Advertisement

Criteria Air Pollutants: Chemistry, Sources and Sinks

  • Pallavi Saxena
  • Saurabh Sonwani
Chapter

Abstract

Ambient air pollution is the foremost reason for global death and disease. An estimated premature death globally is related to ambient air pollution, mainly from emphysema, obstructive bronchiolitis, lung cancer, heart disease, stroke, and severe respiratory problems in children. The criteria air pollutants include particulate matter (PM), ozone (O3), nitrogen dioxide (NO2), sulphur dioxide (SO2) and lead (Pb). The present chapter provides a summary of the types of criteria air pollutants, their National Ambient Air Quality Standards and their emission sources. This chapter also explains their level distribution and chemistry, and the sink in the earth’s environment of these criteria pollutants is studied extensively. Description of global, regional emissions of criteria air pollutants, their contribution from different sectors, and efficiency of control strategies in developed and developing countries are also focused.

References

  1. Abraham FF (1974) Homogeneous nucleation theory. Academic, New York. Air quality criteria for carbon monoxide. Washington, DC. US Environmental Protection Agency, Office of Research and Development, 1991 (publication no. EPA-600/B-90/045F)Google Scholar
  2. Altshuller AP (1983) Review: natural volatile organic substances and their effect on air quality in the United States. Atmos Environ 17(11):2131–2165CrossRefGoogle Scholar
  3. Aneja VP, Businger S, Li Z, Claiborn CS, Murthy A (1991) Ozone climatology at high elevations in the southern appalachians. J Geophys Res Atmos 96(D1):1007–1021CrossRefGoogle Scholar
  4. Aneja VP, Agarwal A, Roelle PA, Phillips SB, Tong Q, Watkins N, Yablonsky R (2001) Measurements and analysis of criteria pollutants in New Delhi, India. Environ Int 27(1):35–42PubMedCrossRefPubMedCentralGoogle Scholar
  5. Anisimov MA (2003) Nucleation: theory and experiment. Russ Chem Rev 72:591CrossRefGoogle Scholar
  6. Atkinson R (2000) Atmospheric chemistry of VOCs and NOx. Atmos Environ 34(12–14):2063–2101CrossRefGoogle Scholar
  7. ATSDR (1998) Agency for toxic substances and disease registry. Toxicological profile for sulfur dioxide. US Department of Health and Human Services, Public Health Service, AtlantaGoogle Scholar
  8. Barry PSI (1981) Concentrations of lead in the tissues of children. Br J Ind Med 38:61–71PubMedPubMedCentralGoogle Scholar
  9. Barry PSI, Mossman DB (1970) Lead concentrations in human tissues. Br J Ind Med 27:339–351PubMedPubMedCentralGoogle Scholar
  10. Boubel RW, Fox DL, Turner DB, Stern AC (1994) Effects on materials and structures, fundamentals of air pollution, 3rd edn. Academic Press, New YorkGoogle Scholar
  11. Boutron CF et al (1991) Decrease in anthropogenic lead, cadmium and zinc in Greenland snows since the late 1960s. Nature 353:153–156CrossRefGoogle Scholar
  12. Brook J, Zhang L, Franco D, Padro J (1999) Description and evaluation of a model of deposition velocities for routine estimates of air pollutant dry deposition over North America, Part II: review of past measurements and model results. Atmos Environ 33:5053–5070CrossRefGoogle Scholar
  13. Brook RD, Rajagopalan S, Pope CA 3rd, Brook JR, Bhatnagar A, Diez-Roux AV, Holguin F, Hong Y, Luepker RV, Mittleman MA et al (2010) Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the american heart association. Circulation 121:2331–2378PubMedCrossRefGoogle Scholar
  14. Chakraborty A, Gupta T, Tripathi SN (2016) Combined effects of organic aerosol loading and fog processing on organic aerosols oxidation, composition, and evolution. Sci Total Environ 573:690–698PubMedCrossRefGoogle Scholar
  15. Choudhary V, Rajput P, Singh DK, Singh AK, Gupta T (2018) Light absorption characteristics of brown carbon during foggy and non-foggy episodes over the Indo-Gangetic Plain. Atmos Pollut Res 9(3):494–501CrossRefGoogle Scholar
  16. Chow JC, Watson JG, Lowenthal DH, Hackney R, Magliano K, Lehrman D, Smith T (1999) Temporal variations of PM2. 5, PM10, and gaseous precursors during the 1995 integrated monitoring study in Central California. J Air Waste Manage Assoc 49(9):16–24CrossRefGoogle Scholar
  17. Claeys M, Graham B, Vas G, Wang W, Vermeylen R, Pashynska V, Cafmeyer J, Guyon P, Andreae MO, Artaxo P et al (2004) Formation of secondary organic aerosols through photooxidation of isoprene. Science 303:1173–1176PubMedCrossRefGoogle Scholar
  18. Cleveland WS, Graedel TE, Kleiner B, Warner JL (1974) Sunday and workday variations in photochemical air pollutants in New Jersey and New York. Science 186(4168):1037–1038PubMedCrossRefGoogle Scholar
  19. Cooper, CD, Alley FC (1986) Air pollution control: a design approach. Prospect Heights, Ill. Waveland PressGoogle Scholar
  20. Crutzen PJ (1983) Atmospheric interactions in homogeneous gas reactions of C, N and S containing compounds. In: Bolin B, Cook RB (eds) The major biogeochemical cycles and their interactions. John Wiley, Chichester, pp 67–112Google Scholar
  21. Crutzen PJ, Zimmermann PH (1991) The changing photochemistry of the troposphere. Tellus 43AB:136–151CrossRefGoogle Scholar
  22. Cullis CF, Hirschler MM (1989) Man’s emissions of carbon monoxide and hydrocarbons into the atmosphere. Atmos Environ 23:1195–1203CrossRefGoogle Scholar
  23. Delmas R, Serca D, Jambert C (1997) Global inventory of NO x sources. Nutr Cycl Agroecosyst 48(1–2):51–60CrossRefGoogle Scholar
  24. Delumyea R, Kalivretenos A (1987) Elemental carbon and lead content of fine particles from American and French cities of comparable size and industry, 1985. Atmos Environ 21:1643–1647CrossRefGoogle Scholar
  25. DeMore WB, Sander SP, Golden DM, Hampson RF, Kurylo MJ, Howard CJ, Ravishankara AR, Kolb CE, Molina MJ (1994) Chemical kinetics and photochemical data for use in stratospheric modeling. Evaluation Number 11, JPL Publication, Report No. 94–26Google Scholar
  26. Dockery DW (2009) Heath effects of particulate air pollution. Ann Epidemiol 19:257–263PubMedPubMedCentralCrossRefGoogle Scholar
  27. Ehhalt DH, Drummond JW (1982) The tropospheric cycle of NOx. In: Georgii H-W, Jaeschke W (eds) Chemistry of unpolluted and polluted atmosphere. Reidel, Dordrecht, pp 219–251CrossRefGoogle Scholar
  28. Eldering A, Cass GRJ (1996) Geophys Res 101:19343–19369CrossRefGoogle Scholar
  29. Eldering A, Larson SM, Hall JR, Hussey KJ, Cass GR (1993) Environ Sci Technol 27:626–635CrossRefGoogle Scholar
  30. Energy Information Administration (US) (ed) (2012) Annual energy outlook 2012: with projections to 2035. Government Printing OfficeGoogle Scholar
  31. EPA (1996) Air quality criteria for particulate matter, EPA/600/P-95/001cF. Environmental Protection Agency, Washington, DCGoogle Scholar
  32. EPA (2011) Our Nation’s Air – Status and Trends through 2010, edited by: EPA-454/R-12-001, Research Triangle Park, NCGoogle Scholar
  33. European Commission, and Joint Research Centre (JRC)/Netherlands Environmental Assessment (PBL) (2011) Emission Database for Global Atmospheric Research (EDGAR), release version 4.2 (http://edgar.jrc.ec.europa.eu)
  34. Faloona I, Conley SA, Blomquist B, Clarke AD, Kapustin V, Howell S et al (2009) Sulfur dioxide in the tropical marine boundary layer: dry deposition and heterogeneous oxidation observed during the Pacific Atmospheric Sulfur Experiment. J Atmos Chem 63(1):13–32CrossRefGoogle Scholar
  35. Ferron GA, Karg E, Busch B, Heyder J (2005) Ambient particles at an urban, semi-urban and rural site in Central Europe: hygroscopic properties. Atmos Environ 39(2):343–352CrossRefGoogle Scholar
  36. Finlayson-Pitts BJ, Pitts JN (1997) Tropospheric air pollution: ozone, airborne toxics, polycyclic aromatic hydrocarbons, and particles. Science 276(5315):1045–1051PubMedCrossRefGoogle Scholar
  37. Fleagle RG, Businger JA (1963) Chapter 2: Properties of atmospheric gases. In: An introduction to atmospheric physics. Academic, New York, pp 21–22Google Scholar
  38. Fraquhar GD, Wetselaar R, Weir B (1983) Gaseous nitrogen losses from plants. Dev Plant Soil Sci 9:159–180Google Scholar
  39. Frey MM, Brough N, France JL, Anderson PS, Traulle O, King MD et al (2013) The diurnal variability of atmospheric nitrogen oxides (NO and NO 2) above the Antarctic Plateau driven by atmospheric stability and snow emissions. Atmos Chem Phys 13(6):3045–3062CrossRefGoogle Scholar
  40. Gao C, Yin H, Ai N, Huang Z (2009) Historical analysis of SO 2 pollution control policies in China. Environ Manag 43(3):447–457CrossRefGoogle Scholar
  41. Garland JA, Branson JR (1976) The mixing height and mass balance of SO2 in the atmosphere above Great Britain. Atmos Environ 10:353CrossRefGoogle Scholar
  42. Ghude SD, Kulkarni SH, Jena C, Pfister GG, Beig G, Fadnavis S, van der A RJ (2013) Application of satellite observations for identifying regions of dominant sources of nitrogen oxides over the Indian subcontinent. J Geophys Res Atmos 118:1075–1089CrossRefGoogle Scholar
  43. Giorgi F, Chameides WL (1985) The rainout parameterization in a photochemical model. J Geophys Res Atmos 90(D5):7872–7880CrossRefGoogle Scholar
  44. Godish T (1991) Air quality. Lewis Publishers, Chelsea, MIGoogle Scholar
  45. Granier C, Bessagnet B, Bond T, D’Angiola A, van Der Gon HD, Frost GJ et al (2011) Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980–2010 period. Clim Chang 109(1–2):163CrossRefGoogle Scholar
  46. Gulson B, Mizon K, Korsch M, Taylor A (2016) Revisiting mobilisation of skeletal lead during pregnancy based on monthly sampling and cord/maternal blood lead relationships confirm placental transfer of lead. Arch Toxicol 90(4):805–816PubMedCrossRefGoogle Scholar
  47. Gysel M, Weingartner E, Baltensperger U (2002) Hygroscopicity of aerosol particles at low temperatures. 2. Theoretical and experimental hygroscopic properties of laboratory generated aerosols. Environ Sci Technol 36(1):63–68PubMedCrossRefGoogle Scholar
  48. Haagen-Smit AJ, Wayne LG (1968) Chapter 6: Atmospheric reactions and scavenging processes. In: Stern AC (ed) Air pollution, vol I, 2nd edn. Academic, New York, p 181Google Scholar
  49. Haar GT (1975) Lead in the environment-origins, pathways and sinks. Environ Qual Saf Suppl 2:76–94PubMedGoogle Scholar
  50. Hämeri K, Laaksonen A, Väkevä M, Suni T (2001) Hygroscopic growth of ultrafine sodium chloride particles. J Geophys Res Atmos 106(D18):20749–20757CrossRefGoogle Scholar
  51. Hauglustaine DA, Brasseur GP, Walters S, Rasch PJ, Müller JF, Emmons LK, Carroll MA (1998) MOZART, a global chemical transport model for ozone and related chemical tracers: 2. Model results and evaluation. J Geophys Res Atmos 103(D21):28291–28335CrossRefGoogle Scholar
  52. HazDat Xylene (2006) HazDat Database: ATSDR’s hazardous substance release and health effects database. Atlanta, GA: ATSDR. www.atsdr.cdc.gov/hazdat.html. July 10, 2006
  53. Hilboll A, Richter A, Burrows JP (2013) Long-term Changes of Tropospheric NO2 over Megacities Derived from Multiple Satellite Instruments. Atmos Chem Phys 13:4145–4169CrossRefGoogle Scholar
  54. Hiller FC (1991) Health implications of hygroscopic particle growth in the human respiratory tract. J Aerosol Med 4(1):1–23CrossRefGoogle Scholar
  55. Hinds WC (1999) Aerosol technology. properties, behavior, and measurement of airborne particles, 2nd edn. John Wiley and Sons, New YorkGoogle Scholar
  56. Hobbs PV, Bowdle DA, Radke LF (1985) Particles in the lower troposphere over the high plains of the United States, 1. size distributions, elemental compositions and morphologies. J Clim Appl Meteorol 24:1344–1356CrossRefGoogle Scholar
  57. Hoek G, Krishnan RM, Beelen R, Peters A, Ostro B, Brunekreef B, Kaufman JD (2013) Long-term air pollution exposure and cardio-respiratory mortality: a review. Environ Health 12:43PubMedPubMedCentralCrossRefGoogle Scholar
  58. Huntrieser H, Feigl C, Schlager H, Schröder F, Gerbig C, Van Velthoven P et al (2002) Airborne measurements of NOx, tracer species, and small particles during the European Lightning Nitrogen Oxides Experiment. J Geophys Res Atmos 107(D11):ACH-5CrossRefGoogle Scholar
  59. Intergovernmental Panel on Climate Change (IPCC) (2001) Atmospheric chemistry and greenhouse gases. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Climate change 2001: the scientific basis. Cambridge University Press, New YorkGoogle Scholar
  60. IPCC (2014) Summary for policymakers. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E, Kadner S, Seyboth K, Adler A, Baum I, Brunner S, Eickemeier P, Kriemann B, Savolainen J, Schlömer S, von Stechow C, Zwickel T, Minx JC (eds) Climate change 2014: mitigation of climate change. Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USAGoogle Scholar
  61. Ito K, De Leon SF, Lippmann M (2005) Associations between ozone and daily mortality: analysis and meta-analysis. Epidemiology:446–457Google Scholar
  62. Jaenicke R (1993) Tropospheric aerosols. In: Hobbs PV (ed) Aerosol– cloud–climate interactions. Academic Press, San Diego, CA, pp 1–31Google Scholar
  63. Jang M, Kamens RM (2001) Atmospheric secondary aerosol formation by heterogeneous reactions of aldehydes in the presence of a sulfuric acid aerosol catalyst. Environ Sci Technol 35(24):4758–4766PubMedCrossRefGoogle Scholar
  64. Jang M, Lee S, Kamens RM (2003) Organic aerosol growth by acid-catalyzed heterogeneous reactions of octanal in a flow reactor. Atmos Environ 37(15):2125–2138CrossRefGoogle Scholar
  65. Jeffrie HE (1995) Photochemical air pollution. In: Singh HB (ed) Composition, chemistry, and climate of the atmosphere. Van Nostrand Reinhold, New YorkGoogle Scholar
  66. Jenkin ME, Clemitshaw KC (2000) Ozone and other secondary photochemical pollutants: chemical processes governing their formation in the planetary boundary layer. Atmos Environ 34(16):2499–2527CrossRefGoogle Scholar
  67. Johansson C (1987) Pine forest: a negligible sink for atmospheric NOx in rural Sweden. Tellus 39B:426–438CrossRefGoogle Scholar
  68. Johansson C (1989) Fluxes of NOx above soil and vegetation. In: Andreae MO, Schimel DS (eds) Exchange of trace gases between terrestrial ecosystems and the atmosphere. John Wiley, Chichester, pp 229–246Google Scholar
  69. Johansson C, Galbally IE (1984) Production of nitric oxide in loam under aerobic and anaerobic conditions. Appl Environ Microbiol 47(6):1284–1289PubMedPubMedCentralGoogle Scholar
  70. Kaschiev D (2000) Nucleation: basic principles and application. Butterworth, HeinemannGoogle Scholar
  71. Kasibhatla P (1993) NO from sub-sonic aircraft emissions: A global three Satsumabayshi, and S. Horai, Behavior of secondary pollutants and dimensional model study. Geophys Res Lett 20:1707–1710CrossRefGoogle Scholar
  72. Kaul DS, Gupta T, Tripathi SN, Tare V, Collett JL (2011) Secondary organic aerosol: a comparison between foggy and nonfoggy days. Environ Sci Technol 45(17):7307–7313PubMedCrossRefGoogle Scholar
  73. Khalil MAK, Rasmussen RA (1990) Global cycle of CO-trends and mass balance. Chemosphere 20:227–242CrossRefGoogle Scholar
  74. Khalil MAK, Rasmussen RA (1995) The changing composition of the Earth’s atmosphere. In: Singh HB (ed) Composition, chemistry, and climate of the atmosphere. Van Nostrand Reinhold, New York, pp 51–87Google Scholar
  75. Kley D, Kleinmann M, Sanderman H, Krupa S (1999) Photochemical oxidants: state of the science. Environ Pollut 100(1–3):19–42PubMedCrossRefPubMedCentralGoogle Scholar
  76. Klimont Z, Smith SJ, Cofala J (2013) The last decade of global anthropogenic sulfur dioxide: 2000–2011 emissions. Environ Res Lett 8(1):014003CrossRefGoogle Scholar
  77. Klonecki A, Levy H II (1997) Tropospheric chemical ozone tendencies in CO-CH4-NOy-H2O system: their sensitivity to variations in environmental parameters and their application to global chemistry transport model studies. J Geophys Res 102(21):221–21,237Google Scholar
  78. Krupa SV, Manning WJ (1988) Atmospheric ozone: formation and effects on vegetation. Environ Pollut 50:101–137PubMedCrossRefPubMedCentralGoogle Scholar
  79. Krupa SV (1997) Air pollution, people, and plants: an introduction (No. 04; QH545. A3, K7.). APS Press, St. Paul, Minnesota, USAGoogle Scholar
  80. Kurokawa J, Ohara T, Morikawa T, Hanayama S, Janssens-Maenhout G, Fukui T et al (2013) Emissions of air pollutants and greenhouse gases over Asian regions during 2000–2008: regional emission inventory in ASia (REAS) version 2. Atmos Chem Phys 13(21):11019–11058CrossRefGoogle Scholar
  81. Laaksonen A, Talanquer V, Oxtoby DW (1995) Nucleation: measurements, theory, and atmospheric applications. Annu Rev Phys Chem 46:189CrossRefGoogle Scholar
  82. Lamarque J-F, Brasseur GP, Hess PG, Muller J-F (1996) Three-dimensional study of the relative contributions of the different nitrogen sources in the troposphere. J Geophys Res 101(22):955–22,968Google Scholar
  83. Lamsal LN, Martin RV, Padmanabhan A, Van Donkelaar A, Zhang Q, Sioris CE et al (2011) Application of satellite observations for timely updates to global anthropogenic NOx emission inventories. Geophys Res Lett 38(5)CrossRefGoogle Scholar
  84. Lanphear BP, Hornung R, Khoury J, Yolton K, Baghurst P, Bellinger DC, …, Rothenberg SJ (2005) Low-level environmental lead exposure and children’s intellectual function: an international pooled analysis. Environ Health Perspect 113(7):894PubMedPubMedCentralCrossRefGoogle Scholar
  85. Lawrence MG, Crutzen PJ (1998) The impact of cloud particle gravitational settling on soluble trace gas distributions. Tellus B: Chemical and Physical Meteorology 50(3):263–289CrossRefGoogle Scholar
  86. Leaitch WR, Bottenheim JW, Biesenthal TA, Li SM, Liu PSK, Asalian K, Dryfhout-Clark H, Hopper F, Brechtel F (1999) A case study of gas-toparticle conversion in an eastern Canadian forest. J Geophys Res-Atmos 104:8095–8111CrossRefGoogle Scholar
  87. Lee Y-N, Schwartz SE (1981) Evaluation of the rate of uptake of nitrogen dioxide by atmospheric and surface liquid water. J Geophys Res 86:11971–11983CrossRefGoogle Scholar
  88. Lee DS, Kohler I, Grobler E, Rohrer F, Sausen R, Gallardo-Klenner L, Olivier JGJ, Dentener FJ, Bouwman AF (1997) Estimations of global NOx emissions and their uncertainties. Atmos Environ 31:1735–1749CrossRefGoogle Scholar
  89. Levy H (1971) Normal atmosphere: Large radical and formaldehyde concentrations predicted. Science 173(3992):141–143PubMedCrossRefGoogle Scholar
  90. Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, Amann M, Anderson HR, Andrews KG, Aryee M et al (2012) A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the global burden of disease study 2010. Lancet 380:2224–2260PubMedPubMedCentralCrossRefGoogle Scholar
  91. Lin W, Xu X, Ge B, Liu X (2011) Gaseous pollutants in Beijing urban area during the heating period 2007–2008: variability, sources, meteorological, and chemical impacts. Atmos Chem Phys 11(15):8157–8170CrossRefGoogle Scholar
  92. Lu Z, Streets DG, Zhang Q, Wang S, Carmichael GR, Cheng YF, Wei C, Chin M, Diehl T, Tan Q (2010) Sulfur dioxide emissions in China and sulfur trends in East Asia since 2000. Atmos Chem Phys 10:6311–6331CrossRefGoogle Scholar
  93. Mallik C, Lal S (2014) Seasonal characteristics of SO2. NO2, and CO emissions in and around the Indo-Gangetic Plain. Environ Monit Assess 186(2):1295–1310PubMedCrossRefGoogle Scholar
  94. Maret W (2017) The bioinorganic chemistry of lead in the context of its toxicity. In: Lead–its effects on environment and health. De Gruyter, Berlin, vol 17, pp 1–20Google Scholar
  95. Massling A, Stock M, Wiedensohler A (2005) Diurnal, weekly, and seasonal variation of hygroscopic properties of submicrometer urban aerosol particles. Atmos Environ 39(21):3911–3922CrossRefGoogle Scholar
  96. Ministerium Für Umwelt, Raumordnung and Landwirtschaft Des Landes Nw. Luftreinhaltung in Nordrhein-Westfalen (1989) Eine Erfolgsbilanz der Luftreinhalteplanung 1975–1988. Bonner Universitätsdruckerei, BonnGoogle Scholar
  97. Morawska L, Ristovski Z, Jayaratne ER, Keogh DU, Ling X (2008) Ambient nano and ultrafine particles from motor vehicle emissions: characteristics, ambient processing and implications on human exposure. Atmos Environ 42(35):8113–8138CrossRefGoogle Scholar
  98. Murozumi M et al (1969) Chemical concentrations of pollutant lead aerosols, terrestrial dusts, and sea salts in Greenland and Antarctic snow strata. Geochem Acta 33:1247–1294CrossRefGoogle Scholar
  99. National Research Council (NRC) (1991) Rethinking the ozone problem in urban and regional air pollution. National Academy Press, Washington, DC, pp 103–134Google Scholar
  100. Nevers ND (2000) Air pollution control engineering, seconded. McGraw-Hill Companies, Inc., New York, pp 571–573Google Scholar
  101. Nielsen O-K, Plejdrup M, Hjelgaard K, Nielsen M, Winther M, Mikkelsen MH, Albrektsen R, Fauser P, Hoffmann L, Gyldenkærne S (2013) Projection of SO2, NOx, NMVOC, NH3 and particle emissions −2012-2035. Aarhus University, DCE – Danish Centre for Environment and Energy, 151 pp. Technical Report from DCE – Danish Centre for Environment and Energy No. 81. Available at: www.dce2.au.dk/pub/SR81.pdf
  102. Novelli PC, Masarie KA, Tans PP, Lang PM (1994) Recent changes in atmospheric carbon monoxide. Science 263:1587–1590PubMedCrossRefGoogle Scholar
  103. Nriagu JO, Pacyna JM (1988) Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333:134–139PubMedCrossRefGoogle Scholar
  104. Pandis SN, Russell LM, Seinfeld JH (1994) The relationship between DMS ßux and CCN concentration in remote marine regions. J Geophys Res 99:16945–16957CrossRefGoogle Scholar
  105. Pandis SN, Wexler AS, Seinfeld JH (1995) Dynamics of tropospheric aerosols. J Phys Chem 99:9646–9659CrossRefGoogle Scholar
  106. Patterson C (1965) Contaminated and natural lead environments of man. Arch Environ Health 11:344–360PubMedCrossRefGoogle Scholar
  107. Pilinis C, Pandis S, Seinfeld JHJ (1995) Geophys Res 100:18739–18754CrossRefGoogle Scholar
  108. Pinder RW, Strader R, Davidson CI, Adams PJ (2004) A temporally and spatially resolved ammonia emission inventory for dairy cows in the United States. Atmos Environ 38(23):3747–3756CrossRefGoogle Scholar
  109. Pope CA III, Dockery DW (1992) Acute health effects of PM10 pollution on symptomatic and asymptomatic children. Am Rev Respir Dis 145(5):1123–1128PubMedCrossRefGoogle Scholar
  110. Qin Y, Tonnesen GS, Wang Z (2004) Weekend/weekday differences of Ozone, NOx, CO, VOCs, PM10 and the light scatter during ozone season in Southern California. Atmos Environ 38:3069–3087CrossRefGoogle Scholar
  111. Rastogi N, Singh A, Sarin MM, Singh D (2016) Temporal variability of primary and secondary aerosols over northern India: impact of biomass burning emissions. Atmos Environ 125:396–403CrossRefGoogle Scholar
  112. Ray S, Kim KH (2014) The pollution status of sulfur dioxide in major urban areas of Korea between 1989 and 2010. Atmos Res 147:101–110CrossRefGoogle Scholar
  113. Reutter P, Su H, Trentmann J, Simmel M, Rose D, Gunthe SS et al (2009) Aerosol-and updraft-limited regimes of cloud droplet formation: influence of particle number, size and hygroscopicity on the activation of cloud condensation nuclei (CCN). Atmos Chem Phys 9(18):7067–7080CrossRefGoogle Scholar
  114. Riahi K, Grübler A, Nakicenovic N (2007) Scenarios of long-term socio-economic and environmental development under climate stabilization. Technol Forecast Soc Chang 74(7):887–935CrossRefGoogle Scholar
  115. Robinson AL, Donahue NM, Shrivastava MK, Weitkamp EA, Sage AM, Grieshop AP, Lane TE, Pierce JR, Pandis SN (2007) Rethinking organic aerosols: semivolatile emissions and photochemical aging. Science 315:1259–1262PubMedCrossRefGoogle Scholar
  116. Rogers HH, Campbell JC, Volk RJ (1979) Nitrogen-15 dioxide uptake and incorporation by Phaseolus vulgaris (L.). Science 206:333–335PubMedCrossRefGoogle Scholar
  117. Rönkkö TJ, Jalava PI, Happo MS, Kasurinen S, Sippula O, Leskinen A, …, Hao L (2018) Emissions and atmospheric processes influence the chemical composition and toxicological properties of urban air particulate matter in Nanjing, China. Sci Total Environ 639:1290–1310PubMedCrossRefGoogle Scholar
  118. Sakamoto M, Yoshimura A, Kosaka H, Hiraki T (2005) Study on weekend–weekday differences in ambient oxidant concentrations in hyogo prefecture. J Jpn Soc Atmos Environ 40:201–208Google Scholar
  119. Schnellen CG (1947) Onderzoekingen over de Methaangistung. Doctoral thesis, Technische Wetenschap de Delft, Rotterdam, HollandGoogle Scholar
  120. Seinfeld JH, Pandis SN (1998) Atmospheric chemistry and physics. Wiley, New York. 1326 ppGoogle Scholar
  121. Sillman S (1999) The relation between ozone, NOx and hydrocarbons in urban and polluted rural environments. Atmos Environ 33(12):1821–1845CrossRefGoogle Scholar
  122. Smith SJ, Andres R, Conception E, Lurz J (2004) Historical sulfur dioxide emissions 1850–2000: Methods and results (No. PNNL-14537). Pacific Northwest National Lab.(PNNL), Richland, WA (United States)Google Scholar
  123. Smith SJ, Aardenne JV, Klimont Z, Andres RJ, Volke A, Delgado Arias S (2011) Anthropogenic sulfur dioxide emissions: 1850–2005. Atmos Chem Phys 11(3):1101–1116CrossRefGoogle Scholar
  124. Stephenson M (1949) Bacterial metabolism, 3rd edn. Longmans, Green and Co, New York, p 54–55, 95–96Google Scholar
  125. Strader R, Lurmann F, Pandis SN (1999) Evaluation of secondary organic aerosol formation in winter. Atmos Environ 33(29):4849–4863CrossRefGoogle Scholar
  126. Swietlicki E, Hansson HC, Hämeri K, Svenningsson B, Massling A, McFiggans G, …, Topping D (2008) Hygroscopic properties of submicrometer atmospheric aerosol particles measured with H-TDMA instruments in various environments—a review. Tellus Ser B Chem Phys Meteorol 60(3):432–469Google Scholar
  127. Sze ND (1977) Anthropogenic CO emissions: implications for the atmospheric CO-OH-CH4 cycle. Science 195:673–675PubMedCrossRefGoogle Scholar
  128. Takemoto BK, Bytnerowicz A, Fenn ME (2001) Current and future effects of ozone and atmospheric nitrogen deposition on California’s mixed conifer forests. For Ecol Manag 144(1–3):159–173CrossRefGoogle Scholar
  129. Tang IN (1996) Chemical and size effects of hygroscopic aerosols on light scattering coefficients. J Geophys Res Atmos 101(D14):19245–19250CrossRefGoogle Scholar
  130. Thompson AM, Cicerone RJ (1986) Atmospheric CH4, CO and OH from 1860 to 1985. Nature 321:148–150CrossRefGoogle Scholar
  131. USEPA – United States Environmental Protection Agency (1990) Cancer risk from outdoor exposure to air toxics, Vol 1, Final report, USEPA, North Carolina, USAGoogle Scholar
  132. USEPA (1991) Evaluation of a remote sensor for mobile source CO emissions. Contract with Donald Stedman and Gary Bishop. CR-815778-01-0Google Scholar
  133. USEPA (1994) Guidance manual for the integrated exposure uptake biokinetic model for lead in children, EPA/540/R-93/081. US Environmental Protection Agency, Washington, DCGoogle Scholar
  134. Vallero DA (2014) Fundamentals of air pollution. Academic pressGoogle Scholar
  135. Van Dingenen R, Raes F (1991) Determination of the condensation accommodation coe¦cient of sulfuric acid on water sulphuric acid aerosol. Aerosol Sci Technol 15:93–106CrossRefGoogle Scholar
  136. Vu TV, Delgado-Saborit JM, Harrison RM (2015) A review of hygroscopic growth factors of submicron aerosols from different sources and its implication for calculation of lung deposition efficiency of ambient aerosols. Air Qual Atmos Health 8(5):429–440CrossRefGoogle Scholar
  137. Wang C, Prinn RG (1998) Combined effects of anthropogenic emissions and resultant climatic changes on atmospheric OH, MIT Joint Program on the Science and Policy of Global Change, Report No. 34, April, 6 p.; submitted to NatureGoogle Scholar
  138. Wang Y, Logan JA, Jacob DJ (1998) Global simulation of tropospheric O-NO -hydrocarbon chemistry: 2. Model evaluation and global ozone budget. J Geophys Res Atmos 103(D9):10727–10755CrossRefGoogle Scholar
  139. Wang Y, Zhang QQ, He K, Zhang Q, Chai L (2013) Sulfate-nitrate-ammonium aerosols over China: response to 2000–2015 emission changes of sulfur dioxide, nitrogen oxides, and ammonia. Atmos Chem Phys 13(5):2635–2652CrossRefGoogle Scholar
  140. Wells EM, Navas-Acien A, Herbstman JB, Apelberg BJ, Silbergeld EK, Caldwell KL, …, Goldman LR (2011) Low-level lead exposure and elevations in blood pressure during pregnancy. Environ Health Perspect 119(5):664PubMedPubMedCentralCrossRefGoogle Scholar
  141. Whitby KT, Sverdrup GM (1980) California aerosols, their physical and chemical characteristics. In: Hidy GM, Mueller PK, Grosjean D, Appel BR, Wesolowski JJ (eds) The character and origins of smog aerosols. J. Wiley and Sons, New York, pp 477–517Google Scholar
  142. WHO (2016) WHO’s urban ambient air pollution database 2016. Available online: http://www.who.int/phe/health_topics/outdoorair/databases/who-aap-database-may2016.xlsx
  143. World Bank (1998) Meeting India’s future power needs: planning for environmentally sustainable development. Washington, DCGoogle Scholar
  144. World Resources Institute (1994) World resources 1994–95: a guide to the global environment. Oxford University Press, New YorkCrossRefGoogle Scholar
  145. Zhao B, Wang P, Ma JZ, Zhu S, Pozzer A, Li W (2012) A high-resolution emission inventory of primary pollutants for the Huabei region, China. Atmos Chem Phys 12(1):481–501CrossRefGoogle Scholar
  146. Zunckel M, Chiloane K, Sowden M, Otter L (2007) Biogenic volatile organic compounds: the state of knowledge in southern Africa and the challenges for air quality management. S Afr J Sci 103(3–4):107–112Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Pallavi Saxena
    • 1
  • Saurabh Sonwani
    • 2
  1. 1.Department of Environmental SciencesHindu College, University of DelhiNew DelhiIndia
  2. 2.School of Environmental SciencesJawaharlal Nehru UniversityNew DelhiIndia

Personalised recommendations