Advertisement

Artificially Synthesized Species and Genera

  • Chi Yen
  • Junliang Yang
  • Zhongwei Yuan
  • Shunzong Ning
  • Dengcai Liu
Chapter
  • 23 Downloads

Abstract

The artificial colchicine treatment or spontaneous chromosome doubling of interspecific/intergeneric hybrids can generate amphiploids that can set seeds. Using this strategy, many newly synthetic species or genus was produced. Some species, such as rye (Secale), Haynaldia, and Lophopyrum, are very easy to cross with wheat to produce hybrids even without special treatments such as embryo rescues. Generally, seedlings of intergeneric hybridization in Triticeae can be obtained by rescues of immature embryos at 14 days (sometimes 7 days) after cross-pollination. More distant hybridization such as wheat-maize can be also possible (Laurie and Bennett, 1986, 1987). Some successful examples of interspecific and intergeneric hybridization are shown in Table 11.1.

References

  1. Armstrong, J. M., & Mclenna, H. A. (1944). Amphidiploidy in Triticum-Agropyron hybrids. Science in Agriculture, 24.Google Scholar
  2. Bates, L. S., Mujeeb, A. K., & Waters, R. F. (1976). Wheat × barley hybrids—Problems and potentials. Cereal Res. Comm., 4, 377–386.Google Scholar
  3. Britten, E. J., & Thompson, W. P. (1941). The artificial synthesis of a 42-chromosome wheat. Science, 93, 479.CrossRefGoogle Scholar
  4. Cauderon, Y. (1966). Cytogenetic study of material resulting from across between Triticum aestivum and agropyron intermedium. i. Creation of stable addition lines. Ann. Amelioration Des Plant, 16, 43–70.Google Scholar
  5. Cauderon, Y., Temple, J., & Gay, G. (1978). Production and cytogenetic study of a new Hordeum vulgare ssp. distichon × Triticum timopheevi sexual hybrid. C.R. Hebd Seanees Acad. Sci. Ser. D. Sci. Nat., 286, 1687–1690.Google Scholar
  6. Сорокина O H. 1937. Плодовитый константный 42-xpo-мосомный гибрид Aegilops ventricosa Tausch. × T. durum Desf. Тр. Прикд. Бот. Ген. и Сел., cер. 2, 7: 5–12Google Scholar
  7. Dewey, W. G. (1981). Wheat × Agropyron podperae. Wheat Newsletter, 27, 148.Google Scholar
  8. Finch, R. A., & Bennett, D. B. (1980). Mitotic and meiotic chromosome behavior in new hybrids of Hordeum with Triticum and Secale. Heredity, 44, 201–210.Google Scholar
  9. Kaschiri, M. (1975). Significance of wheat-Aegilops crosses for the improvement of cultivated wheat. Wheat Information Service, 40, 22–24.Google Scholar
  10. Kihara, H., & Katayama, Y. (1931). Genomanalyse bei Triticum und Aegilops. III. Zur Entstehungsweise eines neuen kotoploidenegiotricum. Cytologia, 2, 234–255.CrossRefGoogle Scholar
  11. Kihara, H., Hosono, S., Nishiyama, I., et al. (1954). A study of wheat. Tokyo: Yokendo.Google Scholar
  12. Kimber, G., & Abubaker, M. (1979). Wheat hybrid information systems. Cereal Res. Comm., 7, 257–259.Google Scholar
  13. Knobloch, I. W. (1968). A check list of crosses in Gramineae (pp. 1–170). University of Michigan.Google Scholar
  14. Kruse, A. (1973). Hordeum × Triticum hybrids. Hereditas, 73, 157–161.CrossRefGoogle Scholar
  15. Laurie, D. A., & Bennett, M. D. (1986). Wheat × maize hybridazation. Canadian Journal of Genetics and Cytology, 28, 313–316.CrossRefGoogle Scholar
  16. Laurie, D. A., & Bennett, M. D. (1987). The effect of the crossability loci Kr1 and Kr2 on fertilization frequency in hexaploid wheat × maize crosses. Theoretical and Applied Genetics, 73, 403–409.CrossRefGoogle Scholar
  17. Li, H. W., & Tu, D. S. (1947). Studies on thechromosomal aberations of the amphidiploid, Triticum timopheevi and Aegilops bicornis. Botanical Bulletin of Academia Sinica, 1, 183–186.Google Scholar
  18. Martin, A., & Chapman, V. (1977). A hybrid between Hordeum chilense and Triticum aestivum. Cereal Res. Comm., 5, 365–368.Google Scholar
  19. Martin, A., & Laguna, E. S. (1980). A hybrid between Hordeum chilense and Triticum turgidum. Cereal Res. Comm., 8, 349–354.Google Scholar
  20. McFadden, E. S., & Sears, E. R. (1944). The artificial synthesis of Triticum spelta. Records of the Genetics Society of America, 13, 26–27.Google Scholar
  21. McFadden, E. S., & Sears, E. R. (1946). The origin of Triticum spelta and its free-threshing hexaploid relatives. The Journal of Heredity, 37(81–90), 107–116.CrossRefGoogle Scholar
  22. McFadden, E. S., & Sears, E. R. (1947). The genome approach in radical wheat breeding. American Society of Agricultural, 39, 1011–1026.Google Scholar
  23. Mujeeb, K. A., & Rodriguez, R. (1980). Some intergeneric hybrids in the Triticeae. Cereal Res. Comm., 8, 469–475.Google Scholar
  24. Oehler, E. (1934a). Die Ausnutzung von Art-und Gettungsbastarden in weizenzuchtung. Zücher, 6, 205–211.CrossRefGoogle Scholar
  25. Oehler, E. (1934b). Untersuchungen an drei neuen konstanten addtiven Aegilopsweizenbasrden. Züchter, 6, 263–270.CrossRefGoogle Scholar
  26. Oehler, E. (1936). Untersuchungen an einem neuen konstant-intermediaren additi-ven Aegilops- weizenbastard (Aegilo-triticum triuncialis-durum ). Der Zücher, 8, 29–33.CrossRefGoogle Scholar
  27. Sando, W. J. (1935). Hybrids of wheat, rye, Aegilops and Haynaldia. Journal of Heredity, 26, 229–232.CrossRefGoogle Scholar
  28. Sears, E. R. (1941a). Amphiploids in the seven-chromosome Triticinae. Bulletin of the Agricultural Experiment Station Research of Missouri, 336, 46.Google Scholar
  29. Sears, E. R. (1941b). Chromosome pairing and fertility in hybrids and amphidiploids in the Triticinae. Bulletin of the Agricultural Experiment Station Research of Missouri, 337, 1–20.Google Scholar
  30. Sears, E. R. (1944). The amphiploids Aegilops cylindrica × Triticum durum and Ae. ventricosa × T. durum and their hybrids with T. aestivum. Journal of Agricultural Research, 68, 134–144.Google Scholar
  31. Tschermak, E. (1930). Neue Beobachtungen am fertilen Artbastard Triticum turgidovillosum. Berichte der Deutschen Botanischen Gesellschaft, 48, 400–407.Google Scholar
  32. Жебрак, А. Р. (1939). Получение амфидиплоидов T. durum × T. timopheevi ДАН СССР, т. 25, B. I, 57–60.Google Scholar
  33. Жебрак, А. P. (1940a). Оплодовитости амфидиплоида твердой и однозернянки. ДАН СССР, т. 29, B. 7, C. 480–482.Google Scholar
  34. Жебрак, А. Р. (1940b). Полунение а фидиплоида T. timopheevi × T. durum var. hordeiform 010 Действием колхицина. ДАН СССР, т. 29B8/9, C. 603–606.Google Scholar
  35. Жебрак, А. P. (1941a). Осравнитедьной плодовитости амфигаплодов и амфидиплодов T. timopheevi × T. durum var. hordeiform 010. ДАН СССР, T. 30, B. I, C. 54–56.Google Scholar
  36. Жебрак, А. Р. (1941b). Получение амфидиплодов T. persicum × T. timopheevi. ДАН СССР, T. 31, B. 5, C. 485–487.Google Scholar
  37. Жебрак, А. Р. (1941c). Получение амфидиплоидов T. turgidum × T. timopheevi действием колхицина. ДАН СССР, T. 31, B. B. 6, C. (pp. 619–621).Google Scholar
  38. Жебрак, А. Р. (1944a). Получение амфидиплоидов T. orientale × T. timopheevi. Деиствием колхицина. ДНА СССР, T. 42, B. 8, C. (pp. 366–368).Google Scholar
  39. Жебрак, А. Р. (1944b). Получение афидиплов T. polonicum × T. timopheevi. ДАН СССР, T. 43, B. 3, C. 124–125.Google Scholar
  40. Левитский, Р. А., и Бенецкая, Р. К. (1931). Цитология пщенечноржаных амфидиплоидов. Тр. Прикл. Бот. Ген. иСел., 27.Google Scholar
  41. Хижняк, В. А. (1937). Пщенично-пырейные амфидоплиды. ДАН СССР, т. 17, B. 9, C. 481–482.Google Scholar

Copyright information

© China Agriculture Press & Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Chi Yen
    • 1
  • Junliang Yang
    • 2
  • Zhongwei Yuan
    • 3
  • Shunzong Ning
    • 1
  • Dengcai Liu
    • 3
  1. 1.Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
  2. 2.Triticeae Research InstituteSichuan Agricultural UniversityYa’anChina
  3. 3.Triticeae Research InstituteSichuan Agricultural UniversityChengduChina

Personalised recommendations