Advertisement

Physiology of Microglia

  • Tuan Leng TayEmail author
  • Micaël Carrier
  • Marie-Ève TremblayEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1175)

Abstract

Microglia constitute the major immune cells that permanently reside in the central nervous system (CNS) alongside neurons and other glial cells. These resident immune cells are critical for proper brain development, actively maintain brain health throughout the lifespan and rapidly adapt their function to the physiological or pathophysiological needs of the organism. Cutting-edge fate mapping and imaging techniques applied to animal models enabled a revolution in our understanding of their roles during normal physiological conditions. Here, we highlight studies that demonstrate the embryonic yolk sac origin of microglia and describe factors, including crosstalk with the periphery and external environment, that regulate their differentiation, homeostasis and function in the context of healthy CNS. The diversity of microglial phenotypes observed across the lifespan, between brain compartments and between sexes is also discussed. Understanding what defines specific microglial phenotypes is critical for the development of innovative therapies to modulate their effector functions and improve clinical outcomes.

Keywords

Microglia Origin Development Homeostasis Physiological roles Periphery Environment 

Notes

Acknowledgements

This work was supported by a grant from the Natural Sciences and Engineering Research Council of Canada (NSERC) RGPIN-2014-05308 to M.E.T., who is a Canada Research Chair of Neuroimmune plasticity in health and therapy. T.L.T. was supported by the German Research Foundation (DFG, TA 1029/1-1 and EXC 1086), Ministry of Science, Research and the Arts of Baden-Württemberg (7532.21/2.1.6), Klaus Tschira Boost Fund (KT10), and Wissenschaftliche Gesellschaft Freiburg (Helmut-Holzer Prize). M.C. is a recipient of the Master training awards from Université Laval and Fonds de recherche du Québec—Santé (FRQS). We are grateful to Julie C. Savage for critical comments on the manuscript and Maude Bordeleau for preparing the figure.

Conflict of interest

The authors declare no competing financial interests.

References

  1. 1.
    Abutbul S, Shapiro J, Szaingurten-Solodkin I et al (2012) TGF-β signaling through SMAD2/3 induces the quiescent microglial phenotype within the CNS environment. Glia 60:1160–1171.  https://doi.org/10.1002/glia.22343CrossRefPubMedGoogle Scholar
  2. 2.
    Acharjee S, Verbeek M, Gomez CD et al (2018) Reduced Microglial Activity and Enhanced Glutamate Transmission in the Basolateral Amygdala in Early CNS Autoimmunity. J Neurosci 38:9019–9033.  https://doi.org/10.1523/JNEUROSCI.0398-18.2018CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Arnò B, Grassivaro F, Rossi C et al (2014) Neural progenitor cells orchestrate microglia migration and positioning into the developing cortex. Nat Commun 5:5611.  https://doi.org/10.1038/ncomms6611CrossRefPubMedGoogle Scholar
  4. 4.
    Arnoux I, Hoshiko M, Mandavy L et al (2013) Adaptive phenotype of microglial cells during the normal postnatal development of the somatosensory “Barrel” cortex. Glia 61:1582–1594.  https://doi.org/10.1002/glia.22503CrossRefPubMedGoogle Scholar
  5. 5.
    Askew K, Li K, Olmos-Alonso A et al (2017) Coupled Proliferation and Apoptosis Maintain the Rapid Turnover of Microglia in the Adult Brain. Cell Rep 18:391–405.  https://doi.org/10.1016/j.celrep.2016.12.041CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Ayata P, Badimon A, Strasburger HJ et al (2018) Epigenetic regulation of brain region-specific microglia clearance activity. Nat Neurosci 21:1049–1060.  https://doi.org/10.1038/s41593-018-0192-3CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Béchade C, Cantaut-Belarif Y, Bessis A (2013) Microglial control of neuronal activity. Front Cell Neurosci 7:32.  https://doi.org/10.3389/fncel.2013.00032CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Beers DR, Henkel JS, Xiao Q et al (2006) Wild-type microglia extend survival in PU.1 knockout mice with familial amyotrophic lateral sclerosis. Proc Natl Acad Sci USA 103:16021–16026.  https://doi.org/10.1073/pnas.0607423103CrossRefPubMedGoogle Scholar
  9. 9.
    Bennett ML, Bennett FC, Liddelow SA et al (2016) New tools for studying microglia in the mouse and human CNS. Proc Natl Acad Sci USA 113:E1738–E1746.  https://doi.org/10.1073/pnas.1525528113CrossRefPubMedGoogle Scholar
  10. 10.
    Bessis A, Béchade C, Bernard D, Roumier A (2007) Microglial control of neuronal death and synaptic properties. Glia 55:233–238.  https://doi.org/10.1002/glia.20459CrossRefPubMedGoogle Scholar
  11. 11.
    Bialas AR, Stevens B (2013) TGF-β signaling regulates neuronal C1q expression and developmental synaptic refinement. Nat Neurosci 16:1773–1782.  https://doi.org/10.1038/nn.3560CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Biber K, Neumann H, Inoue K, Boddeke HWGM (2007) Neuronal “On” and “Off” signals control microglia. Trends Neurosci 30:596–602.  https://doi.org/10.1016/j.tins.2007.08.007CrossRefPubMedGoogle Scholar
  13. 13.
    Bilbo SD (2013) Frank A. Beach award: programming of neuroendocrine function by early-life experience: a critical role for the immune system. Horm Behav 63:684–691.  https://doi.org/10.1016/j.yhbeh.2013.02.017CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Bisht K, Sharma KP, Lecours C et al (2016) Dark microglia: A new phenotype predominantly associated with pathological states. Glia 64:826–839.  https://doi.org/10.1002/glia.22966CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Bocarsly ME, Fasolino M, Kane GA et al (2015) Obesity diminishes synaptic markers, alters microglial morphology, and impairs cognitive function. Proc Natl Acad Sci USA 112:15731–15736.  https://doi.org/10.1073/pnas.1511593112CrossRefPubMedGoogle Scholar
  16. 16.
    Bollinger JL, Bergeon Burns CM, Wellman CL (2016) Differential effects of stress on microglial cell activation in male and female medial prefrontal cortex. Brain Behav Immun 52:88–97.  https://doi.org/10.1016/j.bbi.2015.10.003CrossRefPubMedGoogle Scholar
  17. 17.
    Braniste V, Al-Asmakh M, Kowal C et al (2014) The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med 6:263ra158.  https://doi.org/10.1126/scitranslmed.3009759CrossRefGoogle Scholar
  18. 18.
    Brown GC, Neher JJ (2014) Microglial phagocytosis of live neurons. Nat Rev Neurosci 15:209–216.  https://doi.org/10.1038/nrn3710CrossRefPubMedGoogle Scholar
  19. 19.
    Bussian TJ, Aziz A, Meyer CF et al (2018) Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline. Nature 562:578–582.  https://doi.org/10.1038/s41586-018-0543-yCrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Butovsky O, Jedrychowski MP, Moore CS et al (2014) Identification of a unique TGF-β-dependent molecular and functional signature in microglia. Nat Neurosci 17:131–143.  https://doi.org/10.1038/nn.3599CrossRefPubMedGoogle Scholar
  21. 21.
    Butovsky O, Siddiqui S, Gabriely G et al (2012) Modulating inflammatory monocytes with a unique microRNA gene signature ameliorates murine ALS. J Clin Invest 122:3063–3087.  https://doi.org/10.1172/JCI62636CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Cartier N, Lewis C-A, Zhang R, Rossi FMV (2014) The role of microglia in human disease: therapeutic tool or target? Acta Neuropathol 128:363–380.  https://doi.org/10.1007/s00401-014-1330-yCrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Castanon N, Luheshi G, Layé S (2015) Role of neuroinflammation in the emotional and cognitive alterations displayed by animal models of obesity. Front Neurosci 9:229.  https://doi.org/10.3389/fnins.2015.00229CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Chen S-K, Tvrdik P, Peden E et al (2010) Hematopoietic origin of pathological grooming in Hoxb8 mutant mice. Cell 141:775–785.  https://doi.org/10.1016/j.cell.2010.03.055CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Chiu IM, Morimoto ETA, Goodarzi H et al (2013) A neurodegeneration-specific gene-expression signature of acutely isolated microglia from an amyotrophic lateral sclerosis mouse model. Cell Rep 4:385–401.  https://doi.org/10.1016/j.celrep.2013.06.018CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Clark AK, Gruber-Schoffnegger D, Drdla-Schutting R et al (2015) Selective activation of microglia facilitates synaptic strength. J Neurosci 35:4552–4570.  https://doi.org/10.1523/JNEUROSCI.2061-14.2015CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Costello DA, Lyons A, Denieffe S et al (2011) Long term potentiation is impaired in membrane glycoprotein CD200-deficient mice: a role for Toll-like receptor activation. J Biol Chem 286:34722–34732.  https://doi.org/10.1074/jbc.M111.280826CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Crain JM, Nikodemova M, Watters JJ (2013) Microglia express distinct M1 and M2 phenotypic markers in the postnatal and adult central nervous system in male and female mice. J Neurosci Res 91:1143–1151.  https://doi.org/10.1002/jnr.23242CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Cunningham CL, Martínez-Cerdeño V, Noctor SC (2013) Microglia regulate the number of neural precursor cells in the developing cerebral cortex. J Neurosci 33:4216–4233.  https://doi.org/10.1523/JNEUROSCI.3441-12.2013CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Damani MR, Zhao L, Fontainhas AM et al (2011) Age-related alterations in the dynamic behavior of microglia. Aging Cell 10:263–276.  https://doi.org/10.1111/j.1474-9726.2010.00660.xCrossRefPubMedGoogle Scholar
  31. 31.
    Datta M, Staszewski O, Raschi E et al (2018) Histone Deacetylases 1 and 2 Regulate Microglia Function during Development, Homeostasis, and Neurodegeneration in a Context-Dependent Manner. Immunity 48:514–529.e6.  https://doi.org/10.1016/j.immuni.2018.02.016CrossRefPubMedGoogle Scholar
  32. 32.
    Davalos D, Grutzendler J, Yang G et al (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8:752–758.  https://doi.org/10.1038/nn1472CrossRefPubMedGoogle Scholar
  33. 33.
    De Biase LM, Schuebel KE, Fusfeld ZH et al (2017) Local Cues Establish and Maintain Region-Specific Phenotypes of Basal Ganglia Microglia. Neuron 95:341–356.e6.  https://doi.org/10.1016/j.neuron.2017.06.020CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    de Haas AH, Boddeke HWGM, Biber K (2008) Region-specific expression of immunoregulatory proteins on microglia in the healthy CNS. Glia 56:888–894.  https://doi.org/10.1002/glia.20663CrossRefPubMedGoogle Scholar
  35. 35.
    Delpech J-C, Wei L, Hao J et al (2016) Early life stress perturbs the maturation of microglia in the developing hippocampus. Brain Behav Immun 57:79–93.  https://doi.org/10.1016/j.bbi.2016.06.006CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Dibaj P, Steffens H, Nadrigny F et al (2010) Long-lasting post-mortem activity of spinal microglia in situ in mice. J Neurosci Res 88:2431–2440.  https://doi.org/10.1002/jnr.22402CrossRefPubMedGoogle Scholar
  37. 37.
    Dilger RN, Johnson RW (2008) Aging, microglial cell priming, and the discordant central inflammatory response to signals from the peripheral immune system. J Leukoc Biol 84:932–939.  https://doi.org/10.1189/jlb.0208108CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Dissing-Olesen L, LeDue JM, Rungta RL et al (2014) Activation of neuronal NMDA receptors triggers transient ATP-mediated microglial process outgrowth. J Neurosci 34:10511–10527.  https://doi.org/10.1523/JNEUROSCI.0405-14.2014CrossRefPubMedGoogle Scholar
  39. 39.
    Doorn KJ, Brevé JJP, Drukarch B et al (2015) Brain region-specific gene expression profiles in freshly isolated rat microglia. Front Cell Neurosci 9:84.  https://doi.org/10.3389/fncel.2015.00084CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Elmore MRP, Hohsfield LA, Kramár EA et al (2018) Replacement of microglia in the aged brain reverses cognitive, synaptic, and neuronal deficits in mice. Aging Cell 17:e12832.  https://doi.org/10.1111/acel.12832CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Elmore MRP, Najafi AR, Koike MA et al (2014) Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron 82:380–397.  https://doi.org/10.1016/j.neuron.2014.02.040CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Erblich B, Zhu L, Etgen AM et al (2011) Absence of colony stimulation factor-1 receptor results in loss of microglia, disrupted brain development and olfactory deficits. PLoS ONE 6:e26317.  https://doi.org/10.1371/journal.pone.0026317CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Erny D, Hrabě de Angelis AL, Jaitin D et al (2015) Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci 18:965–977.  https://doi.org/10.1038/nn.4030CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Eyo UB, Gu N, De S et al (2015) Modulation of microglial process convergence toward neuronal dendrites by extracellular calcium. J Neurosci 35:2417–2422.  https://doi.org/10.1523/JNEUROSCI.3279-14.2015CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Eyo UB, Peng J, Swiatkowski P et al (2014) Neuronal hyperactivity recruits microglial processes via neuronal NMDA receptors and microglial P2Y12 receptors after status epilepticus. J Neurosci 34:10528–10540.  https://doi.org/10.1523/JNEUROSCI.0416-14.2014CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Filipello F, Morini R, Corradini I et al (2018) The Microglial Innate Immune Receptor TREM2 Is Required for Synapse Elimination and Normal Brain Connectivity. Immunity 48:979–991.e8.  https://doi.org/10.1016/j.immuni.2018.04.016CrossRefPubMedGoogle Scholar
  47. 47.
    Fontainhas AM, Wang M, Liang KJ et al (2011) Microglial morphology and dynamic behavior is regulated by ionotropic glutamatergic and GABAergic neurotransmission. PLoS ONE 6:e15973.  https://doi.org/10.1371/journal.pone.0015973CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Fourgeaud L, Través PG, Tufail Y et al (2016) TAM receptors regulate multiple features of microglial physiology. Nature 532:240–244.  https://doi.org/10.1038/nature17630CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Füger P, Hefendehl JK, Veeraraghavalu K et al (2017) Microglia turnover with aging and in an Alzheimer’s model via long-term in vivo single-cell imaging. Nat Neurosci 20:1371–1376.  https://doi.org/10.1038/nn.4631CrossRefPubMedGoogle Scholar
  50. 50.
    Gautier EL, Shay T, Miller J et al (2012) Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat Immunol 13:1118–1128.  https://doi.org/10.1038/ni.2419CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Ginhoux F, Greter M, Leboeuf M et al (2010) Fate Mapping Analysis Reveals That Adult Microglia Derive from Primitive Macrophages. Science 330:841–845.  https://doi.org/10.1126/science.1194637CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Goldmann T, Wieghofer P, Müller PF et al (2013) A new type of microglia gene targeting shows TAK1 to be pivotal in CNS autoimmune inflammation. Nat Neurosci 16:1618–1626.  https://doi.org/10.1038/nn.3531CrossRefPubMedGoogle Scholar
  53. 53.
    Goldmann T, Zeller N, Raasch J et al (2015) USP18 lack in microglia causes destructive interferonopathy of the mouse brain. EMBO J 34:1612–1629.  https://doi.org/10.15252/embj.201490791CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Gomez Perdiguero E, Klapproth K, Schulz C et al (2015) Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 518:547–551.  https://doi.org/10.1038/nature13989CrossRefGoogle Scholar
  55. 55.
    Gosselin D, Link VM, Romanoski CE et al (2014) Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell 159:1327–1340.  https://doi.org/10.1016/j.cell.2014.11.023CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Gosselin D, Skola D, Coufal NG, et al (2017) An environment-dependent transcriptional network specifies human microglia identity. Science 356:.  https://doi.org/10.1126/science.aal3222CrossRefGoogle Scholar
  57. 57.
    Gottfried-Blackmore A, Sierra A, Jellinck PH et al (2008) Brain microglia express steroid-converting enzymes in the mouse. J Steroid Biochem Mol Biol 109:96–107.  https://doi.org/10.1016/j.jsbmb.2007.12.013CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Grabert K, Michoel T, Karavolos MH et al (2016) Microglial brain region-dependent diversity and selective regional sensitivities to aging. Nat Neurosci 19:504–516.  https://doi.org/10.1038/nn.4222CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Greter M, Lelios I, Pelczar P et al (2012) Stroma-derived interleukin-34 controls the development and maintenance of langerhans cells and the maintenance of microglia. Immunity 37:1050–1060.  https://doi.org/10.1016/j.immuni.2012.11.001CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Greter M, Merad M (2013) Regulation of microglia development and homeostasis. Glia 61:121–127.  https://doi.org/10.1002/glia.22408CrossRefPubMedGoogle Scholar
  61. 61.
    Gu N, Eyo UB, Murugan M et al (2016) Microglial P2Y12 receptors regulate microglial activation and surveillance during neuropathic pain. Brain Behav Immun 55:82–92.  https://doi.org/10.1016/j.bbi.2015.11.007CrossRefPubMedGoogle Scholar
  62. 62.
    Hagemeyer N, Hanft K-M, Akriditou M-A et al (2017) Microglia contribute to normal myelinogenesis and to oligodendrocyte progenitor maintenance during adulthood. Acta Neuropathol 134:441–458.  https://doi.org/10.1007/s00401-017-1747-1CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Hammond TR, Dufort C, Dissing-Olesen L et al (2019) Single-Cell RNA Sequencing of Microglia throughout the Mouse Lifespan and in the Injured Brain Reveals Complex Cell-State Changes. Immunity 50:253–271.e6.  https://doi.org/10.1016/j.immuni.2018.11.004CrossRefPubMedGoogle Scholar
  64. 64.
    Hanamsagar R, Bilbo SD (2017) Environment matters: microglia function and dysfunction in a changing world. Curr Opin Neurobiol 47:146–155.  https://doi.org/10.1016/j.conb.2017.10.007CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Hao S, Dey A, Yu X, Stranahan AM (2016) Dietary obesity reversibly induces synaptic stripping by microglia and impairs hippocampal plasticity. Brain Behav Immun 51:230–239.  https://doi.org/10.1016/j.bbi.2015.08.023CrossRefPubMedGoogle Scholar
  66. 66.
    Hashimoto D, Chow A, Noizat C et al (2013) Tissue resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity 38:.  https://doi.org/10.1016/j.immuni.2013.04.004CrossRefGoogle Scholar
  67. 67.
    Haynes SE, Hollopeter G, Yang G et al (2006) The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat Neurosci 9:1512–1519.  https://doi.org/10.1038/nn1805CrossRefPubMedGoogle Scholar
  68. 68.
    Hefendehl JK, Neher JJ, Sühs RB et al (2014) Homeostatic and injury-induced microglia behavior in the aging brain. Aging Cell 13:60–69.  https://doi.org/10.1111/acel.12149CrossRefPubMedGoogle Scholar
  69. 69.
    Hickman SE, Kingery ND, Ohsumi TK et al (2013) The microglial sensome revealed by direct RNA sequencing. Nat Neurosci 16:1896–1905.  https://doi.org/10.1038/nn.3554CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Hoeffel G, Chen J, Lavin Y et al (2015) C-Myb(+) erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages. Immunity 42:665–678.  https://doi.org/10.1016/j.immuni.2015.03.011CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Hoeffel G, Wang Y, Greter M et al (2012) Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages. J Exp Med 209:1167–1181.  https://doi.org/10.1084/jem.20120340CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Hoshiko M, Arnoux I, Avignone E et al (2012) Deficiency of the microglial receptor CX3CR72 impairs postnatal functional development of thalamocortical synapses in the barrel cortex. J Neurosci 32:15106–15111.  https://doi.org/10.1523/JNEUROSCI.1167-12.2012CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Hui CW, St-Pierre A, El Hajj H et al (2018) Prenatal Immune Challenge in Mice Leads to Partly Sex-Dependent Behavioral, Microglial, and Molecular Abnormalities Associated with Schizophrenia. Front Mol Neurosci 11:13.  https://doi.org/10.3389/fnmol.2018.00013CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Ji K, Akgul G, Wollmuth LP, Tsirka SE (2013) Microglia actively regulate the number of functional synapses. PLoS ONE 8:e56293.  https://doi.org/10.1371/journal.pone.0056293CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Jordão MJC, Sankowski R, Brendecke SM et al (2019) Single-cell profiling identifies myeloid cell subsets with distinct fates during neuroinflammation. Science 363:eaat7554.  https://doi.org/10.1126/science.aat7554CrossRefGoogle Scholar
  76. 76.
    Keren-Shaul H, Spinrad A, Weiner A et al (2017) A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169:1276–1290.e17.  https://doi.org/10.1016/j.cell.2017.05.018CrossRefGoogle Scholar
  77. 77.
    Kierdorf K, Erny D, Goldmann T et al (2013) Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat Neurosci 16:273–280.  https://doi.org/10.1038/nn.3318CrossRefPubMedGoogle Scholar
  78. 78.
    Klein SL, Flanagan KL (2016) Sex differences in immune responses. Nat Rev Immunol 16:626–638.  https://doi.org/10.1038/nri.2016.90CrossRefPubMedGoogle Scholar
  79. 79.
    Kleinberger G, Brendel M, Mracsko E et al (2017) The FTD-like syndrome causing TREM2 T66M mutation impairs microglia function, brain perfusion, and glucose metabolism. EMBO J 36:1837–1853.  https://doi.org/10.15252/embj.201796516CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Kreisel T, Frank MG, Licht T et al (2014) Dynamic microglial alterations underlie stress-induced depressive-like behavior and suppressed neurogenesis. Mol Psychiatry 19:699–709.  https://doi.org/10.1038/mp.2013.155CrossRefPubMedGoogle Scholar
  81. 81.
    Lavin Y, Winter D, Blecher-Gonen R et al (2014) Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 159:1312–1326.  https://doi.org/10.1016/j.cell.2014.11.018CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Lawson LJ, Perry VH, Dri P, Gordon S (1990) Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39:151–170CrossRefGoogle Scholar
  83. 83.
    Lawson LJ, Perry VH, Gordon S (1992) Turnover of resident microglia in the normal adult mouse brain. Neuroscience 48:405–415CrossRefGoogle Scholar
  84. 84.
    Lenz KM, Nugent BM, Haliyur R, McCarthy MM (2013) Microglia are essential to masculinization of brain and behavior. J Neurosci 33:2761–2772.  https://doi.org/10.1523/JNEUROSCI.1268-12.2013CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Li Q, Cheng Z, Zhou L et al (2019) Developmental Heterogeneity of Microglia and Brain Myeloid Cells Revealed by Deep Single-Cell RNA Sequencing. Neuron 101:207–223.e10.  https://doi.org/10.1016/j.neuron.2018.12.006CrossRefPubMedGoogle Scholar
  86. 86.
    Li Y, Du X-F, Liu C-S et al (2012) Reciprocal regulation between resting microglial dynamics and neuronal activity in vivo. Dev Cell 23:1189–1202.  https://doi.org/10.1016/j.devcel.2012.10.027CrossRefPubMedGoogle Scholar
  87. 87.
    Madore C, Nadjar A, Delpech J-C et al (2014) Nutritional n-3 PUFAs deficiency during perinatal periods alters brain innate immune system and neuronal plasticity-associated genes. Brain Behav Immun 41:22–31.  https://doi.org/10.1016/j.bbi.2014.03.021CrossRefPubMedGoogle Scholar
  88. 88.
    Madry C, Kyrargyri V, Arancibia-Cárcamo IL et al (2018) Microglial Ramification, Surveillance, and Interleukin-1β Release Are Regulated by the Two-Pore Domain K + Channel THIK-1. Neuron 97:299–312.e6.  https://doi.org/10.1016/j.neuron.2017.12.002CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Maggi L, Trettel F, Scianni M et al (2009) LTP impairment by fractalkine/CX3CL1 in mouse hippocampus is mediated through the activity of adenosine receptor type 3 (A3R). J Neuroimmunol 215:36–42.  https://doi.org/10.1016/j.jneuroim.2009.07.016CrossRefPubMedGoogle Scholar
  90. 90.
    Marín-Teva JL, Dusart I, Colin C et al (2004) Microglia promote the death of developing Purkinje cells. Neuron 41:535–547CrossRefGoogle Scholar
  91. 91.
    Matcovitch-Natan O, Winter DR, Giladi A et al (2016) Microglia development follows a stepwise program to regulate brain homeostasis. Science 353:aad8670.  https://doi.org/10.1126/science.aad8670CrossRefGoogle Scholar
  92. 92.
    Mathys H, Adaikkan C, Gao F et al (2017) Temporal tracking of microglia activation in neurodegeneration at single-cell resolution. Cell Rep 21:366–380.  https://doi.org/10.1016/j.celrep.2017.09.039CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Mattei D, Ivanov A, Ferrai C et al (2017) Maternal immune activation results in complex microglial transcriptome signature in the adult offspring that is reversed by minocycline treatment. Transl Psychiatry 7:e1120.  https://doi.org/10.1038/tp.2017.80CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    McCarthy MM, Auger AP, Bale TL et al (2009) The epigenetics of sex differences in the brain. J Neurosci 29:12815–12823.  https://doi.org/10.1523/JNEUROSCI.3331-09.2009CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Milior G, Lecours C, Samson L et al (2016) Fractalkine receptor deficiency impairs microglial and neuronal responsiveness to chronic stress. Brain Behav Immun 55:114–125.  https://doi.org/10.1016/j.bbi.2015.07.024CrossRefPubMedGoogle Scholar
  96. 96.
    Minten C, Terry R, Deffrasnes C et al (2012) IFN regulatory factor 8 is a key constitutive determinant of the morphological and molecular properties of microglia in the CNS. PLoS ONE 7:e49851.  https://doi.org/10.1371/journal.pone.0049851CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Mizutani M, Pino PA, Saederup N et al (2012) The fractalkine receptor but not CCR97 is present on microglia from embryonic development throughout adulthood. J Immunol 188:29–36.  https://doi.org/10.4049/jimmunol.1100421CrossRefPubMedGoogle Scholar
  98. 98.
    Monier A, Adle-Biassette H, Delezoide A-L et al (2007) Entry and distribution of microglial cells in human embryonic and fetal cerebral cortex. J Neuropathol Exp Neurol 66:372–382.  https://doi.org/10.1097/nen.0b013e3180517b46CrossRefPubMedGoogle Scholar
  99. 99.
    Mosher KI, Wyss-Coray T (2015) Go with your gut: microbiota meet microglia. Nat Neurosci 18:930–931.  https://doi.org/10.1038/nn.4051CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Mosher KI, Wyss-Coray T (2014) Microglial dysfunction in brain aging and Alzheimer’s disease. Biochem Pharmacol 88:594–604.  https://doi.org/10.1016/j.bcp.2014.01.008CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Mouton PR, Long JM, Lei D-L et al (2002) Age and gender effects on microglia and astrocyte numbers in brains of mice. Brain Res 956:30–35CrossRefGoogle Scholar
  102. 102.
    Nelson LH, Warden S, Lenz KM (2017) Sex differences in microglial phagocytosis in the neonatal hippocampus. Brain Behav Immun 64:11–22.  https://doi.org/10.1016/j.bbi.2017.03.010CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Nikodemova M, Kimyon RS, De I et al (2015) Microglial numbers attain adult levels after undergoing a rapid decrease in cell number in the third postnatal week. J Neuroimmunol 278:280–288.  https://doi.org/10.1016/j.jneuroim.2014.11.018CrossRefPubMedGoogle Scholar
  104. 104.
    Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318.  https://doi.org/10.1126/science.1110647CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Nugent BM, Wright CL, Shetty AC et al (2015) Brain feminization requires active repression of masculinization via DNA methylation. Nat Neurosci 18:690–697.  https://doi.org/10.1038/nn.3988CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Olah M, Patrick E, Villani A-C et al (2018) A transcriptomic atlas of aged human microglia. Nat Commun 9:539.  https://doi.org/10.1038/s41467-018-02926-5CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Otero K, Turnbull IR, Poliani PL et al (2009) Macrophage colony-stimulating factor induces the proliferation and survival of macrophages via a pathway involving DAP12 and beta-catenin. Nat Immunol 10:734–743.  https://doi.org/10.1038/ni.1744CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Paolicelli RC, Bisht K, Tremblay M-È (2014) Fractalkine regulation of microglial physiology and consequences on the brain and behavior. Front Cell Neurosci 8:129.  https://doi.org/10.3389/fncel.2014.00129CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Paolicelli RC, Bolasco G, Pagani F et al (2011) Synaptic pruning by microglia is necessary for normal brain development. Science 333:1456–1458.  https://doi.org/10.1126/science.1202529CrossRefGoogle Scholar
  110. 110.
    Parkhurst CN, Yang G, Ninan I et al (2013) Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155:1596–1609.  https://doi.org/10.1016/j.cell.2013.11.030CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Peri F, Nüsslein-Volhard C (2008) Live imaging of neuronal degradation by microglia reveals a role for v0-ATPase a1 in phagosomal fusion in vivo. Cell 133:916–927.  https://doi.org/10.1016/j.cell.2008.04.037CrossRefPubMedGoogle Scholar
  112. 112.
    Ponomarev ED, Veremeyko T, Barteneva N et al (2011) MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-α-PU.1 pathway. Nat Med 17:64–70.  https://doi.org/10.1038/nm.2266CrossRefPubMedGoogle Scholar
  113. 113.
    Prinz M, Priller J (2014) Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat Rev Neurosci 15:300–312.  https://doi.org/10.1038/nrn3722CrossRefPubMedGoogle Scholar
  114. 114.
    Prinz M, Priller J, Sisodia SS, Ransohoff RM (2011) Heterogeneity of CNS myeloid cells and their roles in neurodegeneration. Nat Neurosci 14:1227–1235.  https://doi.org/10.1038/nn.2923CrossRefPubMedGoogle Scholar
  115. 115.
    Réu P, Khosravi A, Bernard S et al (2017) The lifespan and turnover of microglia in the human brain. Cell Rep 20:779–784.  https://doi.org/10.1016/j.celrep.2017.07.004CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Ribeiro Xavier AL, Kress BT, Goldman SA et al (2015) A distinct population of microglia supports adult neurogenesis in the subventricular zone. J Neurosci 35:11848–11861.  https://doi.org/10.1523/JNEUROSCI.1217-15.2015CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Rigato C, Swinnen N, Buckinx R et al (2012) Microglia proliferation is controlled by P2X7 receptors in a Pannexin-1-independent manner during early embryonic spinal cord invasion. J Neurosci 32:11559–11573.  https://doi.org/10.1523/JNEUROSCI.1042-12.2012CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Rogers JT, Morganti JM, Bachstetter AD et al (2011) CX3CR118 deficiency leads to impairment of hippocampal cognitive function and synaptic plasticity. J Neurosci 31:16241–16250.  https://doi.org/10.1523/JNEUROSCI.3667-11.2011CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Rosenbauer F, Tenen DG (2007) Transcription factors in myeloid development: balancing differentiation with transformation. Nat Rev Immunol 7:105–117.  https://doi.org/10.1038/nri2024CrossRefPubMedGoogle Scholar
  120. 120.
    Roumier A, Béchade C, Poncer J-C et al (2004) Impaired synaptic function in the microglial KARAP/DAP12-deficient mouse. J Neurosci 24:11421–11428.  https://doi.org/10.1523/JNEUROSCI.2251-04.2004CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Roumier A, Pascual O, Béchade C et al (2008) Prenatal activation of microglia induces delayed impairment of glutamatergic synaptic function. PLoS ONE 3:e2595.  https://doi.org/10.1371/journal.pone.0002595CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Satoh J, Kino Y, Asahina N et al (2016) TMEM119 marks a subset of microglia in the human brain. Neuropathology 36:39–49.  https://doi.org/10.1111/neup.12235CrossRefPubMedGoogle Scholar
  123. 123.
    Savage JC, Picard K, González-Ibáñez F, Tremblay M-È (2018) A brief history of microglial ultrastructure: distinctive features, phenotypes, and functions discovered over the past 60 years by electron microscopy. Front Immunol 9:803.  https://doi.org/10.3389/fimmu.2018.00803CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Schafer DP, Lehrman EK, Kautzman AG et al (2012) Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74:691.  https://doi.org/10.1016/j.neuron.2012.03.026CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Schlegelmilch T, Henke K, Peri F (2011) Microglia in the developing brain: from immunity to behaviour. Curr Opin Neurobiol 21:5–10.  https://doi.org/10.1016/j.conb.2010.08.004CrossRefPubMedGoogle Scholar
  126. 126.
    Schulz C, Gomez Perdiguero E, Chorro L et al (2012) A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336:86–90.  https://doi.org/10.1126/science.1219179CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Schwarz JM, Sholar PW, Bilbo SD (2012) Sex differences in microglial colonization of the developing rat brain. J Neurochem 120:948–963.  https://doi.org/10.1111/j.1471-4159.2011.07630.xCrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Sellner S, Paricio-Montesinos R, Spieß A et al (2016) Microglial CX3CR128 promotes adult neurogenesis by inhibiting Sirt 1/p65 signaling independent of CX3CL1. Acta Neuropathol Commun 4:102.  https://doi.org/10.1186/s40478-016-0374-8CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Serrats J, Schiltz JC, García-Bueno B et al (2010) Dual roles for perivascular macrophages in immune-to-brain signaling. Neuron 65:94–106.  https://doi.org/10.1016/j.neuron.2009.11.032CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Shechter R, London A, Schwartz M (2013) Orchestrated leukocyte recruitment to immune-privileged sites: absolute barriers versus educational gates. Nat Rev Immunol 13:206–218.  https://doi.org/10.1038/nri3391CrossRefPubMedGoogle Scholar
  131. 131.
    Sheng J, Ruedl C, Karjalainen K (2015) Most tissue-resident macrophages except microglia are derived from fetal hematopoietic stem cells. Immunity 43:382–393.  https://doi.org/10.1016/j.immuni.2015.07.016CrossRefGoogle Scholar
  132. 132.
    Shigemoto-Mogami Y, Hoshikawa K, Goldman JE et al (2014) Microglia enhance neurogenesis and oligodendrogenesis in the early postnatal subventricular zone. J Neurosci 34:2231–2243.  https://doi.org/10.1523/JNEUROSCI.1619-13.2014CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Sierra A, Encinas JM, Deudero JJP et al (2010) Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell 7:483–495.  https://doi.org/10.1016/j.stem.2010.08.014CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Sierra A, Gottfried-Blackmore A, Milner TA et al (2008) Steroid hormone receptor expression and function in microglia. Glia 56:659–674.  https://doi.org/10.1002/glia.20644CrossRefPubMedGoogle Scholar
  135. 135.
    Sorge RE, Mapplebeck JCS, Rosen S et al (2015) Different immune cells mediate mechanical pain hypersensitivity in male and female mice. Nat Neurosci 18:1081–1083.  https://doi.org/10.1038/nn.4053CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Squarzoni P, Oller G, Hoeffel G et al (2014) Microglia modulate wiring of the embryonic forebrain. Cell Rep 8:1271–1279.  https://doi.org/10.1016/j.celrep.2014.07.042CrossRefPubMedGoogle Scholar
  137. 137.
    Streit WJ (2006) Microglial senescence: does the brain’s immune system have an expiration date? Trends Neurosci 29:506–510.  https://doi.org/10.1016/j.tins.2006.07.001CrossRefPubMedGoogle Scholar
  138. 138.
    Streit WJ, Braak H, Xue Q-S, Bechmann I (2009) Dystrophic (senescent) rather than activated microglial cells are associated with tau pathology and likely precede neurodegeneration in Alzheimer’s disease. Acta Neuropathol 118:475–485.  https://doi.org/10.1007/s00401-009-0556-6CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Streit WJ, Sammons NW, Kuhns AJ, Sparks DL (2004) Dystrophic microglia in the aging human brain. Glia 45:208–212.  https://doi.org/10.1002/glia.10319CrossRefPubMedGoogle Scholar
  140. 140.
    Svahn AJ, Giacomotto J, Graeber MB et al (2016) miR-124 contributes to the functional maturity of microglia. Dev Neurobiol 76:507–518.  https://doi.org/10.1002/dneu.22328CrossRefPubMedGoogle Scholar
  141. 141.
    Swinnen N, Smolders S, Avila A et al (2013) Complex invasion pattern of the cerebral cortex by microglial cells during development of the mouse embryo. Glia 61:150–163.  https://doi.org/10.1002/glia.22421CrossRefPubMedGoogle Scholar
  142. 142.
    Tay TL, Béchade C, D’Andrea I et al (2018a) Microglia gone rogue: impacts on psychiatric disorders across the lifespan. Front Mol Neurosci 10.  https://doi.org/10.3389/fnmol.2017.00421
  143. 143.
    Tay TL, Mai D, Dautzenberg J et al (2017) A new fate mapping system reveals context-dependent random or clonal expansion of microglia. Nat Neurosci 20:793–803.  https://doi.org/10.1038/nn.4547CrossRefPubMedGoogle Scholar
  144. 144.
    Tay TL, Sagar, Dautzenberg J et al (2018) Unique microglia recovery population revealed by single-cell RNAseq following neurodegeneration. Acta Neuropathol Commun 6:87.  https://doi.org/10.1186/s40478-018-0584-3CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Tay TL, Savage JC, Hui CW et al (2017) Microglia across the lifespan: from origin to function in brain development, plasticity and cognition. J Physiol (Lond) 595:1929–1945.  https://doi.org/10.1113/JP272134CrossRefGoogle Scholar
  146. 146.
    Thion MS, Low D, Silvin A et al (2018) Microbiome influences prenatal and adult microglia in a sex-specific manner. Cell 172:500–516.e16.  https://doi.org/10.1016/j.cell.2017.11.042CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Tremblay M-È, Lowery RL, Majewska AK (2010) Microglial interactions with synapses are modulated by visual experience. PLoS Biol 8:e1000527.  https://doi.org/10.1371/journal.pbio.1000527CrossRefPubMedPubMedCentralGoogle Scholar
  148. 148.
    Tremblay M-È, Zettel ML, Ison JR et al (2012) Effects of aging and sensory loss on glial cells in mouse visual and auditory cortices. Glia 60:541–558.  https://doi.org/10.1002/glia.22287CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Ueno M, Fujita Y, Tanaka T et al (2013) Layer V cortical neurons require microglial support for survival during postnatal development. Nat Neurosci 16:543–551.  https://doi.org/10.1038/nn.3358CrossRefPubMedGoogle Scholar
  150. 150.
    Ulland TK, Song WM, Huang SC-C et al (2017) TREM2 maintains microglial metabolic fitness in Alzheimer’s disease. Cell 170:649–663.e13.  https://doi.org/10.1016/j.cell.2017.07.023CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Ulrich JD, Ulland TK, Colonna M, Holtzman DM (2017) Elucidating the role of TREM2 in Alzheimer’s disease. Neuron 94:237–248.  https://doi.org/10.1016/j.neuron.2017.02.042CrossRefPubMedGoogle Scholar
  152. 152.
    Valdearcos M, Robblee MM, Benjamin DI et al (2014) Microglia dictate the impact of saturated fat consumption on hypothalamic inflammation and neuronal function. Cell Rep 9:2124–2138.  https://doi.org/10.1016/j.celrep.2014.11.018CrossRefPubMedPubMedCentralGoogle Scholar
  153. 153.
    Verney C, Monier A, Fallet-Bianco C, Gressens P (2010) Early microglial colonization of the human forebrain and possible involvement in periventricular white-matter injury of preterm infants. J Anat 217:436–448.  https://doi.org/10.1111/j.1469-7580.2010.01245.xCrossRefPubMedPubMedCentralGoogle Scholar
  154. 154.
    Villa A, Gelosa P, Castiglioni L et al (2018) Sex-specific features of microglia from adult mice. Cell Rep 23:3501–3511.  https://doi.org/10.1016/j.celrep.2018.05.048CrossRefPubMedPubMedCentralGoogle Scholar
  155. 155.
    Wake H, Moorhouse AJ, Jinno S et al (2009) Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci 29:3974–3980.  https://doi.org/10.1523/JNEUROSCI.4363-08.2009CrossRefPubMedPubMedCentralGoogle Scholar
  156. 156.
    Wang Y, Szretter KJ, Vermi W et al (2012) IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nat Immunol 13:753–760.  https://doi.org/10.1038/ni.2360CrossRefPubMedPubMedCentralGoogle Scholar
  157. 157.
    Wasserman JK, Yang H, Schlichter LC (2008) Glial responses, neuron death and lesion resolution after intracerebral hemorrhage in young versus aged rats. Eur J Neurosci 28:1316–1328.  https://doi.org/10.1111/j.1460-9568.2008.06442.xCrossRefPubMedGoogle Scholar
  158. 158.
    Weinhard L, d’Errico P, Tay TL (2018) Headmasters: microglial regulation of learning and memory in health and disease. Molecular, vol 5, pp 63–89.  https://doi.org/10.3934/molsci.2018.1.63CrossRefGoogle Scholar
  159. 159.
    Weinhard L, di Bartolomei G, Bolasco G et al (2018) Microglia remodel synapses by presynaptic trogocytosis and spine head filopodia induction. Nat Commun 9.  https://doi.org/10.1038/s41467-018-03566-5
  160. 160.
    Wieghofer P, Knobeloch K-P, Prinz M (2015) Genetic targeting of microglia. Glia 63:1–22.  https://doi.org/10.1002/glia.22727CrossRefPubMedGoogle Scholar
  161. 161.
    Williamson LL, McKenney EA, Holzknecht ZE et al (2016) Got worms? Perinatal exposure to helminths prevents persistent immune sensitization and cognitive dysfunction induced by early-life infection. Brain Behav Immun 51:14–28.  https://doi.org/10.1016/j.bbi.2015.07.006CrossRefPubMedGoogle Scholar
  162. 162.
    Wlodarczyk A, Holtman IR, Krueger M et al (2017) A novel microglial subset plays a key role in myelinogenesis in developing brain. EMBO J 36:3292–3308.  https://doi.org/10.15252/embj.201696056CrossRefPubMedPubMedCentralGoogle Scholar
  163. 163.
    Wolf SA, Boddeke HWGM, Kettenmann H (2017) Microglia in physiology and disease. Annu Rev Phys 79:619–643.  https://doi.org/10.1146/annurev-physiol-022516-034406CrossRefGoogle Scholar
  164. 164.
    Wu Y, Dissing-Olesen L, MacVicar BA, Stevens B (2015) Microglia: dynamic mediators of synapse development and plasticity. Trends Immunol 36:605–613.  https://doi.org/10.1016/j.it.2015.08.008CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Xu J, Zhu L, He S et al (2015) Temporal-spatial resolution fate mapping reveals distinct origins for embryonic and adult microglia in zebrafish. Dev Cell 34:632–641.  https://doi.org/10.1016/j.devcel.2015.08.018CrossRefPubMedGoogle Scholar
  166. 166.
    Yona S, Kim K-W, Wolf Y et al (2013) Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38:79–91.  https://doi.org/10.1016/j.immuni.2012.12.001CrossRefGoogle Scholar
  167. 167.
    Zhan Y, Paolicelli RC, Sforazzini F et al (2014) Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior. Nat Neurosci 17:400–406.  https://doi.org/10.1038/nn.3641CrossRefPubMedGoogle Scholar
  168. 168.
    Zheng H, Jia L, Liu C-C et al (2017) TREM2 promotes microglial survival by activating Wnt/β-catenin pathway. J Neurosci 37:1772–1784.  https://doi.org/10.1523/JNEUROSCI.2459-16.2017CrossRefPubMedPubMedCentralGoogle Scholar
  169. 169.
    Zusso M, Methot L, Lo R et al (2012) Regulation of postnatal forebrain amoeboid microglial cell proliferation and development by the transcription factor Runx1. J Neurosci 32:11285–11298.  https://doi.org/10.1523/JNEUROSCI.6182-11.2012CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Biology IUniversity of FreiburgFreiburgGermany
  2. 2.Cluster of Excellence BrainLinks-BrainToolsUniversity of FreiburgFreiburgGermany
  3. 3.Institute of Biology IIIUniversity of FreiburgFreiburgGermany
  4. 4.Axe NeurosciencesCentre de Recherche du CHU de QuébecQuébecCanada

Personalised recommendations