Cytogenetic Relationship of Triticum and Aegilops Species

  • Chi Yen
  • Junliang Yang
  • Zhongwei Yuan
  • Shunzong Ning
  • Dengcai Liu


As mentioned above, some scientists such as Sakamun, Kihara, and Sax had found that Triticum plants have three types of chromosome numbers, i.e., 14, 28, and 42 chromosomes in the somatic cells of root tips and 7, 14, and 21 in the gamete cells. They are a ploidy relationship. Similar ploidy distribution was also observed in Aegilops species, as shown in Table 6.1.


  1. Aase, H. C. (1930). Cytology of Triticum, Secale and Aegilops hybrids with reference to phylogeny (Washington. State College. Research studies) (Vol. 2). Pullman: State College of Washington.Google Scholar
  2. Aase, H. C., & Pewers, L. R. (1926). Chromosome number in crop plants. American Journal of Botany, 13, 367–372.CrossRefGoogle Scholar
  3. Bell, G. D. H., Lupton, F. G. H., & Riley, R. (1955). Investigations in the Triticineae. III. The morphology and field behaviour of the F2 generation of interspecific and intergeneric amphipl-oids. The Journal of Agricultural Science, 46, 199–231.CrossRefGoogle Scholar
  4. Blakeslee, A. F., & Avery, A. G. (1937). Methods of inducing doubling of chromosome in plants. The Journal of Heredity, 28, 373–411.CrossRefGoogle Scholar
  5. Bleier, H. (1926). Ein cytologischer Beilray zur Bastardierungszuchtung (pp. 302–310). II: Zeits. Pflanzenzucht.Google Scholar
  6. Bleier, H. (1928a). Zytologische Untersuchungen an seltenen Getreide-und Rübenbastarden. Verh. V Int. Kong. Vererb. Wiss. Berlin, 1, 447–452.Google Scholar
  7. Bleier, H. (1928b). Genetik und Zytologie teilweise und ganz steriler Getreidebastards. Bibiogr Gen., 4, 321–400.Google Scholar
  8. Bleier, H. (1930). Neue Boebachtungen uber die Reduktiosteilung Ven Weizen-Roggenund Aegilops- Weizen-Bastarden. Cambridge: V. Intern. Bot. Cong.Google Scholar
  9. Chapman, V., Mittler, T. E., & Riley, R. (1976). Equivalence of the A genome of bread wheat and that of T. urartu. Genetical Research, 27, 69–76.CrossRefGoogle Scholar
  10. Chen, P. D., & Gill, B. S. (1983). The origin of chromosome 4A, and genomes B and G of tetraploid wheats. Proc. 6th Int. Wheat Genet. Symp. (pp. 39–48). Japan: Kyoto.Google Scholar
  11. de Mol, W. (1924). De Reductiedeelin bji eenige Triticum Soorten. Genetica, 6, 289–329.CrossRefGoogle Scholar
  12. Dhaliwal, H. S., & Johnson, B. L. (1976). Anther morphology and the origin of the tetraploid wheats. Amer. J. Bot., 63, 363–368.CrossRefGoogle Scholar
  13. Dvorak, J. (1983). The origin of wheat chromosomes 4A and 4B and their genome reallocation. Canadian Journal of Genetics and Cytology, 25, 210–214.CrossRefGoogle Scholar
  14. Emme, H. K. (1924). Die Resultate der Zytogischen Untersuchungen einigen Aegilopsarte Zeitschr. Russ. Bot. Gesell., 8.Google Scholar
  15. Feldman, M. (1977). New evidence on the origin of genome B of Triticum. Canadian Journal of Genetics and Cytology, 19, 572.Google Scholar
  16. Gaines, E. F., & Aase, H. C. (1926). A haploid wheat plant. American Journal of Botany, 13, 373–385.CrossRefGoogle Scholar
  17. Hadlaczky, G. Y., & Belea, A. (1975). C-banding in wheat evolutionary cytogenetics. Plant Science Letters, 4, 85–88.CrossRefGoogle Scholar
  18. Hector, J. M. (1936). Introduction to the botany of field crops (Vol. cereal, pp. 143–197). Johannesburg: Central News Agency Ltd.Google Scholar
  19. Hollinshead, L. (1932). The occurrence of unpaired chromosome in hybrids between varieties of Triticum vulgare. Cytologia, 3, 119–141.CrossRefGoogle Scholar
  20. Horton, E. S. (1936). Studies in the cytology of wheat and of a wheat species hybrid. Amer. J. Bot., 23, 121–128.CrossRefGoogle Scholar
  21. Jinkins, J. A. (1929). Chromosome homologies in wheat and Aegilops. American Journal of Botany, 16, 238–245.CrossRefGoogle Scholar
  22. Johnson, B. L. (1975). Identification of the apparent B-genome donor of wheat. Canadian Journal of Genetics and Cytology, 17, 21–39.CrossRefGoogle Scholar
  23. Johnson, B. L., & Dhaliwal, H. S. (1976). Reproductive isolation of Triticum boeoticum and Triticum urartu and the origin of the tetraploid wheat. American Journal of Botany, 63, 1088–1094.CrossRefGoogle Scholar
  24. Johnson, B. L., & Dhaliwal, H. S. (1978). Triticum urartu and genome evolution in the tetraploid wheat. American Journal of Botany, 55, 907–918.CrossRefGoogle Scholar
  25. Kagawa, F. (1926). Cytological studieson Triticum and Aegilops I. size and shape of somatic chromosomes. La Cellule, 37, 231–323.Google Scholar
  26. Kagawa, F. (1927). The comparison of chromosomes among different species in Triticum. Proceedings of the Imperial Academy, 3, 304–306.CrossRefGoogle Scholar
  27. Kagawa, F. (1928). Cytological studies on Triticum and Aegilops II. On the genus crosses between Triticum and Aegilops. Japan. Journ. Bot, 4.Google Scholar
  28. Kattermann, G. (1931). Ueber die Bildung polyvalenter Chromosomenverbande bei einigen Gramineen. Planta, 12, 732–774.CrossRefGoogle Scholar
  29. Kihara, H. (1919). Über cytologische studien bei einigen Getreidearten, Mitt. I. Spezies-Bastarbe des weizensund Weizen-Roggen-Bastarde. The Botanical Magazine, Tokyo, 32, 17–38.CrossRefGoogle Scholar
  30. Kihara, H. (1924). Cytologische und genetische Studien bei wichtigen Getreidearten mit. besonderer Rucksicht auf das Verhalten der Chromosomen und die Sterilitat in den Bastarden. Memoirs of the College of Science, University of Kyoto. Series B, Biology, 1, 1–200.Google Scholar
  31. Kihara, H. (1930). Genomanalyse bei Triticum und Aegilops. Cytologia, 1, 263–284.CrossRefGoogle Scholar
  32. Kihara, H. (1937a). Genomanlyse bei Triticum und AegilopsVII. Kurze Übersicht über die Ergebnisse der Jahre 1934–1936. Memoirs of the College of Agriculture; Kyoto Imperial University, 41, 61.Google Scholar
  33. Kihara, H. (1937b). Synthesized allotetraploid F2 individuals obtained from the cross Aegilops speltoides × Ae. umbellulate. (A preliminary note). The Japanese Journal of Genetics, 13(5), 224–226.CrossRefGoogle Scholar
  34. Kihara, H. (1944). Discovery of the DD-analyzer, one of the ancestors of Triticum vulgare. Agric. Hort., 19, 13–14.Google Scholar
  35. Kihara, H. (1949). Genomanalyse bei Triticum und Aegilops IX. Cytologia, 14, 135–144.CrossRefGoogle Scholar
  36. Kihara, H., & Lilienfeld, F. A. (1932). Genomanalyse bei Triticum und Aegilops. IV. Untersuchungen an Aegilops × Triticum und Aegilops × Aegilops-Bastarden. Cytologia, 3, 384–456.CrossRefGoogle Scholar
  37. Kihara, H., & Lilienfeld, F. A. (1935). Genomanalyse bei Triticum und Aegilops. VI. Weitere Untersuchungen an Aegilops × Triticum und Aegilops × Aegilops-Bastarden. Cytologia, 6, 195–216.CrossRefGoogle Scholar
  38. Kihara, H., & Lilienfeld, F. (1949). A new synthesized 6x-wheat. In Proceedings of 8th International Congress of Genetics (Suppl. Vol. of Herditas, Lund), pp. 307–319.Google Scholar
  39. Kihara, H., & Nishiyama, I. (1928). New aspects of chromosome behavior in pollen mother-cells of tri-, tetra-, and pentaploid wheat hybrids. The Botanical Magazine, 42, 221–230.CrossRefGoogle Scholar
  40. Kihara, H., Okamoto, M., Ikegami, M., et al. (1950). Morphology and fertility of five new synthesized hexaploid wheats. Rep. Kihara Inst. Bio. Res.(Seiken Zihô), 4, 127–140. (With English summary, pp. 138–140).Google Scholar
  41. Kihara, H., Hosono, S., Nishiyama, I., et al. (1954). A study of wheat. Tokyo: Yokendo.Google Scholar
  42. Kimber, G. (1974). A reassessment of the origin of the polyploid wheat. Genetics, 78, 487–492.PubMedPubMedCentralGoogle Scholar
  43. Kimber, G., & Sears, E. R. (1983). Assignment of genome symbols in Triticeae. In S. Sakamoto (Ed.), Proc. 6th Int. Wheat Genet. Symp. (pp. 1195–1196). Japan: Kyoto.Google Scholar
  44. Lindschau, M., & Oehler, F. (1936). Cytologische Untersuchungen an tetraploiden Aegilops- Artbastarden. Züchter, 8, 113–117.CrossRefGoogle Scholar
  45. Lilienfeld, F. A., & Kihara, H. (1934). Genomannalyse bei Triticum timopheevi Zhuk. Cytologia, 6, 87–122.Google Scholar
  46. Longley, A. E., & Sando, W. J. (1930). Neuclear divisions in the pollen mother cells of Triticum, Aegilops and Secale and their hybrids. Journal of Agricultural Research, 40, 683–719.Google Scholar
  47. Löve, A. (1984). Conspectus of the Triticeae. Feddes Repert, 95, 425–521.Google Scholar
  48. McFadden, E. S., & Sears, E. R. (1946). The origin of Triticum spelta and its free-threshing hexaploid relatives. The Journal of Heredity, 37(81–90), 107–116.CrossRefGoogle Scholar
  49. Mukai, Y. (1995). Multicolor fluorescence in situ hybridization approach for genome analysis and gene mapping in wheat and its relatives. In Proceedings of 8th International Wheat Genetics Symposium, pp. 543–546.Google Scholar
  50. Mukai, Y., Nakahara, Y., & Yammoto, M. (1993). Simultaneous discrimination of the three genomes in hexaploid wheat by multicolor fluorescence in situ hybridization using total genomic and highly repeated DNA probes. Genome, 36, 489–494.PubMedCrossRefGoogle Scholar
  51. Nebel, B. R., & Ruttle, M. L. (1937). Action of colchicine on mitosis. Genetics, 23, 161–162.Google Scholar
  52. Nebel, B. R., & Ruttle, M. L. (1938). Cytological and genetical significance of colchicine. The Journal of Heredity, 29, 2–9.CrossRefGoogle Scholar
  53. Okamoto, M. (1957). Further information on identifioation of chromosomes in the A and B genomes. Wheat Information Service, 6, 3–4.Google Scholar
  54. Pathak, G. N. (1940). Studies in the cytology of cereals. Journal of Genetics, 39, 437–467.CrossRefGoogle Scholar
  55. Percival, J. (1923). Chromosome numbers in Aegilops. Nature, III, 2798, 810–810.CrossRefGoogle Scholar
  56. Percival, J. (1926). The morphology and cytology of some hybrid of Aegilops ovata, L. × wheat. Journal of Genetics, 17, 49–68.CrossRefGoogle Scholar
  57. Percival, J. (1930). Cytological studies of some hybrids of Aegilops sp. × wheats, and of some hybrids between different species of Aegilops. Journal of Genetics., 22, 201–278.CrossRefGoogle Scholar
  58. Percival, J. (1932). Cytological studies of some wheat and Aegilops hybrids. Ann. Botany, 46, 479–501.CrossRefGoogle Scholar
  59. Peto, F. H. (1936). Hybridization of Triticum and Agropyron II. Cytology of the male parents and F1 generation. Canadian Journal of Research, 14, 203–214.CrossRefGoogle Scholar
  60. Rees, H., & Davies, W. I. C. (1963). DNA and wheat ancestry. In Proceedings of IX: International Congress Genetics Haque, Nether-lands, Genetics Today, Vol. I: 136.Google Scholar
  61. Riley, R., Unrau, J., & Chapman, V. (1958). Evidence on the origin of the Bgenome of wheat. The Journal of Heredity, 49, 91–98.CrossRefGoogle Scholar
  62. Sachs, L. (1953). Chromosome behaviour in species hybrids with Triticum timopheevi. Heredity, 7, 49–58.CrossRefGoogle Scholar
  63. Sakamura, T. (1918). Kurze Mitteilung über die Chromosomenzahlen und die Verwandschafts- Verhaltnisse der Triticum-Arten. Botanical Magazine Tokyo, 32, 150–153.CrossRefGoogle Scholar
  64. Sarkar, P., & Stebbins, G. L. (1956). Morphological evidence concerning the origin of the B genome in wheat. Amer. Journal of Botany, 43, 297–304.CrossRefGoogle Scholar
  65. Sax, K. (1918). The behaviour of the chromosomes in fertilization. Genetics, 3, 309–327.PubMedPubMedCentralGoogle Scholar
  66. Sax, K. (1921). Chromosome relationships in wheat. Science, 54, 413–415.CrossRefGoogle Scholar
  67. Sax, K. (1922). Sterility in wheat hybrid II. Chromosome behaviour in partially sterile hybrids. Genetics, 7, 513–552.PubMedPubMedCentralGoogle Scholar
  68. Sax, K., & Sax, H. J. (1924). Chromosome behaviour in a genus cross. Genetics, 9, 454–464.PubMedPubMedCentralGoogle Scholar
  69. Schiemann, E. (1928). Zytologische und pflanzen-geographische Beiträge zur Gattung Aegilops (II. Mitteilung). Ber Deutsch. Bot Ges, 46, 107–123.Google Scholar
  70. Sears, E. R. (1948). The cytology and genetics of the wheats and their relatives. Advances in Genetics, 2, 239–270.CrossRefGoogle Scholar
  71. Sears, E. R. (1956a). The B genome in wheat. Wheat Information Service, 4, 8–10.Google Scholar
  72. Sears, E. R. (1956b). Weizen. I. The systematics, cytology and genetics of wheat. Handbuch der Pflanzenzüchtung, 11, 164–187.Google Scholar
  73. Sears, E. R., & Okamoto, M. (1958). Inter genomic chromosme relationship in hexaploid wheat. In Proceedings of 10th International Congress Genetics, Montreal, Canada, 2, pp. 258–259.Google Scholar
  74. Shands, H. L., & Kimber, G. (1973). Reallocation of genomes of Tritcum timopheevi Zhuk. In Proceedings of 4th International Wheat Genetics Symposium, Missouri, Columbia, USA, pp. 95–99.Google Scholar
  75. Stevenson, F. J. (1930). Genetic characters in relation to chromosome numbers in a wheat species cross. Journal of Agricultural Research, 41, 161–179.Google Scholar
  76. Stolze, K. V. (1925). Die chromosomenzahlen der hauptsächlichsten Getreidearten nebst allgemeinen Betrachtungen über Chromosomen. Chromosomenzahl und Chromosomengröße im pflanzenreich. Bibliotheca Genetica, 9, 1–71.Google Scholar
  77. Thompson, W. P. (1926). Chromosome behaviour in a cross between wheat and rye. Genetics, 11, 317–332.PubMedPubMedCentralGoogle Scholar
  78. Tschermak, E. V., & Bleier, H. (1926). Über fruchtung Aegilops weizen Bastarde. Bastarde. Berichte der Deutschen Botanischen Gesellschaft, 44, 110–132.Google Scholar
  79. Upadhya, M. D., & Swaminathan, M. S. (1963). Genome analysis in triticum zhukovskyi, a new hexaploid wheat. Chromosoma, 14, 589–600.Google Scholar
  80. Wagenaar, E. B. (1961). Studies on the genome constitution of T. timopheevi Zhuk. I. Evidence for genetic control of meiotic irregularities in tetraploid hybrids. Canadian Journal of Genetics and Cytology, 3, 47–60.CrossRefGoogle Scholar
  81. Wagenaar, E. B. (1966). Studies on the genome constitution of Triticum timopheevi Zhuk. II. The Tr. timopheevi complex and its origin. Evolution, 20, 150–164.PubMedCrossRefGoogle Scholar
  82. Waker, B. A. (Вакар Б А). (1933). Cytologische Untersuchungen Uber F1 der Rasscn-und Artbastarde des Weizens. Angewandte Botanik, 15, 203–224.Google Scholar
  83. Watanabe, Y., Mukade, K., & Saito, S. (1955). Studies on the production of amphidiploids as the sources of resiStance to leaf-ruSt in wheats: I. Cytogenetical studies on the F1 hybrids and the amphidiploids, Triticum Timopheevi Zhuk. × Aegitops squarrosa L. Japanese Journal of Breeding, 5(2), 75–86.CrossRefGoogle Scholar
  84. Watanabe, Y., Mukade, K., & Kokubun, K. (1956). Studies on the production of amphidiploids as the sources of resistance to leaf-rust in wheats. II. Cytogenetical studies on the F1 hybrids and the amphidiploids, Triticum Tilhohheevi Zhuk. × Triticum monococcum L. Japanese Journal of Breeding, 6(1), 23–31.CrossRefGoogle Scholar
  85. Watkins, A. E. (1924). Genetic and cytological studies in wheat. I. Journal of Genetics, 14, 129–171.CrossRefGoogle Scholar
  86. Вакар, Б. А. (Waker, B. A). (1932). Цитологическое иэуение Междувидовых гибридов рода Triticum. Тр. Прикл. Бот., Ген. иСен. II, 1, 189–241.Google Scholar
  87. Вакар, Б. А. (1935). Пщенично-пырейные Гибриды. Тр. Прикл. Бот., Ген. иСел., 28, 121–161.Google Scholar
  88. Ерицян, А. А. (1932). Кцитолгии пленчатых пщениц Грузии. Тр. Прикл. Вот., Ген., и Сел. сер. V, 1. Стр. 47–52.Google Scholar
  89. Жуковский, П. М. (1928a). Критико-систематический обзр видов рода Aegilops L. (Specierum generis Aegilops L. revisio critica), (A critical-systematical survey of the species of the genus Aegilops.). Тр. Прикл. Бот. Ген. и Сел., 18, 417–609.Google Scholar
  90. Жуковский, П. М. (1928b). Новый вид пщеницы. Тр. Прикл. Вот., Ген. и Сел. т., 19, 2, 59–66.Google Scholar
  91. Николаева, А. (1920). Zur cytologie der Triticum-Arten. Verhandl des Kongr. f. Pflanzenzucht. in Saratow. Autorreferat in Zeitschr. Induk. Abst. -u. Vererbungsl. 29.Google Scholar
  92. Николаева, А. Г. (1923). Цитолическое исследова-ние рода Triticum. Тр. Прикл. Бот. Ген. и Сел. т. 13, I, 33–44.Google Scholar
  93. Светоэарова, В. (1939). О вторм геноме T. timopheevi Zhuk. ДАН СССР, т. 23, B. 5, C., 472–476.Google Scholar
  94. Сорокина, О. Н. (1928). О хромосомы в вид Aegilops, Тр. Прикд. Бот., Ген. и Сел., 19, 523–532.Google Scholar

Copyright information

© China Agriculture Press & Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Chi Yen
    • 1
  • Junliang Yang
    • 2
  • Zhongwei Yuan
    • 3
  • Shunzong Ning
    • 1
  • Dengcai Liu
    • 3
  1. 1.Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
  2. 2.Triticeae Research InstituteSichuan Agricultural UniversityYa’anChina
  3. 3.Triticeae Research InstituteSichuan Agricultural UniversityChengduChina

Personalised recommendations