Secondary Criteria Air Pollutants: Environmental Health Effects

  • Pallavi Saxena
  • Saurabh Sonwani


Air quality has become a serious concern in mostly urban areas and covering different parts of the world. Over the last few years, there have been tremendous studies reported so far related to harmful health effects due to bad air quality in urban areas across the globe. Among all air pollutants, criteria air pollutants are specifically highlighted for critically analysing about the environmental impacts in relation to plants species, materials, health, biosphere, etc. These air pollutants are in focus due to their toxicity, reactivities and the severity of their impacts. Among them very less information has been reported on secondary criteria air pollutant. Hence, the present chapter focuses on the nature and behaviour of secondary criteria air pollutants with respect to their impacts on environment. It will also highlight the mechanisms involved in examining their impacts, toxicity and overall assimilation plus fate of their chemical reactivities.


Secondary criteria air pollutants Health Toxicity Air quality and Biosphere 


  1. Aamlid D, Tørseth K, Venn K, Stuanes AO, Solberg S, Hylen G et al (2000) Changes of forest health in Norwegian boreal forests during 15 years. For Ecol Manag 127(1–3):103–118CrossRefGoogle Scholar
  2. Agathokleous E, Saitanis CJ, Koike T (2015) Tropospheric O3, the nightmare of wild plants: a review study. J Agric Meteorol 71(2):142–152CrossRefGoogle Scholar
  3. Ainsworth EA, Yendrek CR, Sitch S, Collins WJ, Emberson LD (2012) The effects of tropospheric ozone on net primary productivity and implications for climate change. Annu Rev Plant Biol 63:637–661PubMedCrossRefPubMedCentralGoogle Scholar
  4. Akimoto H (2003) Global air quality and pollution. Science 302:1716–1719PubMedCrossRefPubMedCentralGoogle Scholar
  5. Akimoto N (2006) Tropospheric ozone a growing threat. Acid Deposition and Oxidant Research Center, Niigata, Japan. 26 рGoogle Scholar
  6. Alghamdi MA, Khoder M, Harrison RM, Hyvärinen AP, Hussein T, Al-Jeelani H, Abdelmaksoud AS, Goknil MH, Shabbaj II, Almehmadi FM, Lihavainen H, Kulmala M, Hämeri K (2014) Temporal variations of O3 and NOx in the urban background atmosphere of the coastal city Jeddah, Saudi Arabia. Atmos Environ 94:205–214CrossRefGoogle Scholar
  7. Ali K, Inamdar S, Beig G, Ghude S, Peshin S (2012) Surface ozone scenario at Pune and Delhi during the decade of 1990s. J Earth Sys Sci 121:373–383CrossRefGoogle Scholar
  8. Alscher RG, Amthor JS (1988) The physiology of free radical scavenging: maintenance and repair processes. In: Schulte-Hostede S, Darral NM, Blank LW, Wellburn AR (eds) Air pollution and plant metabolism Elsevier Applied Science. U.K pp, London, pp 94–115Google Scholar
  9. Andersson C, Engardt M (2010) European ozone in a future climate: importance of changes in dry deposition and isoprene emissions. J Geophys Res Atmos 115:D02303. CrossRefGoogle Scholar
  10. Andrade MdF, Kumar P, de Freitas ED, Ynoue RY, Martins J, Martins LD, Nogueira T, Perez-Martinez P, de Miranda RM, Albuquerque T, Gonçalves FLT, Oyama B, Zhang Y (2017) Air quality in the megacity of São Paulo: evolution over the last 30 years and future perspectives. Atmos Environ 159:66–82CrossRefGoogle Scholar
  11. Andrey J, Cuevas E, Parrondo MC, Alonso-Pérez S, Redondas A, Gil-Ojeda M (2014) Quantification of ozone reductions within the Saharan air layer through a 13-year climatologic analysis of ozone profiles. Atmos Environ 84:28–34CrossRefGoogle Scholar
  12. Aneja VP, Businger S, Li Z, Claiborn CS, Murthy A (1991) Ozone climatology at high elevations in the Southern Appalachians. J Geophys Res Atmos 96:1007–1021CrossRefGoogle Scholar
  13. Aneja VP, Mathur R, Arya SP, Li Y, George C, Murray JR, Manuszak TL (2000) Climatology of diurnal trends and vertical distribution of ozone in the atmospheric boundary layer in urban North Carolina. J Air Waste Manag Assoc 50(1):54–64PubMedCrossRefPubMedCentralGoogle Scholar
  14. Anenberg SC, Horowitz LW, Tong DQ, West JJ (2010) An estimate of the global burden of anthropogenic ozone and fine particulate matter on premature human mortality using atmospheric modeling. Environ Health Perspect 118:1189–1195PubMedPubMedCentralCrossRefGoogle Scholar
  15. Anfossi D, Sandroni S, Viarengo S (1991) Tropospheric ozone in the nineteenth century: the Moncalieri series. J Geophys Res Atmos 96(D9):17,349–17,352CrossRefGoogle Scholar
  16. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399CrossRefGoogle Scholar
  17. Ashmore MR (2005) Assessing the future global impacts of ozone on vegetation. Plant Cell Environ 28:949–964CrossRefGoogle Scholar
  18. Atkinson R (2000) Atmospheric chemistry of VOCs and NOX. Atmos Environ 34:2063–2101CrossRefGoogle Scholar
  19. Bako-Biro Z, Wargocki P, Weschler CJ, Fanger PO (2004) Effects of pollution from personal computers on perceived air quality, SBS symptoms and productivity in officesGoogle Scholar
  20. Ballester F, Rodriguez P, Iniguez C, Saez M, Daponte A, Galán I et al (2006) Air pollution and cardiovascular admissions association in Spain: results within the EMECAS project. J Epidemiol Community Health 60(4):328–336PubMedPubMedCentralCrossRefGoogle Scholar
  21. Bartholomay GA, Eckert RT, Smith KT (1997) Reductions in tree-ring widths of white pine following ozone exposure at Acadia National Park, Maine, USA. Canad J For Res Rev Canadienne De Recherche Forestiere 27:361–368CrossRefGoogle Scholar
  22. Bassin S, Volk M, Fuhrer J (2007) Factors affecting the ozone sensitivity of temperate European grasslands: an overview. Environ Poll 146:678–691CrossRefGoogle Scholar
  23. Beig G, Ghude SD, Polade SD, Tyagi B (2008) Threshold exceedances and cumulative ozone exposure indices at tropical suburban site. Geophys Res Lett 35:L02802CrossRefGoogle Scholar
  24. Bell ML, Zanobetti A, Dominici F (2014) Who is more affected by ozone pollution? A systematic review and meta-analysis. Am J Epidemiol 180(1):15–28PubMedPubMedCentralCrossRefGoogle Scholar
  25. Bender J, Muntiferang RB, Lin JC, Weigel HJ (2006) Growth and nutritive quality of Poa pratensis as influenced by ozone and fumigation. Environ Pollut 142:109–115PubMedCrossRefPubMedCentralGoogle Scholar
  26. Bernard NL, Gerbeer MJ, Astre CM, Saintot MJ (1999) Ozone measurement with passive samplers: validation and use for ozone pollution assessment in Montpellier. France Environ Sci Technol 1999(33):217–222CrossRefGoogle Scholar
  27. Betzelberger AM, Gillespie KM, Mcgrath JM, Koester RP, Nelson R, Ainsworth EA (2010) Effects of chronic elevated ozone concentration on antioxidant capacity, photosynthesis and seed yield of 10 soybean cultivars. Plant Cell Environ 33:1561–1589Google Scholar
  28. Biswas DK, Xu H, Li YG, Sun JZ, Wang XZ, Han XG, Jiang GM (2008) Genotypic differences in leaf biochemical, physiological and growth responses to ozone in 20 winter wheat cultivars released over the past 60 years. Glob Chang Biol 14:46–59Google Scholar
  29. Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot London 91:179–194CrossRefGoogle Scholar
  30. Booker F, Muntifering R, McGrath M, Burkey K, Decoteau D, Fiscus E, Manning W, Sagar K, Chappelka A, Grantz D (2009) The ozone component of global change: potential effects on agricultural and horticultural plant yield, product quality and interactions with invasive species. J Integr Plant Biol 51:337–351PubMedCrossRefPubMedCentralGoogle Scholar
  31. Bozkurt Z, Doğan G, Arslanbaş D, Pekey B, Pekey H, Dumanoğlu Y, Bayram A, Tuncel G (2015) Determination of the personal, indoor and outdoor exposure levels of inorganic gaseous pollutants in different microenvironments in an industrial city. Environ Monit Assess 187:590PubMedCrossRefPubMedCentralGoogle Scholar
  32. Brauer M, Freedman G, Frostad J, van Donkelaar A, Martin RV, Estep K, Amini H, Apte JS, Balakrishnan K, Barregard L, Broday DM, Feigin V, Ghosh S, Hopke PK, Knibbs LD, Kokubo Y, Liu, Ma YS, Morawska L, Sangrador JLT, Shaddick G, Anderson HR, Vos T, Forouzanfar MH, Burnett RT, Cohen A (2016) Ambient air pollution exposure estimation for the global burden of disease 2013. Environ Sci Technol 50(1):79–88PubMedCrossRefPubMedCentralGoogle Scholar
  33. Broberg MC, Feng ZZ, Xin Y, Pleijel H (2015) Ozone effects on wheat grain quality – a summary. Environ Poll 197:203–213CrossRefGoogle Scholar
  34. Bytnerowicz A, Omasa K, Paoletti E (2007) Integrated effects of air pollution and climate change on forests: a northern hemisphere perspective. Environ Poll 147:438–445CrossRefGoogle Scholar
  35. Calatayud V, Cerveró J, Calvo E, García-Breijo F-J, Reig-Armiñana J, Sanz MJ (2011) Responses of evergreen and deciduous Quercus species to enhanced ozone levels. Environ Poll 159:55–63CrossRefGoogle Scholar
  36. Caregnato FF, Bortolin RC, Junior AMD, Moreira JCF (2013) Exposure to elevated ozone levels differentially affects the antioxidant capacity and the redox homeostasis of two subtropical Phaseolus vulgaris L. varieties. Chemosphere 93:320–330PubMedCrossRefPubMedCentralGoogle Scholar
  37. Carvalho VSB, Freitas ED, Martins LD, Martins JA, Mazzoli CR, Andrade MDF (2015) Air quality status and trends over the Metropolitan Area of São Paulo, Brazil as a result of emission control policies. Environ Sci Pol 47:68–79CrossRefGoogle Scholar
  38. Castagna A, Ranieri A (2009) Detoxification and repair process of ozone injury: from O3 uptake to gene expression adjustment. Environ Pollut 157:1461–1469PubMedCrossRefPubMedCentralGoogle Scholar
  39. Chai F, Gao J, Chen Z, Wang S, Zhang Y, Zhang J, Zhang H, Yun Y, Ren C (2014) Spatial and temporal variation of particulate matter and gaseous pollutants in 26 cities in China. J Environ Sci 26:75–82CrossRefGoogle Scholar
  40. Chang KL, Petropavlovskikh I, Cooper OR, Schultz MG (2017) Trend analysis of surface ozone from ground-based observations. Elem Sci Anth 5:50CrossRefGoogle Scholar
  41. Chao CYH (2001) Comparison between indoor and outdoor air contaminant levels in residential buildings from passive sampler study. Build Environ 36:999–1007CrossRefGoogle Scholar
  42. Chaudhary N, Agrawal SB (2015) The role of elevated ozone on growth, yield and seed quality amongst six cultivars of mung bean. Ecotoxico Environ Safety 111:286–294CrossRefGoogle Scholar
  43. Chelani AB (2013) Study of extreme CO, NO2 and O3 concentrations at a traffic site in Delhi: statistical persistence analysis and source identification. Aerosol Air Qual Res 13:377–384CrossRefGoogle Scholar
  44. Chen Z, Gallie DR (2005) Increasing tolerance to ozone by elevating foliar ascorbic acid confers greater protection against ozone than increasing avoidance. Plant Physiol 138:1673–1689PubMedPubMedCentralCrossRefGoogle Scholar
  45. Chen R, Huang W, Wong CM, Wang Z, Thach TQ, Chen B, Kan H, CAPES Collaborative Group (2012) Short-term exposure to sulfur dioxide and daily mortality in 17 Chinese cities: the China air pollution and health effects study (CAPES). Environ Res 118:101–106PubMedCrossRefPubMedCentralGoogle Scholar
  46. Chen Y, Shen G, Liu W, Du W, Su S, Duan Y, Lin N, Zhuo S, Wang X, Xing B, Tao S (2016) Field measurement and estimate of gaseous and particle pollutant emissions from cooking and space heating processes in rural households, northern China. Atmos Environ 125:265–271CrossRefGoogle Scholar
  47. Cheng H, Wang Z, Feng J, Chen H, Zhang F, Liu J (2012) Carbonaceous species composition and source apportionment of PM2.5 in urban atmosphere of Wuhan. Ecol Environ Sci 9:1574–1579Google Scholar
  48. Chevalier A, Gheusi F, Delmas R, Ordonez C, Sarrat C, Zbinden R, Thouret V, Athie G, Cousin JM (2007) Influence of altitude on ozone levels and variability in the lower troposphere: a ground-based study for western Europe over the period 2001–2004. Atmos Chem Phys 7:4311–4326CrossRefGoogle Scholar
  49. Cohen AJ, Brauer M, Burnett R, Anderson HR, Frostad J et al (2017) Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the global burden of diseases study 2015. Lancet 389(10082):1907–1918PubMedPubMedCentralCrossRefGoogle Scholar
  50. Cooper OR, Parrish DD, Ziemke J, Balashov NV, Cupeiro M, Galbally IE, Gilge S, Horowitz L, Jensen NR, Lamarque JF, Naik V, Oltmans SJ, Schwab J, Shindell DT, Thompson AM, Thouret V, Wang Y, Zbinden RM (2004) Global distribution and trends of tropospheric ozone: an observation-based review. Elementa 2:000029Google Scholar
  51. Cooper OR, Parrish DD, Stohl A, Trainer M, Nédélec P, Thouret V, Cammas JP, Oltmans SJ, Johnson BJ, Tarasick D, Leblanc T, McDermid IS, Jaffe D, Gao R, Stith J, Ryerson T, Aikin K, Campos T, Weinheimer A, Avery MA (2010) Increasing springtime ozone mixing ratios in the free troposphere over western North America. Nature 463:344–348PubMedCrossRefPubMedCentralGoogle Scholar
  52. Coyle M, Smith RI, Stedman JR, Weston KJ, Fowler D (2002) Quantifying the spatial distribution of surface ozone concentration in the UK. Atmos Environ 36:1013–1024CrossRefGoogle Scholar
  53. Creissen G, Firmin J, Fryer M, Kular B, Leyland N, Reynolds H, Pastori G, Wellburn F, Baker N, Wellburn A, Mullineaux P (1999) Elevated glutathione biosynthetic capacity in the chloroplasts of transgenic tobacco plants paradoxically causes increased oxidative stress. Plant Cell 11:1277–1291PubMedPubMedCentralCrossRefGoogle Scholar
  54. D’Haese D, Vandermeiren K, Asard H, Horemans N (2005) Other factors than apoplastic ascorbate contribute to the differential ozone tolerance of two clones of Trifolium repens L. Plant Cell Environ 28:623–632CrossRefGoogle Scholar
  55. Darling EK, Cros CJ, Wargocki P, Kolarik J, Morrison GC, Corsi RL (2012) Impacts of a clay plaster on indoor air quality assessed using chemical and sensory measurements. Build Environ 57:370–376CrossRefGoogle Scholar
  56. Derwent RG, Simmonds PG, Manning AJ, Spain TG (2007) Trends over a 20-year period from 1987 to 2007 in surface ozone at the atmospheric research station, Mace Head, Ireland. Atmos Environ 41:9091–9098CrossRefGoogle Scholar
  57. Diara C, Castagna A, Baldan B, Mensuali Sodi A, Sahr T, Langebartels C, Sebastiani L, Ranieri A (2005) Differences in the kinetics and scale of signaling molecule production modulate the ozone sensitivity of hybrid poplar clones: the roles of H2O2, ethylene and salicylic acid. New Phytol 168:351–364PubMedCrossRefPubMedCentralGoogle Scholar
  58. Duenas C, Fernandez MC, Canete S, Carretero J, Liger E (2002) Assessment of ozone variations and meteorological effects in an urban area in the Mediterranean Coast. Sci Total Environ 299:97–113PubMedCrossRefPubMedCentralGoogle Scholar
  59. EANET (2006) Data report on acid deposition on East Asia region 2005. Network Centre of EANET, Japan. Accessed 16 Aug 2015
  60. ECA (2016) Air quality in Europe—2016 report. EEA Report No 28/2016. Accessed 13 Mar 2018. European Environment Agency (ECA), Luxembourg
  61. Eckmullner O, Sterba H (2000) Crown condition, needle mass, and sapwood area relationships of Norway spruce (Picea abies). Canad J For Res Revue Canadienne De Recherche Forestiere 30:1646–1654CrossRefGoogle Scholar
  62. EEA (2016) Air quality in Europe—2016 report. European Environment Agency. Accessed 12 Mar 2018. United States Environmental Protection Agency (EPA)
  63. Emberson LD, Buker P, Ashmore MR, Mills G, Jackson LS, Agrawal M, Atikuzzaman MD, Cinderby S, Engardt M, Jamir C, Kobayshi K, Oanh OTR, Quadir QF, Wahid A (2009) A comparison of North-American and Asian exposure-response data for ozone effects on crop yields. Atmos Environ 43:1945–1953CrossRefGoogle Scholar
  64. Fang X, Xie Y, Li L (2003) Effects of dust storms on the air pollution in Beijing. Water Air Soil Poll Focus 3(2):93–101CrossRefGoogle Scholar
  65. Fang Y, Naik V, Horowitz LW, Mauzerall DL (2013) Air pollution and associated human mortality: the role of air pollutant emissions, climate change and methane concentration increases from the preindustrial period to present. Atmos Chem Phys 13:1377–1394CrossRefGoogle Scholar
  66. Fann N, Lamson AD, Anenberg SC, Wesson K, Risley D, Hubbell BJ (2012) Estimating the national public health burden associated with exposure to ambient PM2.5 and ozone. Risk Anal 32:81–95PubMedCrossRefPubMedCentralGoogle Scholar
  67. Farhat N, Ramsay T, Jerrett M, Krewski D (2013) Short-term effects of ozone and PM2.5 on mortality in 12 Canadian cities. J Environ Prot 4:18–32CrossRefGoogle Scholar
  68. Felzer BS, Cronin T, Reilly JM, Melillo JM, Wang Z (2007) Impacts of ozone on trees and crops. C R Geoscience 339:784–798CrossRefGoogle Scholar
  69. Feng Z, Kobayashi K (2009) Assessing the impacts of current and future concentrations of surface ozone on crop yield with meta-analyses. Atmos Environ 43:1510–1519CrossRefGoogle Scholar
  70. Feng Z, Kobayashi K, Ainsworth EA (2008) Impact of elevated ozone concentration on growth, physiology, and yield of wheat (Triticum aestivum L.): a meta-analysis. Global Change Biol 14:2696–2708Google Scholar
  71. Feng Z, Kobayashi K, Ainsworth EA (2008a) Impact of elevated ozone concentration on growth, physiology, and yield of wheat (Triticum aestivum L.): a meta-analysis. Glob Chang Biol 14:2696–2708Google Scholar
  72. Feng Z, Kobayashi K, Wang X, Feng Z (2009) A meta-analysis of responses of wheat yield formation to elevated ozone concentration. Chinese Sci Bull 54:249–255Google Scholar
  73. Feng Z, Pang J, Nouchi I, Kobayashi K, Yamakawa T, Zhu J (2010) Apoplastic ascorbate contributes to the differential ozone sensitivity in two varieties of winter wheat under fully open-air field conditions. Environ Pollut 158:3539–3545PubMedCrossRefPubMedCentralGoogle Scholar
  74. Feng Z, Niu J, Zhang W, Wang X, Yao F, Tian Y (2011) Effects of ozone exposure on sub-tropical evergreen Cinnamomum camphora seedlings grown in different nitrogen loads. Trees 25:617–625CrossRefGoogle Scholar
  75. Fiala J, Cernikovsky L, de Leeuw F, Kurfuerst P (2003) Air pollution by ozone in Europe in Summer 2003. Overview of exceedances of EC ozone threshold values during the summer season April-August 2003 and comparisons with previous years, Report to the European Commission by the European Environment Agency. European Topic Centre on Air and Climate Change. European Environment Agency, CopenhagenGoogle Scholar
  76. Finlayson-Pitts BJ, Pitts JN Jr (1997) Tropospheric air pollution: ozone, airborne toxics, polycyclic aromatic hydrocarbons, and particles. Science (Washington, DC) 276:1045–1052CrossRefGoogle Scholar
  77. Fischer EV, Jaffe DA, Weatherhead EC (2011) Free tropospheric peroxyacetyl nitrate (PAN) and ozone at Mount Bachelor: potential causes of variability and timescale for trend detection. Atmos Chem Phys 11:5641–5654CrossRefGoogle Scholar
  78. Fisk WJ (2015) Review of some effects of climate change on indoor environmental quality and health and associated no-regrets mitigation measures. Build Environ 86:70–80CrossRefGoogle Scholar
  79. Forouzanfar MH, Afshin A, Alexander LT, Anderson HR, Bhutta ZA, Biryukov S et al (2016) Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the global burden of disease study 2015. Lancet 388:1659–1724CrossRefGoogle Scholar
  80. Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K, Tignor M, Miller H (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK, pp 129–234Google Scholar
  81. Fowler D, Cape JN, Leith ID, Paterson IS, Kinnaird JW, Nicholson IA (1998) Effects of air filtration at small SO2 and NO2 concentrations on the yield of barley. Environ Poll 53:135–149CrossRefGoogle Scholar
  82. Fowler D, Pilegaard K, Sutton M, Ambus P, Raivonen M et al (2009) Atmospheric composition change: ecosystems-atmosphere interactions. Atmos Environ 43:5193–5267CrossRefGoogle Scholar
  83. Fuhrer J (2009) Ozone risk for crops and pastures in present and future climates. Naturwissenschaften 96:173–194PubMedCrossRefPubMedCentralGoogle Scholar
  84. Fuhrer J, Ashmore MR, Mills G, Hayes F, Davison A (2003) Critical levels for semi-natural vegetation. In: Karlsson PE, Sellden G, Pleijel H (eds) Establishing ozone critical levels II. IVL, Stockholm, pp 183–198Google Scholar
  85. Galbally IE, Schultz MG, Buchmann B, Gilge S, Guenther F, Koide H, Oltmans S, Patrick L, Scheel H-E, Smit H, Steinbacher M, Steinbrecht W, Tarasova O, Viallon J, Volz-Thomas A, Weber M, Wielgosz R, Zellweger C (2013) Guidelines for continuous measurement of ozone in the troposphere, GAW Report No 209, Publication WMO-No. 1110, ISBN: 978-92-63-11110- 4, WMO, GenevaGoogle Scholar
  86. Gao W, Tie X, Xu J, Huang R, Mao X, Zhou G, Chang L (2017) Long-term trend of O3 in a mega City (Shanghai), China: characteristics, causes, and interactions with precursors. Sci Total Environ 603:425–433PubMedCrossRefPubMedCentralGoogle Scholar
  87. Ghude SD, Sachin D, Fadnavis S, Beig G, Polade SD, Vander ARJ (2008) Detection of surface emission hot spots, trends, and seasonal cycle from satellite-retrieved NO2 over India. J Geophy Res 113:D20305CrossRefGoogle Scholar
  88. Gielen B, Löw M, Deckmyn G, Metzger U, Franck F, Heerdt C, Ceulemans R (2007) Chronic ozone exposure affects leaf senescence of adult beech trees: a chlorophyll fluorescence approach. J Exper Bot 58:785–795CrossRefGoogle Scholar
  89. Gilliland FD, Berhane K, Rappaport EB, Thomas DC, Avol E, Gauderman WJ, London SJ, Margolis HG, McConnell R, Islam T, Peters JM (2001) The effects of ambient air pollution on school absenteeism due to respiratory illnesses. Epidemiology 12:43–54PubMedCrossRefPubMedCentralGoogle Scholar
  90. Giorgi F, Chameides WL (1985) The rainout parameterization in a photochemical model. J Geophys Res 90:7872–7880CrossRefGoogle Scholar
  91. Glas B, Stenberg B, Stenlund H, Sunesson A-L (2015) Exposure to formaldehyde, nitrogen dioxide, ozone, and terpenes among office workers and associations with reported symptoms. Int Arch Occup Environ Health 88:613–622PubMedCrossRefPubMedCentralGoogle Scholar
  92. Gravano E, Bussotti F, Strasser RJ, Schaub M, Novak K, Skelly J, Tani C (2004) Ozone symptoms in leaves of woody plants in open-top chambers: ultrastructural and physiological characteristics. Physiologia Plantarum 121:620–633CrossRefGoogle Scholar
  93. Grini A, Zanis P, Balis D (2005) Tropospheric ozone changes at unpolluted and semipolluted regions induced by stratospheric ozone changes. J Geophys Res 110:D02302CrossRefGoogle Scholar
  94. Grøntoft T, Raychaudhuri MR (2004) Compilation of tables of surface deposition velocities for O3, NO2 and SO2 to a range of indoor surfaces. Atmos Environ 38:533–544CrossRefGoogle Scholar
  95. Guan Q, Cai A, Wang F, Yang L, Xu C, Liu Z (2017) Spatio-temporal variability of particulate matter in the key part of Gansu Province, Western China. Environ Pollut 230:189–198. CrossRefPubMedPubMedCentralGoogle Scholar
  96. Gurjar BR, Butler TM, Lawrence MG, Lelieveld J (2008) Evaluation of emissions and air quality in megacities. Atmos Environ 42:1593–1606CrossRefGoogle Scholar
  97. Harmens H (2014) Air pollution and vegetation: ICP Vegetation annual report 2013/2014 Type of book: monografija Formal editor/s: Harmens, Harry; Mills, Gina; Hayes, Felicity; Sharps, Katrina, Frontasyeva, Marina.Google Scholar
  98. Hassan IA, Tewfik I (2006) CO2 photo assimilation, chlorophyll fluorescence, lipid peroxidation and yield in cotton (Gossypium hirsutum L. cv Giza 65) in response to O3. World Rev Sci Techno Sust Dev 3:70–78CrossRefGoogle Scholar
  99. Hayes F, Mills G, Harmens H, Norris D (2007) Evidence of widespread ozone damage to vegetation in Europe (1990–2006). ICP Vegetation Programme Coordination Centre, CEH BangorGoogle Scholar
  100. He JJ, Gong SL, Yu Y, Yu LJ, Wu L, Mao HJ, Song CB, Zhao SP, Liu HL, Li XY, Li RP (2017) Air pollution characteristics and their relation to meteorological conditions during 2014–2015 in major Chinese cities. Environ Pollut 223:484–496PubMedCrossRefPubMedCentralGoogle Scholar
  101. Heagle AS, Miller JE, Booker FL, Pursley WA (1999) Ozone stress, carbon dioxide enrichment, and nitrogen fertility interactions in cotton. Crop Sci 39:731–741CrossRefGoogle Scholar
  102. Health Effects Institute (HEI) (2010) Public health and air pollution in Asia (PAPA): coordinated studies of short-term exposure to air pollution and daily mortality in four cities, HEI research report 154. Health Effects Institute, BostonGoogle Scholar
  103. HEI (2011) Public health and air pollution in Asia (PAPA): coordinated studies of short-term exposure to air pollution and daily mortality in two Indian cities. Research report 157. Health Effects Institute, Boston, MAGoogle Scholar
  104. Herbinger K, Then C, Löw M, Haberer K, Alexous M, Koch N, Wieser G (2005) Tree age dependence and within-canopy variation of leaf gas exchange and antioxidative defence in Fagus sylvatica under experimental free-air ozone exposure. Environ Pollut 137:476–482PubMedCrossRefPubMedCentralGoogle Scholar
  105. Hofer N, Alexou M, Heerdt C, Löw M, Werner H, Matyssek R, Haberer K (2008) Seasonal differences and within-canopy variations of antioxidants in mature spruce (Picea abies) trees under elevated ozone in a free-air exposure system. Environ Pollut 154:241–253PubMedCrossRefPubMedCentralGoogle Scholar
  106. Hu JL, Wang YG, Ying Q, Zhang HL (2014) Spatial and temporal variability of PM2.5 and PM10 over the North China Plain and the Yangtze River Delta, China. Atmos Environ 95:598–609CrossRefGoogle Scholar
  107. Hu J, Ying Q, Wang Y, Zhang H (2015) Characterizing multi-pollutant air pollution in China: comparison of three air quality indices. Environ Int 84:17–25PubMedCrossRefPubMedCentralGoogle Scholar
  108. Huang F, Li X, Wang C, Xu Q, Wang W, Luo Y, Tao L, Gao Q, Guo J, Chen S, Cao K, Liu L, Gao N, Liu X, Yang K, Yan A, Guo X (2015) PM2.5 spatiotemporal variations and the relationship with meteorological factors during 2013–2014 in Beijing, China. PLoS ONE 10(11):e0141642PubMedPubMedCentralCrossRefGoogle Scholar
  109. Iglesias DJ, Calatayud Á, Barreno E, Primo-Millo E, Talon M (2006) Responses of citrus plants to ozone: leaf biochemistry, antioxidant mechanisms and lipid peroxidation. Plant Physiol Biochem 44(2–3):125–131PubMedCrossRefPubMedCentralGoogle Scholar
  110. Ihorst G, Frischer T, Horak F, Schumacher M, KoppM FJ, Mattes J, Kuehr J (2004) Long- and medium-term ozone effects on lung growth including a broad spectrum of exposure. Eur Respir J 23:292–299PubMedCrossRefPubMedCentralGoogle Scholar
  111. IPCC (2014) Pachauri RK, Allen MR, Barros VR Broome J, Cramer W, Christ R, Vuuren D. Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate changeGoogle Scholar
  112. Iqbal M, Abdin M, Mahmooduzzafar Z, Yunus M, Agrawal M (1996) Resistance mechanisms in plants against air pollution. In: Iqbal M, Yunus M (eds) Plant response to air pollution. Wiley, New York, pp 195–240Google Scholar
  113. Iriti M, Faoro F (2009) Chemical diversity and defence metabolism: how plants cope with pathogens and ozone pollution. Int J Mol Sci 10:3371–3399PubMedPubMedCentralCrossRefGoogle Scholar
  114. Islam KR, Mulchi CL, Ali AA (2000) Interactions of tropospheric CO2 and O3 enrichments and moisture variations on microbial biomass and respiration in soil. Glob Chang Biol 6:255–265CrossRefGoogle Scholar
  115. Jaffe D, Ray J (2007) Increase in surface ozone at rural sites in the western US. Atmos Environ 41:5452–5463CrossRefGoogle Scholar
  116. Jenkin ME (2008) Trends in ozone concentration distributions in the UK since 1990: local, regional and global influences. Atmos Environ 42:5434–5445CrossRefGoogle Scholar
  117. Jeong SJ (2013) The impact of air pollution on human health in Suwon city. Asian J Atmos Environ 7(4):227–233CrossRefGoogle Scholar
  118. Ji D, Wang Y, Wang L, Chen L, Hu B, Tang G et al (2012) Analysis of heavy pollution episodes in selected cities of northern China. Atmos Environ 50:338–348CrossRefGoogle Scholar
  119. Jonson JE, Simpson D, Fagerli H, Solberg S (2006) Can we explain the trends in European ozone levels? Atmos Chem Phys 6:51–66CrossRefGoogle Scholar
  120. Jovanović M, Vučićević B, Turanjanin V, Živković M, Spasojević V (2014) Investigation of indoor and outdoor air quality of the classrooms at a school in Serbia. Energy 77:42–48CrossRefGoogle Scholar
  121. Kalimeri KK, Saraga DE, Lazaridis VD, Legkas NA, Missia DA, Tolis EI, Bartzis JG (2016) Indoor air quality investigation of the school environment and estimated health risks: two-season measurements in primary schools in Kozani. Greece Atmos Pollut Res 7(2016):1128–1142CrossRefGoogle Scholar
  122. Karlsson PE, Uddling J, Braum S, Broadmeadow M, Elvira S, Sánchez-Gimeno G, Le Thiec D, Oksanen E, Vandermeiren K, Wilkinson M, Emberson L (2003) New critical levels for ozone impact on trees based on AOT40 and leaf cumulated uptake of ozone. In: Kalsson PE, Selldén G, Pleijel H (eds) Establishing ozone critical levels. IVL Swedish Environmental Research Institute, Gothenburg, pp 236–250Google Scholar
  123. Karnosky DF, Percy KE, Xiang B, Callan B, Noormets A, Mankovska B, Hopkin A, Sober A, Jones W, Dickson RE, Isebrands JG (2002) Interacting elevated CO2 and tropospheric O3 predisposes aspen (Populus tremuloides Michx.) to infection by rust (Melampsora medusae f. sp. tremuloidae). Global Chang Biol 8:329–338CrossRefGoogle Scholar
  124. Kasibhatla P (1993) NO from sub-sonic aircraft emissions: a global three Satsumabayshi, and S. Horai, Behavior of secondary pollutants and dimensional model study. Geophys Res Lett 20:1707–1710CrossRefGoogle Scholar
  125. Kassomenos P, Vardoulakis S, Chaloulakou A, Grivas G, Borge R, Lumbreras J (2012) Levels, sources and seasonality of coarse particles (PM10-PM2.5) in three European capitals - implications for particulate pollution control. Atmos Environ 54:337–347CrossRefGoogle Scholar
  126. Katsouyanni K, Samet JM, Anderson HR, Atkinson R, Le AT, Medina S et al (2009) Air pollution and health: a European and north American approach (APHENA). Res Rep Health Eff Inst 142:5–90Google Scholar
  127. Kleinsorge EC, Erben M, Galan MG, Barison C, Gonsebatt ME, Simoniello MF (2011) Assessment of oxidative status and genotoxicity in photocopier operators: a pilot study. Biomarkers 16(8):642–648. CrossRefPubMedPubMedCentralGoogle Scholar
  128. Krupa SV, Manning WJ (1998) Atmospheric ozone: formation and effects on vegetation. Environ Poll 50:101–137CrossRefGoogle Scholar
  129. Kumar P, Khare M, Harrison RM, Bloss WJ, Lewis A, Coe H, Morawska L (2015) New directions: air pollution challenges for developing megacities like Delhi. Atmos Environ 122:657–661CrossRefGoogle Scholar
  130. Laisk A, Kull O, Moldau H (1989) Ozone concentration in leaf intercellular air spaces is close to zero. Plant Physiol 90(3):1163–1167PubMedPubMedCentralCrossRefGoogle Scholar
  131. Lal S, Naja M, Subbaraya BH (2000) Seasonal variations in surface ozone and its precursors over an urban site in India. Atmos Environ 34:2713–2724CrossRefGoogle Scholar
  132. Langner J, Engardt M, Baklanov A, Christensen JH, Gauss M, Geels C, Hedegaard GB, Nuterman R, Simpson D, Soares J, Sofiev M, Wind P, Zakey A (2012) A multi-model study of impacts of climate change on surface ozone in Europe. Atmos Chem Phys 12:10423–10440CrossRefGoogle Scholar
  133. Larsen JB, Yang W, Vontiedemann A (1990) Effects of ozone on gas-exchange, frost-resistance, flushing and growth of different provenances of European silver fir (Abies Alba Mill). Eur J For Pathol 20:211–218CrossRefGoogle Scholar
  134. Lawrence MG, Crutzen PJ (1998) The impact of cloud particle gravitational settling on soluble trace gas distributions. Tellus 50B:263–289CrossRefGoogle Scholar
  135. Lee K, Parkhurst WJ, Xue J, Özkaynak H, Neuberg D, Spengler JD (2004) Outdoor/indoor/personal ozone exposures of children in Nashville, Tennessee. J Air Waste Manag Assoc 54:352–359PubMedCrossRefPubMedCentralGoogle Scholar
  136. Lefohn AS, Jackson W, Shadwick DS, Knudsen HP (1997) Effect of surface ozone exposures on vegetation grown in the Southern Appalachian Mountains: identification of possible areas of concern. Atmos Environ 31:1695–1708CrossRefGoogle Scholar
  137. Lefranc A, Pascal L, Larrieu S, Blanchard M, Wagner V, Declercq C (2009) Pollution atmosphérique et maladies cardiovasculaires: éléments apportés par le programme de surveillance air et santé. Archives des Maladies Professionnelles et de l'Environnement 70(3):339–345CrossRefGoogle Scholar
  138. Leitao L, Delacôte E, Dizengremel P, Le Thiec D, Biolley JP (2007) Assessment of the impact of increasing concentrations of ozone on photosynthetic components of maize (Zea mays L.), a C 4 plant. Environ Poll 146:5–8CrossRefGoogle Scholar
  139. Lelieveld J, Hadjinicolaou P, Kostopoulou E, Giannakopoulos C, Pozzer A, Tanarhte M, Tyrlis E (2014) Model projected heat extremes and air pollution in the eastern Mediterranean and Middle East in the twenty-first century. Reg Environ Chang 14:1937–1949CrossRefGoogle Scholar
  140. Levy JI, Chemerynski SM, Sarnat JA (2005) Ozone exposure and mortality an empiric Bayes Metaregression analysis. Epidemiology 16:458–468PubMedCrossRefPubMedCentralGoogle Scholar
  141. Li J, Lu K, Lv W, Li J, Zhong L, Ou Y, Chen D, Huang X, Zhang Y (2014) Fast increasing of surface ozone concentrations in Pearl River Delta characterized by a regional air quality monitoring network during 2006–2011. J Environ Sci 26:23–26CrossRefGoogle Scholar
  142. Lu T, He X, Chen W, Yan K, Zhao T (2009) Effects of elevated O3 and/or elevated CO2 on lipid peroxidation and antioxidant systems in Ginkgo biloba leaves. B Environ Contam Tox 83:92–96CrossRefGoogle Scholar
  143. Lyng H, Gunnarsen L, Andersen HV (2015) The effect of ventilation on the indoor air concentration of PCB: an intervention study. Build Environ 94:305–312CrossRefGoogle Scholar
  144. Ma XY, Jia HL (2016) 2016. Particulate matter and gaseous pollutions in three megacities over China: situation and implication. Atmos Environ. 140:476–494CrossRefGoogle Scholar
  145. Ma Z, Xu J, Quan W, Zhang Z, Lin W, Xu X (2016) Significant increase of surface ozone at a rural site, North of Eastern China. Atmos Chem Phys 16:3969–3977CrossRefGoogle Scholar
  146. Manikandan P, Balachandar V, Sasikala K, Mohanadevi S, Lakshmankumar B (2010) DNA damage in workers occupationally exposed to photocopying machines in Coimbatore south India, using comet assay. Int J Toxicol 7:1–7Google Scholar
  147. Martins LD, Martins JA, Freitas ED et al (2010) Potential health impact of ultrafine particles under clean and polluted urban atmospheric conditions, a model-based study. Air Qual Atmos Health 3:29–39PubMedCrossRefPubMedCentralGoogle Scholar
  148. Matyssek R, Sandermann H, Wieser G, Booker F, Cieslik S, Musselman R, Ernst D (2008) The challenge of making ozone risk assessment for forest trees more mechanistic. Environ Pollut 156:567–582PubMedCrossRefPubMedCentralGoogle Scholar
  149. Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao ZC (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Miller HL, Tignor M (eds) Climate change 2007: the physical basis contribution of working group I to fourth assessment report of IPCC on climate change. 2007. Cambridge University Press, CambridgeGoogle Scholar
  150. Melkonyan A, Wagner P (2013) Ozone and its projection in regard to climate change. Atmos Environ 67:287–295CrossRefGoogle Scholar
  151. Mills G, Buse A, Gimeno B, Bermejo V, Holland M, Emberson L, Pleijel H (2007) A synthesis of AOT40-based response functions and critical levels of ozone for agricultural and horticultural crops. Atmos Environ 41:2630–2643CrossRefGoogle Scholar
  152. Mishra AK, Agrawal SB (2015) Biochemical and physiological characteristics of tropical mung bean (Vigna radiata L.) cultivars against chronic ozone stress: an insight to cultivar-specific response. Protoplasma 252:797–811PubMedCrossRefPubMedCentralGoogle Scholar
  153. Mishra RK, Joshi T, Nikhil, Gupta N, Gupta H, Kumar A (2015) Monitoring and analysis of PM10 concentration at Delhi Metro construction sites. Int J Environ Pollut 57(2):1Google Scholar
  154. Mittal ML, Hess PG, Jain SL, Arya BC, Sharma C (2007) Surface ozone in the Indian region. Atmos Environ 41:6572–6584CrossRefGoogle Scholar
  155. Monks PS (2005) Gas phase chemistry in the troposphere. Chem Soc Rev 34:376–395PubMedCrossRefPubMedCentralGoogle Scholar
  156. Morgan PB, Mies TA, Bollero GA, Nelson RL, Long SP (2008) Season-long elevation of ozone concentration to projected 2050 levels under fully open-air conditions substantially decreases the growth and production of soybean. New Phytol 170:333–343CrossRefGoogle Scholar
  157. Moussiopoulos N, Kalognomou E, Vlachokostas Ch (2004) Model intercomparison report. ETC/ACC SECGoogle Scholar
  158. Mullins JT (2018) Ambient air pollution and human performance: contemporaneous and acclimatization effects of ozone exposure on athletic performance. Heath Econ. PubMedCrossRefPubMedCentralGoogle Scholar
  159. Myhre G, Shindell D, Bréon F-M, Collins W, Fuglestvedt J, Huang J, Koch D, Lamarque J-F, Lee D, Mendoza B, Nakajima T, Robock A, Stephens G, Takemura T, Zhang H (2013) Anthropogenic and natural radiative forcing. In: Climate change, the physical science base, contribution of working group 1 to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  160. Nagpure AS, Sharma K, Gurjar BR (2013) Traffic induced emission estimates and trends (2000–2005) in megacity Delhi, New Delhi, India. Urban Clim 4:61–73CrossRefGoogle Scholar
  161. Nagpure AS, Gurjar BR, Kumar V, Kumar P (2016) Estimation of exhaust and non-exhaust gaseous, particulate matter and air toxics emissions from on-road vehicles in Delhi. Atmos Environ 127:118–124CrossRefGoogle Scholar
  162. Naja M, Lal S (2002) Surface ozone and precursor gases at Gadanki (13.5°N, 79.2°E), a tropical rural site in India. J Geophys Res 107Google Scholar
  163. Nali C, Pucciariello C, Mills G, Lorenzini G (2005) On the different sensitivity of white clover clones to ozone: physiological and biochemical parameters in a multivariate approach. Water Air Soil Pollut 164(1–4):137–153CrossRefGoogle Scholar
  164. National Research Council (NRC) (1991) Rethinking the ozone problem in urban and regional air pollution. National Academy Press, Washington, DC, pp 103–134Google Scholar
  165. Nazaroff WW (2013) Exploring the consequences of climate change for indoor air quality. Environ Res Lett 8:1–20CrossRefGoogle Scholar
  166. Nishanth T, Praseed KM, Satheesh Kumar MK, Valsaraj KT (2012) Analysis of ground level O3 and NOx measured at Kannur. India J Earth Sci Climate Change 3:1–11Google Scholar
  167. Nuvolone D, Balzi D, Pepe P, Chini M, Scala D, Giovannini F, Cipriani F, Barchielli A (2013) Ozone short-term exposure and acute coronary events: a multicities study in Tuscany (Italy). Environ Res 126:17–23PubMedCrossRefPubMedCentralGoogle Scholar
  168. Oksanen E, Haikio E, Sober J, Karnosky DF (2004) Ozone-induced H2O2 accumulation in field-grown aspen and birch is linked to foliar ultrastructure and peroxisomal activity. New Phytol 161:791–799CrossRefGoogle Scholar
  169. Padu E, Kollist H, Tulva I, Oksanen E, Moldau H (2005) Components of apoplastic ascorbate use in Betula pendula leaves exposed to CO2 and O3 enrichment. New Phytol 165:131–142PubMedCrossRefPubMedCentralGoogle Scholar
  170. Pang J, Kobayashi K, Zhu J (2009) Yield and photosynthetic characteristics of flag leaves in Chinese rice (Oryza sativa L.) varieties subjected to free-air release of ozone. Agric Ecosyst Environ 132:203–211CrossRefGoogle Scholar
  171. Paoletti E, Contran N, Bernasconi P, Günthardt-Goerg MS, Vollenweider P (2010) Erratum to Structural and physiological responses to ozone in Manna ash (Fraxinus ornus L.) leaves of seedlings and mature trees under controlled and ambient conditions. Sci Tot Environ 408:2014–2024CrossRefGoogle Scholar
  172. Park SK, O’Neill MS, Vokonas PS, Sparrow D, Schwartz J (2005) Effects of air pollution on heart rate variability: the VA normative aging study. Environ Health Perspect 113:304–309PubMedCrossRefPubMedCentralGoogle Scholar
  173. Parrish DD, Millet DB, Goldstein AH (2009) Increasing ozone in marine boundary layer inflow at the west coasts of North America and Europe. Atmos Chem Phys 9:1303–1323CrossRefGoogle Scholar
  174. Pattenden S, Armstrong B, Milojevic A, Heal MR, Chalabi Z, Doherty R et al (2010) Ozone, heat and mortality: acute effects in 15 British conurbations. Occup Environ Med 67(10):699–707PubMedCrossRefPubMedCentralGoogle Scholar
  175. Pellegrini E, Francini A, Lorenzini G, Nali C (2011) PSII photochemistry and carboxylation efficiency in Liriodendron tulipifera under ozone exposure. Environ Exp Bot 70:217–226CrossRefGoogle Scholar
  176. Percy KE, Nosal M, Heilman W, Dann T, Sober J, Legge AH, Karnosky DF (2007) New exposure-based metric approach for evaluating O3 risk to North American aspen forests. Environ Pollut 147:554–566PubMedCrossRefPubMedCentralGoogle Scholar
  177. Peterson DL, Bowers D, Brace S (1999) Tropospheric ozone in the Nisqually River drainage, Mount Rainier National Park, Northwest. Science 73:241–254Google Scholar
  178. Pina JM, Moraes RM (2010) Gas exchange, antioxidants and foliar injuries in saplings of a tropical woody species exposed to ozone. Environ Exp Bot 73:685–691Google Scholar
  179. Pinto E, Sigaud-kutner T, Leitao MA, Okamoto OK, Morse D, Colepicolo P (2003) Heavy metal–induced oxidative stress in algae. J Phycol 39:1008–1018CrossRefGoogle Scholar
  180. Plazek A, Hura K, Rapacz H (2001) The influence of ozone fumigation on metabolic efficiency and plant resistance to fungal pathogens. J Applied Bot 75:8–13Google Scholar
  181. Pleijel H (2011) Reduced ozone by air filtration consistently improved grain yield in wheat. Environ Poll 159:897–902CrossRefGoogle Scholar
  182. Pui CH, Pei D, Campana D, Cheng C, Sandlund JT, Bowman WP et al (2014) A revised definition for cure of childhood acute lymphoblastic leukemia. Leukemia 28(12):2336PubMedPubMedCentralCrossRefGoogle Scholar
  183. Rai R, Agrawal M (2008) Evaluation of physiological and biochemical responses of two rice (Oryza sativa L.) cultivars to ambient air pollution using open top chambers at a rural site in India. Sci Tot Environ 407:679–691CrossRefGoogle Scholar
  184. Rai R, Agrawal M (2012) Impact of tropospheric ozone on crop plants. Proceed Nat Acad Sci India B Biol Sci 82:241–257CrossRefGoogle Scholar
  185. Rai R, Agrawal M (2014) Assessment of competitive ability of two Indian wheat cultivars under ambient O3 at different developmental stages. Environ Sci Pollut R 21:1039–1053CrossRefGoogle Scholar
  186. Rai R, Agrawal M, Agrawal SB (2007) Assessment of yield losses in tropical wheat using open top chambers. Atmos Environ 41:9543–9554CrossRefGoogle Scholar
  187. Rai R, Agrawal M, Choudhary KK, Agrawal SB, Emberson L, Büker P (2015) Application of ethylene diurea (EDU) in assessing the response of a tropical soybean cultivar to ambient O3: nitrogen metabolism, antioxidants, reproductive development and yield. Ecotox Environ Safe 112:29–38CrossRefGoogle Scholar
  188. Repo T, Leinonen I, Ryyppo A, Finer L (2004) The effect of soil temperature on the bud phenology, chlorophyll fluorescence, carbohydrate content and cold hardiness of Norway spruce seedlings. Physiologia Plantarum 121:93–100PubMedCrossRefPubMedCentralGoogle Scholar
  189. Riikonen J, Holopainen T, Oksanen E, Vapaavuori E (2005) Leaf photosynthetic characteristics of silver birch during three years of exposure to elevated concentrations of CO2 and O3 in the field. Tree Physiol. 25:621–632PubMedCrossRefPubMedCentralGoogle Scholar
  190. Ro-Poulsen H, Mikkelsen TN, Hovmand MF, Hummelsehoj P, Jensen NO (1998) Ozone deposition in relation to canopy physiology in a mixed conifer forest in Denmark. Chemosphere 36:669–674CrossRefGoogle Scholar
  191. Royal Society (2008) Ground-level ozone in the 21st century: future trends, impacts and policy implications. In: Science policy report 15/08. The Royal Society, London, pp 43–87Google Scholar
  192. Ryang SZ, Woo SY, Kwon SY, Kim SH, Lee SH, Kim KN, Lee DK (2009) Changes of net photosynthesis, antioxidant enzyme activities, and antioxidant contents of Liriodendron tulipifera under elevated ozone. Photosynthetica 47:19–25CrossRefGoogle Scholar
  193. Saavedra S, Rodríguez A, Taboada JJ, Souto JA, Casares JJ (2012) Synoptic patterns and air mass transport during ozone episodes in northwestern Iberia. Sci Total Environ 441:97–110PubMedCrossRefPubMedCentralGoogle Scholar
  194. Sadanaga Y, Shibata S, Hamana M, Takenaka N, Bandow H (2008) Weekday/weekend difference of ozone and its precursors in urban areas of Japan, focusing on nitrogen oxides and hydrocarbons. Atmos Environ 42:4708–4723CrossRefGoogle Scholar
  195. Saitanis CJ, Panagopoulous G, Dasopoulou V, Agathokleous E, Papatheohari Y (2015) Integrated assessment of ambient ozone phytotoxicity in Greece’s Tripolis Plateau. J Agr Meteorol 71:55–64CrossRefGoogle Scholar
  196. Sarkar A, Agrawal SB (2010a) Identification of ozone stress in Indian rice through foliar injury and differential protein profile. Environ Monit Assess 161:283–302CrossRefGoogle Scholar
  197. Sarkar A, Agrawal SB (2010b) Elevated ozone and modern cultivars: an assessment of dose dependent sensitivity with respect to growth, reproductive and yield parameters. Environ Exp Bot 69:328–337CrossRefGoogle Scholar
  198. Sarkar A, Rakwal R, Agrawal SB, Shibato J, Ogawa Y, Yoshida Y, Agrawal GK, Agrawal M (2010) Investigating the impact of elevated levels of O3 on tropical wheat using integrated phenotypical, physiological, biochemical and proteomics approaches. J Proteome Res 9:4565–4584PubMedCrossRefPubMedCentralGoogle Scholar
  199. Sarkar A, Singh AA, Agrawal SB, Ahmad A, Rai SP (2015) Cultivar specific variations in antioxidative defense system, genome and proteome of two tropical rice cultivars against ambient and elevated ozone. Ecotox Environ Safe 115:101–111CrossRefGoogle Scholar
  200. Scebba F, Canaccini F, Castagna A, Bender J, Weigel HJ, Ranieri A (2006) Physiological and biochemical stress responses in grassland species are influenced by both early-season ozone exposure and interspecific competition. Environ Pollut 142:540–548PubMedCrossRefPubMedCentralGoogle Scholar
  201. Schripp T, Langer S, Salthammer T (2012) Interaction of ozone with wooden building products, treated wood samples and exotic wood species. Atmos Environ 54:365–372CrossRefGoogle Scholar
  202. Seinfeld JH, Pandis SN (1998) Atmospheric chemistry and physics. Wiley-Interscience Publication, New York, pp 1098–1099Google Scholar
  203. Severino JF, Stich K, Soja G (2007) Ozone stress and antioxidant substances in Trifolium repens and Centaurea jacea leaves. Environ Pollut 146:707–714PubMedCrossRefPubMedCentralGoogle Scholar
  204. Sicard P, De Marco A, Troussier F, Renou C, Vas N, Paoletti E (2013) Decrease in surface ozone concentrations at Mediterranean remote sites and increase in the cities. Atmos Environ 79:705–715CrossRefGoogle Scholar
  205. Simmonds PG, Derwent RG, Manning AL, Spain G (2004) Significant growth in surface ozone at Mace Head, Ireland, 1987–2003. Atmos Environ 38:4769–4778CrossRefGoogle Scholar
  206. Singh E, Tiwari S, Agrawal M (2010) Variability in antioxidant and metabolite levels, growth and yield of two soybean varieties: an assessment of anticipated yield losses under projected elevation of ozone. Agri Ecosyst Environ 135:168–177CrossRefGoogle Scholar
  207. Singh AA, Agrawal SB, Shahi JP, Agrawal M (2014a) Assessment of growth and yield losses in two Zea mays L. cultivars (quality protein maize and nonquality protein maize) under projected levels of ozone. Environ Sci Pollut Res 21:2628–2641CrossRefGoogle Scholar
  208. Singh P, Agrawal M, Agrawal SB, Singh S, Singh A (2014b) Genotypic differences in utilization of nutrients in wheat under ambient ozone concentrations: growth, biomass and yield. Agric Ecosys Environ 199:26–33CrossRefGoogle Scholar
  209. Singh AA, Singh S, Agrawal M, Agrawal SB (2015) Assessment of ethylene diurea-induced protection in plants against ozone phytotoxicity. DM Whitacre (Ed.) Rev Environ Cont Toxicol 233:129–184Google Scholar
  210. Song J, Lei W, Bei N, Zavala M, de Foy B, Volkamer R, Cardenas B, Zheng J, Zhang R, Molina LT (2010) Ozone response to emission changes: a modeling study during the MCMA-2006/MILAGRO Campaign. Atmos Chem Phys 10:3827–3846CrossRefGoogle Scholar
  211. Song C, Wu L, Xie Y, He J, Chen X, Wang T, Lin Y, Jin T, Wang A, Liu Y, Dai Q, Liu B, Wang Y, Mao H (2017) Air pollution in China: status and spatiotemporal variations. Environ Pollut 227:334–347PubMedCrossRefPubMedCentralGoogle Scholar
  212. Stafoggia M, Forastiere F, Faustini A, Biggeri A, Bisanti L, Cadum E et al (2010) Susceptibility factors to ozone-related mortality: a population-based case-crossover analysis. Am J Respir Crit Care Med 182(3):376–384PubMedCrossRefPubMedCentralGoogle Scholar
  213. Stevenson DS, Young PJ, Naik V, Lamarque J-F, Shindell DT, Voulgarakis A, Skeie RB, Dalsoren SB, Myhre G, Berntsen TK, Folberth GA, Rumbold ST, Collins WJ, MacKenzie IA, Doherty RM, Zeng G, van Noije TPC, Strunk A, Bergmann D, Cameron-Smith P, Plummer DA, Strode SA, Horowitz L, Lee YH, Szopa S, Sudo K, Nagashima T, Josse B, Cionni I, Righi M, Eyring V, Conley A, Bowman KW, Wild O, Archibald A (2013) Tropospheric ozone changes, radiative forcing and attribution to emissions in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmos Chem Phys 13:3063–3085CrossRefGoogle Scholar
  214. Stjernberg A-CE, Skorokhod A, Paris JD, Elansky N, Nedelec P, Stohl A (2012) Low concentrations of near-surface ozone in Siberia. Tellus Ser B 64:1–13Google Scholar
  215. Stowell JD, Kim YM, Gao Y, Fu JS, Chang HH, Liu Y (2017) The impact of climate change and emissions control on future ozone levels: implications for human health. Environ Int 108:41–50PubMedCrossRefPubMedCentralGoogle Scholar
  216. Tang H, Takigawa M, Liu G, Zhu J, Kobayashi K (2013) A projection of ozone-induced wheat production loss in China and India for the years 2000 and 2020 with exposure-based and flux-based approaches. Global Change Biol 19:2739–2752CrossRefGoogle Scholar
  217. Then C, Herbinger K, Luis VC, Heerdt C, Matyssek R, Wieser G (2009) Photosynthesis, chloroplast pigments, and antioxidants in Pinus canariensis under free-air ozone fumigation. Environ Pollut 157:392–395PubMedCrossRefPubMedCentralGoogle Scholar
  218. Toumainen J, Pellinen R, Roy S, Kiiskinen M, Eloranta T, Karjalainen R, Kangasjärvi J (1996) Ozone affect birch (Betula pendula Roth) phenylpropanoid, polyamine and reactive oxygen detoxifying pathways at biochemical and gene expression levels. J Plant Physiol 148:179–188CrossRefGoogle Scholar
  219. U.S. Environmental Protection Agency (US EPA) (2006) Air quality criteria for resistance and a possible metric. Atmos Environ 38:2323–2337Google Scholar
  220. U.S. Environmental Protection Agency (US EPA) (1980–2008) Average annual emissions 2009. In All criteria pollutants in MS excel. National Emissions Trend Data, Office of Air Quality planning and StandardsGoogle Scholar
  221. US EPA (2017) Health effects of ozone pollution. Available online at: https://www.epa
  222. UNECE (2010) Manual on methodologies and criteria for modelling and mapping critical loads and levels and air pollution effects, risks and trends. Convention on Long-range Transboundary Air Pollution.
  223. Utriainen J, Holopainen T (2001) Nitrogen availability modifies the ozone responses of Scots pine seedlings exposed in an open-field system. Tree Physiol 21:1205–1213PubMedCrossRefPubMedCentralGoogle Scholar
  224. Vainonen JP, Kangasjärvi J (2014) Plant signalling in acute ozone exposure. Plant Cell Environ. CrossRefGoogle Scholar
  225. Van Dingenen R, Dentener FJ, Raes F, Krol MC, Emberson L, Cofala J (2009) The global impact of ozone on agricultural crop yields under current and future air quality legislation. Atmos Environ 43:604–618CrossRefGoogle Scholar
  226. Verma N, Lakhani A, Kumari KM (2017) High ozone episodes at a semi-urban site in India: photochemical generation and transport. Atmos Res 197:232–243CrossRefGoogle Scholar
  227. Volz A, Kley D (1988) Evaluation of the Montsouris series of ozone measurements made in the 19th century. Nature. 332:240–242CrossRefGoogle Scholar
  228. Vornanen-Winqvist C, Järvi K, Toomla S, Ahmed K, Andersson MA, Mikkola R (2018) Ventilation positive pressure intervention effect on indoor air quality in a school building with moisture problems. Int J Environ Res Public Health 15(2):pii: E230. CrossRefGoogle Scholar
  229. Wahid A (2006) Productivity losses in barley attributable to ambient atmospheric pollutants in Pakistan. Atmos Environ 40:5342–5354CrossRefGoogle Scholar
  230. Wan WX, Xia YJ, Zhang HX, Wang J, Wang XK (2013) The ambient ozone pollution and foliar injury of the sensitive woody plants in Beijing exurban region. Acta Ecol Sin 33:109CrossRefGoogle Scholar
  231. Wang T, Wei XL, Ding AJ, Poon CN, Lam KS, Li YS, Chan LY, Anson M (2009) Increasing surface ozone concentrations in the background atmosphere of Southern China, 1994–2007. Atmos Chem Phys 9:6217–6227CrossRefGoogle Scholar
  232. Wang J, Zeng Q, Zhu J, Liu G, Tang H (2013) Dissimilarity of ascorbate–glutathione (AsA–GSH) cycle mechanism in two rice (Oryza sativa L.) cultivars under experimental free-air ozone exposure. Agr Ecosyst Environ 165:39–49CrossRefGoogle Scholar
  233. Wang Y, Li L, Chen C, Huang C, Huang H, Feng J, Wang S, Wang H, Zhang G, Zhou M, Cheng P, Wu M, Sheng G, Fu J, Hu Y, Russell AG, Wumaer A (2014a) Source apportionment of fine particulate matter during autumn haze episodes in Shanghai, China. J Geophys Res Atmos 119:1903–1914CrossRefGoogle Scholar
  234. Wang Y, Ying Q, Hu J, Zhang H (2014b) Spatial and temporal variations of six criteria air pollutants in 31 provincial capital cities in China during 2013-2014. Environ Int 73:413–422PubMedCrossRefPubMedCentralGoogle Scholar
  235. Waring MS, Wells JR (2015) Volatile organic compound conversion by ozone, hydroxyl radicals, and nitrate radicals in residential indoor air: magnitudes and impacts of oxidant sources. Atmos Environ 106:382–391CrossRefGoogle Scholar
  236. Wheida A, Nasser A, El Nazer M, Borbon A, Abo El Ata GA, Abdel Wahab M, Alfaro SC (2017) Tackling the mortality from long-term exposure to outdoor air pollution in megacities: Lessons from the Greater Cairo case study. Environ Res 160:223–231PubMedCrossRefPubMedCentralGoogle Scholar
  237. WHO (2006) Air quality guidelines: global update 2005. Particulate matter, ozone, nitrogen dioxide and sulfur dioxide. WHO Regional Office for Europe, CopenhagenGoogle Scholar
  238. WHO (2013a) Review of evidence on health aspects of air pollution – REVIHAAP project: technical report. Copenhagen, WHO Regional Office for Europe. Accessed 13 Nov 2013
  239. WHO (2013b) Health risks of air pollution in Europe – HRAPIE project: new emerging risks to health from air pollution – results from the survey of experts. Copenhagen, WHO Regional Office for Europe. Accessed 13 Nov 2013
  240. Wilkinson S, Davies WJ (2010) Drought, ozone, ABA and ethylene: new insights from cell to plant to community. Plant Cell Environ 33:510–525PubMedCrossRefPubMedCentralGoogle Scholar
  241. Wittig VE, Ainsworth EA, Naidu SL, Karnosky DF, Long SP (2009) Quantifying the impact of current and future tropospheric ozone on tree biomass, growth, physiology and biochemistry: a quantitative meta-analysis. Global Change Biol 15:396–424CrossRefGoogle Scholar
  242. Xie Y, Zhao B, Zhang L, Luo R (2015) 2015. Spatiotemporal variations of PM2.5 and PM10 concentrations between 31 Chinese cities and their relationships with SO2, NO2, CO and O3. Particuology 20:141–149CrossRefGoogle Scholar
  243. Xu X, Lin W, Wang T, Yan P, Tang J, Meng Z, Wang Y (2008) Long term trend of surface ozone at a regional background station in eastern China 1991–2006: enhanced variability. Atmos Chem Phys 8:215–243CrossRefGoogle Scholar
  244. Yamaji K, Ohara T, Uno I, Tanimoto H, Kurokawa JI, Akimoto H (2006) Analysis of the seasonal variation of ozone in the boundary layer in East Asia using the community multi-scale air quality model: what controls surface ozone levels over Japan? Atmos Environ 40:1856–1868CrossRefGoogle Scholar
  245. Yan K, Chen W, He X, Zhang G, Xu S, Wang L (2010) Responses of photosynthesis, lipid peroxidation and antioxidant system in leaves of Quercus mongolica to elevated O3. Environ Exp Bot 69:198–204CrossRefGoogle Scholar
  246. Yin DY, Zhao SP, Qu JJ (2017) Spatial and seasonal variations of gaseous and particulate matter pollutants in 31 provincial capital cities, China. Air Qual Atmos Health 10(3):359–370CrossRefGoogle Scholar
  247. Zeng G, Pyle JA, Young PJ (2008) Impact of climate change on tropospheric ozone and its global budgets. Atmos Chem Phys 8(2):369–387CrossRefGoogle Scholar
  248. Zhang R, LeiW TX, Hess P (2004) Industrial emissions cause extreme diurnal urban ozone variability. Proc Natl Acad Sci U S A 101:6346–6350PubMedPubMedCentralCrossRefGoogle Scholar
  249. Zhang W, Feng Z, Wang X, Niu J (2012) Responses of native broadleaved woody species to elevated ozone in subtropical China. Environ Pollut 163:149–157PubMedCrossRefPubMedCentralGoogle Scholar
  250. Zhang HL, Wang YG, Hu JL, Ying Q, Hu XM (2015) Relationships between meteorological parameters and criteria air pollutants in three megacities in China. Environ Res 140:242–254PubMedCrossRefPubMedCentralGoogle Scholar
  251. Zhang HF, Wang ZH, Zhang WZ (2016) Exploring spatiotemporal patterns of PM2.5 in China based on ground-level observations for 190 cities. Environ Pollut 216:559–567PubMedCrossRefPubMedCentralGoogle Scholar
  252. Zhao C, Wang Y, Zeng T (2009) East China plains: a “basin” of ozone pollution. Environ Sci Technol 43:1911–1915PubMedCrossRefPubMedCentralGoogle Scholar
  253. Zhao SP, Yu Y, Yin DY, He JJ, Liu N, Qu JJ, Xiao JH (2016) Annual and diurnal variations of gaseous and particulate pollutants in 31 provincial capital cities based on in situ air quality monitoring data from China National Environmental Monitoring Center. Environ Int 86:92–106PubMedCrossRefPubMedCentralGoogle Scholar
  254. Zheng Y, Lyons T, Ollerenshaw JH, Barnes JD (2000) Ascorbate in the leaf apoplast is a factor mediating ozone resistance in Plantago major. Plant Physiol Biochem 38:403–411CrossRefGoogle Scholar
  255. Zhou T, Sun J, Yu H (2017) Temporal and spatial patterns of China’s main air pollutants: Years 2014 and 2015. Atmosphere 8(137):1–15Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Pallavi Saxena
    • 1
  • Saurabh Sonwani
    • 2
  1. 1.Department of Environmental SciencesHindu College, University of DelhiNew DelhiIndia
  2. 2.School of Environmental SciencesJawaharlal Nehru UniversityNew DelhiIndia

Personalised recommendations