Ecol Evol 26:655–662PubMedCrossRefPubMedCentralGoogle Scholar
  89. Iqbal J, Cheema ZA, An M (2007) Intercropping of field crops in cotton for the management of purple nutsedge (Cyperus rotundus L.). Plant Soil 300:163–171CrossRefGoogle Scholar
  90. Jabran K, Mahajan G, Sardana V, Chauhan BS (2015) Allelopathy for weed control in agricultural systems. Crop Prot 72:57–65CrossRefGoogle Scholar
  91. John J, Shirmila J, Sarada S, Anu S (2010) Role of allelopathy in vegetables crops production. Allelopath J 25:275–311Google Scholar
  92. Kato-Noguchi H, Ota K, Kujime H, Ogawa M (2013) Effects of momilactone on the protein expression in Arabidopsis germination. Weed Biol Manag 13:19–23CrossRefGoogle Scholar
  93. Kaur H, Inderjit Kaushik S (2005) Cellular evidence of allelopathic interference of benzoic acid to mustard (Brassica juncea L.) seedling growth. Plant Physiol Biochem 43:77–81PubMedCrossRefGoogle Scholar
  94. Kekec G, Mutlu S, Alpsoy L, Sakcali MS, Atici O (2013) Genotoxic effects of catmint (Nepeta meyeri Benth.) essential oils on some weed and crop plants. Toxicol Ind Health 29:504–513PubMedCrossRefPubMedCentralGoogle Scholar
  95. Khalaj MA, Amiri M, Azimi MH (2013) Allelopathy: physiological and sustainable agriculture important aspects. Int J Agron Plant Prod 4:950–962Google Scholar
  96. Khan AL, Hussain J, Hamayun M, Kang SM, Kim HY, Watanabe KN, Lee IN (2010) Allelochemical, eudesmane-type sesquiterpenoids from Inula falconeri. Molecules 15:1554–1561PubMedPubMedCentralCrossRefGoogle Scholar
  97. Khan MA, Cheng ZH, Xiao XM, Khan AR, Ahmed SS (2011) Ultrastructural studies of the inhibition effect against Phytophthora capsici of root exudates collected from two garlic cultivars along with their qualitative analysis. Crop Prot 30:1149–1155CrossRefGoogle Scholar
  98. Khanh TD, Chung MI, Xuan TD, Tawata S (2005) The exploitation of crop allelopathy in sustainable agricultural production. J Agron Crop Sci 191:172–184CrossRefGoogle Scholar
  99. Kohli RK, Singh HP, Batish DR (2001) Allelopathy in agroecosystems. Food Products Press, New YorkGoogle Scholar
  100. Kong CH, Hu F (2001) Allelopathy and its application. Chinese Agricultural Press, BeijingGoogle Scholar
  101. Kong CH, Wang P, Gu Y, Xu XH, Wang ML (2008) Fate and impact on microorganisms of rice allelochemicals in paddy soil. J Agric Food Chem 56:5043–5049PubMedCrossRefGoogle Scholar
  102. Kong CH, Chen XH, Hu F, Zhang SZ (2011) Breeding of commercially acceptable allelopathic rice cultivars in China. Pest Manag Sci 67:1100–1106PubMedGoogle Scholar
  103. Kremer RJ (2006) The role of allelopathic bacteria in weed management. In: Inderjit X, Mukerji KG (eds) Allelochemicals: biological control of plant pathogens and diseases. Springer Netherlands Press, Dordrecht, pp 143–155CrossRefGoogle Scholar
  104. Leao PN, Engene N, Antunes A, Gerwick WH, Vasconcelos V (2012) The chemical ecology of cyanobacteria. Nat Prod Rep 29:372–391PubMedPubMedCentralCrossRefGoogle Scholar
  105. Leslie AW (2005) History and current trends in the use of allelopathy for weed management. Hortic Technol 14:149–154Google Scholar
  106. Leslie CA, Romani RJ (1988) Inhibition of ethylene biosynthesis by salicylic acid. Plant Physiol 88:833–837PubMedPubMedCentralCrossRefGoogle Scholar
  107. Li ST, Zhou JM, Wang HY, Chen XQ (2002) Research surveys of allelopathy in plants. Chin J Eco-Agric 10:72–74Google Scholar
  108. Li ZH, Wang Q, Ruan X, Pan CD, Jiang DA (2010) Phenolics and plant allelopathy. Molecules 15:8933–8952PubMedPubMedCentralCrossRefGoogle Scholar
  109. Li YP, Feng YL, Chen YJ, Tian YH (2015) Soil microbes alleviate allelopathy of invasive plants. Sci Bull 60:1083–1091CrossRefGoogle Scholar
  110. Liebman M, Dyck E (1993) Crop-rotation and intercropping strategies for weed management. Ecol Appl 3:92–122PubMedCrossRefPubMedCentralGoogle Scholar
  111. Lin WX (2010) Effect of self-allelopathy on AOS of Casuarina equisetifolia forst seedling. Fujian J Agric Sci 25:108–113Google Scholar
  112. Lin WX, Kim KU, Shin DH (2000) Rice allelopathic potential and its modes of action on barnyard grass (Echinochloa crusgalli). Allelopath J 7:215–224Google Scholar
  113. Lin WX, He HQ, Guo YC, Liang YY, Chen FY (2001) Rice allelopathy and its physiobiochemical characteristics. Chin J Appl Ecol 12:871–875Google Scholar
  114. Liu XF, Hu XJ (2001) Effects of allelochemical ferulic acid on endogenous hormone level of wheat seedling. Chin J Eco-Agric 9:96–98Google Scholar
  115. Liu DL, Lovett JV (1993) Biologically active secondary metabolites of barley. II. Phytotoxicity of barley allelochemicals. J Chem Ecol 19:2231–2244PubMedCrossRefPubMedCentralGoogle Scholar
  116. Lv WG, Zhang CL, Yuan F, Peng Y (2002) Mechanism of allelochemicals inhibiting continuous cropping cucumber growth. Sci Agric Sin 35:106–109Google Scholar
  117. Ma YQ (2005) Allelopathic studies of common wheat (Triticum aestivum L.). Weed Biol Manag 5:93–104CrossRefGoogle Scholar
  118. Macias FA, Marin D, Oliveros-Bastidas A, Varela RM, Simonet AM, Carrera C et al (2003) Allelopathy as a new strategy for sustainable ecosystems development. Biol Sci Space 17:18–23PubMedCrossRefPubMedCentralGoogle Scholar
  119. Macias FA, Oliveros-Bastidas A, Marin D, Castellano D, Simonet AM, Molinillo JM (2004) Degradation studies on benzoxazinoids. Soil degradation dynamics of 2,4-dihydroxy-7-methoxy-(2H)-1,4-benzoxazin-3(4H)-one (DIMBOA) and its degradation products, phytotoxic allelochemicals from gramineae. J Agric Food Chem 52:6402–6413PubMedCrossRefPubMedCentralGoogle Scholar
  120. Macias FA, Marin D, Oliveros-Bastidas A, Castellano D, Simonet AM, Molinillo JM (2005a) Structure-activity relationships (SAR) studies of benzoxazinones, their degradation products and analogues. Phytotoxicity on standard target species (STS). J Agric Food Chem 53:538–548PubMedCrossRefPubMedCentralGoogle Scholar
  121. Macias FA, Oliveros-Bastidas A, Marin D, Castellano D, Simonet AM, Molinillo JM (2005b) Degradation studies on benzoxazinoids. Soil degradation dynamics of (2R)-2-O-beta-D-glucopyranosyl-4-hydroxy-(2H)-1,4-benzoxazin-3(4H)-one (DIBOA-Glc) and its degradation products, phytotoxic allelochemicals from Gramineae. J Agric Food Chem 53:554–561PubMedCrossRefPubMedCentralGoogle Scholar
  122. Mahmood A, Cheema ZA, Mushtaq MN, Farooq M (2013) Maize-sorghum intercropping systems for purple nutsedge management. Arch Agron Soil Sci 59:1279–1288CrossRefGoogle Scholar
  123. Mahmoud SS, Croteau RB (2002) Strategies for transgenic manipulation of monoterpene biosynthesis in plants. Trends Plant Sci 7:366–373PubMedCrossRefPubMedCentralGoogle Scholar
  124. Maighany F (2003) Allelopathy: from concept to application. Partoe vaghee Iran, TehranGoogle Scholar
  125. Mallik AU (2003) Conifer regeneration problems in boreal and temperate forests with ericaceous understory: role of disturbance, seedbed limitation, and keystone species change. Crit Rev Plant Sci 22:341–366CrossRefGoogle Scholar
  126. Maqbool N, Wahid A, Farooq M, Cheema ZA, Siddique KHM (2013) Allelopathy and abiotic stress interaction in crop plants. In: Cheema ZA, Farooq M, Wahid A (eds) Allelopathy. Springer Berlin Heidelberg, Berlin, pp 451–468CrossRefGoogle Scholar
  127. Meazza G, Scheffler BE, Tellez MR, Rimando AM, Romagni JG, Duke SO et al (2002) The inhibitory activity of natural products on plant p-hydroxyphenylpyruvate dioxygenase. Phytochemistry 60:281–288PubMedCrossRefPubMedCentralGoogle Scholar
  128. Menges RM (1988) Allelopathic effects of palmer amaranth (Amaranthus palmeri) on seedling growth. Weed Sci Soc Am 36:325–328CrossRefGoogle Scholar
  129. Mishra S, Nautiyal CS (2012) Reducing the allelopathic effect of Parthenium hysterophorus L. on wheat (Triticum aestivum L.) by Pseudomonas putida. Plant Growth Regul 66:155–165CrossRefGoogle Scholar
  130. Mishra S, Mishra A, Chauhan PS, Mishra SK, Kumari M, Niranjan A et al (2012) Pseudomonas putida NBRIC19 dihydrolipoamide succinyl transferase (SucB) gene controls degradation of toxic allelochemicals produced by Parthenium hysterophorus. J Appl Microbiol 112:793–808PubMedCrossRefPubMedCentralGoogle Scholar
  131. Mishra S, Upadhyay RS, Nautiyal CS (2013) Unravelling the beneficial role of microbial contributors in reducing the allelopathic effects of weeds. Appl Microbiol Biotechnol 97:5659–5668PubMedCrossRefPubMedCentralGoogle Scholar
  132. Mohney BK, Matz T, LaMoreaux J, Wilcox DS, Gimsing AL, Mayer P, Weidenhamer JD (2009) In situ silicone tube microextraction: a new method for undisturbed sampling of root-exuded thiophenes from marigold (Tagetes erecta L.) in soil. J Chem Ecol 35:1279–1287PubMedCrossRefPubMedCentralGoogle Scholar
  133. Molisch H (1937) Der einfluss Einer Pflanze Auf Die Andere-allelopathie. Fischer, JenaGoogle Scholar
  134. Narwal SS (2000) Weed management in rice: wheat rotation by allelopathy. Crit Rev Plant Sci 19:249–266CrossRefGoogle Scholar
  135. Nawaz A, Farooq M, Cheema SA, Cheema ZA (2014) Role of allelopathy in weed management. In: Chauhan BS, Mahajan G (eds) Recent advances in weed management. Springer-Verlag Press, New York, pp 39–62Google Scholar
  136. Nishida N, Tamotsu S, Nagata N, Saito C, Sakai A (2005) Allelopathic effects of volatile monoterpenoids produced by Salvia leucophylla: inhibition of cell proliferation and DNA synthesis in the root apical meristem of Brassica campestris seedlings. J Chem Ecol 31:1187–1203PubMedCrossRefPubMedCentralGoogle Scholar
  137. Odeyemi IS, Afolami SO, Adigun JA (2013) Plant parasitic nematode relative abundance and population suppression under Chromolaena odorata (Asteraceae) fallow. Int J Pest Manag 59:79–88CrossRefGoogle Scholar
  138. Pawlowski A, Kaltchuk-Santos E, Zini CA, Caramao EB, Soares GLG (2012) Essential oils of Schinus terebinthifolius and S. molle (Anacardiaceae): mitodepressive and aneugenic inducers in onion and lettuce root meristems. S Afr J Bot 80:96–103CrossRefGoogle Scholar
  139. Peng SL, Wen J, Guo QF (2004) Mechanism and active variety of allelochemicals. Acta Bot Sin 46:757–766Google Scholar
  140. Peterson CA, Betts H, Baldwin IT (2002) Methyl jasmonate as an allelopathic agent: sagebrush inhibits germination of a neighbouring tobacco, Nicotiana Attenuata. Chem Ecol 28:441–446Google Scholar
  141. Purvis W (2000) Lichens. Smithsonian Books, Washington, DCGoogle Scholar
  142. Rasmussen JA, Hejl AM, Einhellig FA, Thomas JA (1992) Sorgoleone from root exudate inhibits mitochondrial functions. J Chem Ecol 18:197–207PubMedCrossRefPubMedCentralGoogle Scholar
  143. Razavi SM (2011) Plant coumarins as allelopathy agents. Int J Biol Chem 5:86–90CrossRefGoogle Scholar
  144. Reeves DW, Price AJ, Patterson MG (2005) Evaluation of three winter cereals for weed control in conservation-tillage nontransgenic cotton. Weed Technol 19:731–736CrossRefGoogle Scholar
  145. Rice EL (1974) Allelopathy. Academic, New YorkGoogle Scholar
  146. Rice EL (1984) Allelopathy, 2nd edn. Academic, New YorkGoogle Scholar
  147. Sanchez-Moreiras AM, De La Pena TC, Reigosa MJ (2008) The natural compound benzoxazolin-2(3H)-one selectively retards cell cycle in lettuce root meristems. Phytochemistry 69:2172–2179PubMedCrossRefPubMedCentralGoogle Scholar
  148. Schulz M, Marocco A, Tabaglio V, Macias FA, Molinillo JM (2013) Benzoxazinoids in rye allelopathy from discovery to application in sustainable weed control and organic farming. J Chem Ecol 39:154–174PubMedCrossRefPubMedCentralGoogle Scholar
  149. Shao J, Wu Z, Yu G, Peng X, Li R (2009) Allelopathic mechanism of pyrogallol to Microcystis aeruginosa PCC7806 (Cyanobacteria): from views of gene expression and antioxidant system. Chemosphere 75:924–928PubMedCrossRefPubMedCentralGoogle Scholar
  150. Shao-Lin P, Jun W, Qin-Feng G (2004) Mechanism and active variety of allelochemicals. Acta Bot Sin 53:511–517Google Scholar
  151. Singh NB, Sunaina D (2014) Allelopathic stress produced by Bitter Gourd (Momordica charantia L.). J Stress Physiol Biochem 10:5–14Google Scholar
  152. Singh HP, Batish DR, Kohli RK (1999) Autotoxicity: concept, organisms, and ecological significance. Crit Rev Plant Sci 18:757–772CrossRefGoogle Scholar
  153. Singh HP, Daizy R, Batisha DR, Kohli RK (2001) Allelopathy in agroecosystems an overview. J Crop Prod 4:121–161CrossRefGoogle Scholar
  154. Singh HP, Batish DR, Kohli RK (2003) Allelopathic interactions and allelochemicals: new possibilities for sustainable weed management. Crit Rev Plant Sci 22:239–311CrossRefGoogle Scholar
  155. Sodaeizadeh H, Hosseini Z (2012) Allelopathy an environmentally friendly method for weed control. Int Conf Appl Life Sci 18:387–392Google Scholar
  156. Soltys D, Rudzinska-Langwald A, Gniazdowska A, Wisniewska A, Bogatek R (2012) Inhibition of tomato (Solanum lycopersicum L.) root growth by cyanamide is due to altered cell division, phytohormone balance and expansin gene expression. Planta 236:1629–1638PubMedPubMedCentralCrossRefGoogle Scholar
  157. Soltys D, Krasuska U, Bogatek R, Gniazdowska A (2013) Allelochemicals as bioherbicides—present and perspectives. In: Price AJ, Kelton JA (eds) Herbicides—current research and case studies in use. Licensee InTech Press, New YorkGoogle Scholar
  158. Stinson KA, Campbell SA, Powell JR, Wolfe BE, Callaway RM, Thelen GC et al (2006) Invasive plant suppresses the growth of native tree seedlings by disrupting below ground mutualisms. PLoS Biol 4:140CrossRefGoogle Scholar
  159. Sun XM, Lu ZY, Liu BY, Zhou QH, Zhang YY, Wu ZB (2014) Allelopathic effects of pyrogallic acid secreted by submerged macrophytes on Microcystis aeruginosa: role of ROS generation. Allelopath J 33:121–129Google Scholar
  160. Sunar S, Yildirim N, Aksakal O, Agar G (2013) Determination of the genotoxic effects of Convolvulus arvensis extracts on corn (Zea mays L.) seeds. Toxicol Ind Health 29:449–459PubMedCrossRefGoogle Scholar
  161. Sunmonu TO, Van Staden J (2014) Phytotoxicity evaluation of six fast-growing tree species in South Africa. S Afr J Bot 90:101–106CrossRefGoogle Scholar
  162. Tabaglio V, Gavazzi C, Schulz M, Marocco A (2008) Alternative weed control using the allelopathic effect of natural benzoxazinoids from rye mulch. Agron Sustain Dev 28:397–401CrossRefGoogle Scholar
  163. Uddin MR, Park KW, Han SM, Pyon JY, Park SU (2012) Effects of sorgoleone allelochemical on chlorophyll fluorescence and growth inhibition in weeds. Allelopath J 30:61–70Google Scholar
  164. Uddin MR, Park SU, Dayan FE, Pyon JY (2014) Herbicidal activity of formulated sorgoleone, a natural product of sorghum root exudate. Pest Manag Sci 70:252–257PubMedCrossRefPubMedCentralGoogle Scholar
  165. Understrup AG, Ravnskov S, Hansen HC, Fomsgaard IS (2005) Biotransformation of 2-benzoxazolinone to 2-amino-(3H)-phenoxazin-3-one and 2-acetylamino-(3H)-phenoxazin-3-one in soil. J Chem Ecol 31:1205–1222PubMedCrossRefPubMedCentralGoogle Scholar
  166. Vidal RA, Bauman TT (1997) Fate of allelochemicals in the soil. Cienc Rural 27:351–357CrossRefGoogle Scholar
  167. Wang P, Kong CH, Hu F, Xu XH (2007) Allantoin involved in species interactions with rice and other organisms in paddy soil. Plant Soil 296:43–51CrossRefGoogle Scholar
  168. Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. Ann Bot 111:1021–1058PubMedPubMedCentralCrossRefGoogle Scholar
  169. Weidenhamer JD (2005) Biomimetic measurement of allelochemical dynamics in the rhizosphere. J Chem Ecol 31:221–236PubMedCrossRefPubMedCentralGoogle Scholar
  170. Weidenhamer JD, Boes PD, Wilcox DS (2009) Solid-phase root zone extraction (SPRE): a new methodology for measurement of allelochemical dynamics in soil. Plant Soil 322:177–186CrossRefGoogle Scholar
  171. Weidenhamer JD, Mohney BK, Shihada N, Rupasinghe M (2014) Spatial and temporal dynamics of root exudation: how important is heterogeneity in allelopathic interactions? J Chem Ecol 40:940–952PubMedCrossRefPubMedCentralGoogle Scholar
  172. Weir TL, Park SW, Vivanco JM (2004) Biochemical and physiological mechanisms mediated by allelochemicals. Curr Opin Plant Biol 7:472–479PubMedCrossRefPubMedCentralGoogle Scholar
  173. Weston LA, Duke SO (2003) Weed and crop allelopathy. Crit Rev Plant Sci 22:367–389CrossRefGoogle Scholar
  174. Weston LA, Mathesius U (2013) Flavonoids: their structure, biosynthesis and role in the rhizosphere, including allelopathy. J Chem Ecol 39:283–297CrossRefGoogle Scholar
  175. Wezel A, Casagrande M, Celette F, Vian JF, Ferrer A, Peigne J (2014) Agroecological practices for sustainable agriculture. A review. Agron Sustain Dev 34:1–20CrossRefGoogle Scholar
  176. Willis RJ (2007) The history of allelopathy. Springer, DordrechtGoogle Scholar
  177. Wink M, Latz-Bruning B (1995) Allelopathic properties of alkaloids and other natural-products-possible modes of action. In: Inderjit A, Dakshini KMM, Einhellig FA (eds) Allelopathy: organisms, processes, and applications. American Chemical Society Press, Washington, DC, pp 117–126Google Scholar
  178. Wortman SE, Drijber RA, Francis CA, Lindquist JL (2013) Arable weeds, cover crops, and tillage drive soil microbial community composition in organic cropping systems. Appl Soil Ecol 72:232–241CrossRefGoogle Scholar
  179. Wu FZ, Pan K, Ma FM, Wang XD (2004) Effects of cinnamic acid on photosynthesis and cell ultrastructure of cucumber seedlings. Acta Hortic Sin 31:183–188Google Scholar
  180. Wu Z, Yang L, Wang R, Zhang Y, Shang Q, Wang L et al (2015) In vitro study of the growth, development and pathogenicity responses of Fusarium oxysporum to phthalic acid, an autotoxin from Lanzhou lily. World J Microbiol Biotechnol 31:1227–1234PubMedCrossRefPubMedCentralGoogle Scholar
  181. Xiao-Jun Y, Hui-Xing S, Guang-Li L, Qi-Bing C (2013) Allelopathic effects of Paeonia decomposita on seed germination and protective enzymes activities of wheat. J Med Plant Res 7:1057–1062Google Scholar
  182. Xuan TD, Shinkichi T, Khanh TD, Min CI (2005) Biological control of weeds and plant pathogens in paddy rice by exploiting plant allelopathy: an overview. Crop Prot 24:197–206CrossRefGoogle Scholar
  183. Yang QH, Ye WH, Liao FL, Yin XJ (2005) Effects of allelochemicals on seed germination. Chin J Ecol 24:1459–1465Google Scholar
  184. Yang GQ, Wan FH, Liu WX, Guo JY (2008) Influence of two allelochemicals from Ageratina adenophora Sprengel on ABA, IAA, and ZR contents in roots of upland rice seedlings. Allelopath J 21:253–262Google Scholar
  185. Yildirim E, Guvenc I (2005) Intercropping based on cauliflower: more productive, profitable and highly sustainable. Eur J Agron 22:11–18CrossRefGoogle Scholar
  186. Yu JQ, Matsui Y (1997) Effects of root exudates of cucumber (Cucumis sativus) and allelochemicals on ion uptake by cucumber seedlings. J Chem Ecol 23:817–827CrossRefGoogle Scholar
  187. Yu JQ, Ye SF, Zhang MF, Hu WH (2003) Effects of root exudates and aqueous root extracts of cucumber (Cucumis sativus) and allelochemicals, on photosynthesis and antioxidant enzymes in cucumber. Biochem Syst Ecol 31:129–139CrossRefGoogle Scholar
  188. Yu JH, Zhang Y, Niu CX, Li JJ (2006) Effects of two kinds of allelochemicals on photosynthesis and chlorophyll fluorescence parameters of Solanum melongena L. seedlings. Chin J Appl Ecol 17:1629–1632Google Scholar
  189. Yuan GL, Ma RX, Liu XF, Sun SS (1998) Effect of allelochemicals on nitrogen absorption of wheat seeding. Chin J Eco-Agric 3:9–41Google Scholar
  190. Zeng R (2008) Allelopathy in Chinese ancient and modern agriculture. In: Zeng R, Mallik A, Luo S (eds) Allelopathy in sustainable agriculture and forestry. Springer New York Press, New York, pp 39–59CrossRefGoogle Scholar
  191. Zeng RS (2014) Allelopathy—the solution is indirect. J Chem Ecol 40:515–516PubMedCrossRefPubMedCentralGoogle Scholar
  192. Zeng RS, Luo SM, Shi YH, Shi MB, Tu CY (2001) Physiological and biochemical mechanism of allelopathy of secalonic acid F on higher plants. Agron J 93:72–79CrossRefGoogle Scholar
  193. Zeng RS, Mallik AZ, Luo SM (2008) Allelopathy in sustainable agriculture and forestry. Springer Press, New YorkCrossRefGoogle Scholar
  194. Zheng YL, Feng YL, Zhang LK, Callaway RM, Valiente-Banuet A, Luo DQ et al (2015) Integrating novel chemical weapons and evolutionarily increased competitive ability in success of a tropical invader. New Phytol 205:1350–1359PubMedCrossRefPubMedCentralGoogle Scholar
  195. Zhou K, Wang ZF, Hao FG, Guo WM (2010) Effects of aquatic extracts from different parts and rhizospheric soil of chrysanthemum on the rooting of stem cuttings of the same species. Acta Botan Boreali-Occiden Sin 76:762–768Google Scholar
  196. Zimdahl RL (1999) My view. Weed Sci 47:1CrossRefGoogle Scholar
  197. Zuo SP, Liu GB, Li M (2012a) Genetic basis of allelopathic potential of winter wheat based on the perspective of quantitative trait locus. Field Crop Res 135:67–73CrossRefGoogle Scholar
  198. Zuo SP, Ma YQ, Ye LT (2012b) In vitro assessment of allelopathic effects of wheat on potato. Allelopath J 30:1–10Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Hamideh Bakhshayeshan-Agdam
    • 1
  • Seyed Yahya Salehi-Lisar
    • 1
    Email author
  1. 1.Department of Plant Sciences, Faculty of Natural SciencesUniversity of TabrizTabrizIran

Personalised recommendations