Chemical-Mediated Alteration of Antibiotics

  • Sadhana Sagar
  • Shilpa Kaistha
  • Amar Jyoti Das
  • Rajesh Kumar


Bacteria have evolved resistance mechanisms against currently available antibiotics. They have acquired resistance by mutating and altering the target sites, gene transfer, or chemical structure of antibiotics, etc. Chemical alteration of antibiotic is facilitated with the help of enzymes. These enzymes can alter the structure of different classes of antibiotics without affecting the other metabolic functions of bacteria. Therefore, by using such chemical device, bacteria can cope up with currently available antibiotics and threatened the world with deadly disease. In this regard, current chapter will highlight different enzymes that are employed by bacteria to alter the properties of antibiotics.


  1. Adams MD, Goglin K, Molyneaux N, Hujer KM, Lavender H, Jamison JJ, MacDonald IJ, Martin KM, Russo T, Campagnari AA, Hujer AM, Bonomo RA, Gill SR (2008) Comparative genome sequence analysis of multidrug-resistant Acinetobacter baumannii. J Bacteriol 190:8053–8064CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ahmed AM, Nakagawa T, Arakawa E, Ramamurthy T, Shinoda S, Shimamoto T (2004) New aminoglycoside acetyltransferase gene, aac(3)-Id, in a class 1 integron from a multiresistant strain of Vibrio fluvialis isolated from an infant aged 6 months. J Antimicrob Chemother 53:947–951. [PubMed: 15117923]CrossRefPubMedPubMedCentralGoogle Scholar
  3. Ainsa JA, Perez E, Pelicic V, Berthet FX, Gicquel B, Martin C (1997) Aminoglycoside 2′-Nacetyltransferase genes are universally present in mycobacteria: characterization of the aac(2′)-Ic gene from Mycobacterium tuberculosis and the aac(2′)-Id gene from Mycobacterium smegmatis. Mol Microbiol 24:431–441CrossRefPubMedPubMedCentralGoogle Scholar
  4. Ajiboye RM, Solberg OD, Lee BM, Raphael E, Debroy C, Riley LW (2009) Global spread of mobileantimicrobial drug resistance determinants in human and animal Escherichia coli and Salmonellastrains causing community-acquired infections. Clin Infect Dis 49:365–371CrossRefPubMedPubMedCentralGoogle Scholar
  5. Allmansberger R, Brau B, Piepersberg W (1985) Genes for gentamicin-(3)-N-acetyl-transferases III and IV. II. Nucleotide sequences of three AAC(3)-III genes and evolutionary aspects. Mol Gen Genet 198:514–520CrossRefPubMedPubMedCentralGoogle Scholar
  6. Berthold P, Schmitt R, Mages W (2002) An engineered Streptomyces hygroscopicus aph 7″ gene mediates dominant resistance against hygromycin B in Chlamydomonas reinhardtii. Protist 153:401–412. [PubMed: 12627869]CrossRefPubMedPubMedCentralGoogle Scholar
  7. Brau B, Pilz U, Piepersberg W (1984) Genes for gentamicin-(3)-N-acetyltransferases III and IV: I.Nucleotide sequence of the AAC(3)-IV gene and possible involvement of an IS140 element in itsexpression. Mol Gen Genet 193:179–187CrossRefPubMedPubMedCentralGoogle Scholar
  8. Call DR, Singer RS, Meng D, Broschat SL, Orfe LH, Anderson JM, Herndon DR, Kappmeyer LS, Daniels JB, Besser TE (2010) blaCMY-2-positive IncA/C plasmids from Escherichia coli and Salmonella enterica are a distinct component of a larger lineage of plasmids. Antimicrob Agents Chemother 54:590–596CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cameron FH, Groot Obbink DJ, Ackerman VP, Hall RM (1986) Nucleotide sequence of the AAD(2″) aminoglycoside adenylyltransferase determinant aadB. Evolutionary relationship of this region with those surrounding aadA in R538-1 and dhfrII in R388. Nucleic Acids Res 14:8625–8615. [PubMed: 3024112]CrossRefPubMedPubMedCentralGoogle Scholar
  10. Casin I, Hanau-Bercot B, Podglajen I, Vahaboglu H, Collatz E (2003) Salmonella enterica serovarTyphimurium bla(PER-1)-carrying plasmid pSTI1 encodes an extendedspectrum aminoglycoside6′-N-acetyltransferase of type Ib. Antimicrob Agents Chemother 47:697–703CrossRefPubMedPubMedCentralGoogle Scholar
  11. Cerda P, Goni P, Millan L, Rubio C, Gomez-Lus R (2007) Detection of the aminoglycosidestreptothricin resistance gene cluster ant(6)-sat4-aph(3 ′)-III in commensal viridans group streptococci. Int Microbiol 10:57–60. [PubMed: 17407061]PubMedPubMedCentralGoogle Scholar
  12. Chen YG, Qu TT, Yu YS, Zhou JY, Li LJ (2006) Insertion sequence ISEcp1-like element connected with anovel aph(2′′) allele [aph(2′′)-Ie] conferring high-level gentamicin resistance and a novelstreptomycin adenylyltransferase gene in Enterococcus. J Med Microbiol 55:1521–1525CrossRefPubMedPubMedCentralGoogle Scholar
  13. Chen YT, Lauderdale TL, Liao TL, Shiau YR, Shu HY, Wu KM, Yan JJ, Su IJ, Tsai SF (2007) Sequencingand comparative genomic analysis of pK29, a 269-kilobase conjugative plasmid encoding CMY-8and CTX-M-3 β- lactamases in Klebsiella pneumoniae. Antimicrob Agents Chemother 51:3004–3007CrossRefPubMedPubMedCentralGoogle Scholar
  14. Chen YT, Liao TL, Liu YM, Lauderdale TL, Yan JJ, Tsai SF (2009) Mobilization of qnrB2 and ISCR1 inplasmids. Antimicrob Agents Chemother 53:1235–1237. [PubMed: 19075060]CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chen L, Mediavilla JR, Smyth DS, Chavda KD, Ionescu R, Roberts RB, Robinson DA, Kreiswirth BN (2010) Identification of a novel transposon (Tn6072) and a truncated SCCmec element in methicillin-resistant Staphylococcus aureus ST239. Antimicrob Agents ChemotherGoogle Scholar
  16. Chow JW, Kak V, You I, Kao SJ, Petrin J, Clewell DB, Lerner SA, Miller GH, Shaw KJ (2001) Aminoglycoside resistance genes aph(2′′)-Ib and aac(6′)-Im detected together in strains of both Escherichia coli and Enterococcus faecium. Antimicrob Agents Chemother 45:2691–2694CrossRefPubMedPubMedCentralGoogle Scholar
  17. Costa Y, Galimand M, Leclercq R, Duval J, Courvalin P (1993) Characterization of the chromosomalaac(6′)-Ii gene specific for Enterococcus faecium. Antimicrob Agents Chemother 37:1896–1903CrossRefPubMedPubMedCentralGoogle Scholar
  18. Crossman LC, Gould VC, Dow JM, Vernikos GS, Okazaki A, Sebaihia M, Saunders D, Arrowsmith C, Carver T, Peters N, Adlem E, Kerhornou A, Lord A, Murphy L, Seeger K, Squares R, Rutter S, Quail MA, Rajandream MA, Harris D, Churcher C, Bentley SD, Parkhill J, Thomson NR, Avison MB (2008) The complete genome, comparative and functional analysis of Stenotrophomonas maltophilia reveals an organism heavily shielded by drug resistance determinants. Genome Biol 9:R74CrossRefPubMedPubMedCentralGoogle Scholar
  19. Dahmen S, Bettaieb D, Mansour W, Boujaafar N, Bouallegue O, Arlet G (2010) Characterization and molecular epidemiology of extended-spectrum β-lactamases in clinical isolates of Enterobacteriaceae in a Tunisian university hospital. Microb Drug Resist 16:163–170CrossRefPubMedPubMedCentralGoogle Scholar
  20. Davies J (1994) Inactivation of antibiotics and the dissemination of resistance genes. Science 264:375–382CrossRefPubMedPubMedCentralGoogle Scholar
  21. Davies J, Wright G (1997) Bacterial resistance to aminoglycoside antibiotics. Trends Microbiol 5:234–239CrossRefPubMedPubMedCentralGoogle Scholar
  22. Distler J, Ebert A, Mansouri K, Pissowotzki K, Stockmann M, Piepersberg W (1987) Gene cluster forstreptomycin biosynthesis in Streptomyces griseus: nucleotide sequence of three genes andanalysis of transcriptional activity. Nucleic Acids Res 15:8041–8056CrossRefPubMedPubMedCentralGoogle Scholar
  23. Doi Y, Wachino J, Yamane K, Shibata N, Yagi T, Shibayama K, Kato H, Arakawa Y (2004) Spread of novelaminoglycoside resistance gene aac(6′)-Iad among Acinetobacter clinical isolates in Japan. Antimicrob Agents Chemother 48:2075–2080CrossRefPubMedPubMedCentralGoogle Scholar
  24. Doublet B, Weill FX, Fabre L, Chaslus-Dancla E, Cloeckaert A (2004) Variant Salmonella genomic island 1 antibiotic resistance gene cluster containing a novel 3′-N-aminoglycoside acetyltransferase gene cassette, aac(3)-Id, in Salmonella enterica serovar newport. Antimicrob Agents Chemother 48:3806–3812CrossRefPubMedPubMedCentralGoogle Scholar
  25. Draker KA, Northrop DB, Wright GD (2003) Kinetic mechanism of the GCN5-related chromosomalaminoglycoside acetyltransferase AAC(6′)-Ii from Enterococcus faecium: evidence of dimersubunit cooperativity. Biochemistry 42:6565–6574CrossRefPubMedPubMedCentralGoogle Scholar
  26. Dubois V, Arpin C, Dupart V, Scavelli A, Coulange L, Andre C, Fischer I, Grobost F, Brochet JP, Lagrange I, Dutilh B, Jullin J, Noury P, Larribet G, Quentin C (2008) β-lactam and aminoglycoside resistance rates and mechanisms among Pseudomonas aeruginosa in French general practice (community and private healthcare centres). J Antimicrob Chemother 62:316–323CrossRefPubMedPubMedCentralGoogle Scholar
  27. Džidić S, Šušković J, Kos B (2008) Antibiotic resistance mechanisms in bacteria: biochemical and genetic aspects. Food Technol Biotechnol 46(1):11–21Google Scholar
  28. Egorova S, Kaftyreva L, Grimont PA, Weill FX (2007) Prevalence and characterization of extended-spectrum cephalosporin-resistant nontyphoidal Salmonella isolates in adults in Saint Petersburg, Russia (2002-2005). Microb Drug Resist 13:102–107CrossRefPubMedPubMedCentralGoogle Scholar
  29. Faldynova M, Pravcova M, Sisak F, Havlickova H, Kolackova I, Cizek A, Karpiskova R, Rychlik I (2003) Evolution of antibiotic resistance in Salmonella enterica serovar typhimurium strains isolated in the Czech Republic between 1984 and 2002. Antimicrob Agents Chemother 47:2002–2005. [PubMed: 12760885]CrossRefPubMedPubMedCentralGoogle Scholar
  30. Fernandes R, Amador P, Prudêncio C (2013) β-Lactams: chemical structure, mode of action and mechanisms of resistance. Rev Med Microbiol 24(1):7–17CrossRefGoogle Scholar
  31. Fernando J Oliveira P, Cipullo JP, Burdmann EA (2006) Aminoglycoside nephrotoxicity. Rev Bras Cir Cardiovasc. vol 21 no.4 São José do Rio Preto Oct./Dec. 2006Google Scholar
  32. Ferretti JJ, Gilmore KS, Courvalin P (1986) Nucleotide sequence analysis of the gene specifying the bifunctional 6′-aminoglycoside acetyltransferase 2″-aminoglycoside phosphotransferase enzyme in Streptococcus faecalis and identification and cloning of gene regions specifying the two activities. J Bacteriol 167:631–638. [PubMed: 3015884]CrossRefPubMedPubMedCentralGoogle Scholar
  33. Fiett J, Baraniak A, Mrowka A, Fleischer M, Drulis-Kawa Z, Naumiuk L, Samet A, Hryniewicz W, Gniadkowski M (2006) Molecular epidemiology of acquired-metallo-β-lactamase-producing bacteria in Poland. Antimicrob Agents Chemother 50:880–886. [PubMed: 16495246]CrossRefPubMedPubMedCentralGoogle Scholar
  34. Frere JM (1995) β-Lactamases and bacterial resistance to antibiotics. Mol Microbiol 16:385–395CrossRefPubMedPubMedCentralGoogle Scholar
  35. Gill SR, Fouts DE, Archer GL, Mongodin EF, Deboy RT, Ravel J, Paulsen IT, Kolonay JF, Brinkac L, Beanan M, Dodson RJ, Daugherty SC, Madupu R, Angiuoli SV, Durkin AS, Haft DH, Vamathevan J, Khouri H, Utterback T, Lee C, Dimitrov G, Jiang L, Qin H, Weidman J, Tran K, Kang K, Hance IR, Nelson KE, Fraser CM (2005) Insights on evolution of virulence and resistance from the complete genome analysis of an early methicillin-resistant Staphylococcus aureus strain and a biofilm-producing methicillin-resistant Staphylococcus epidermidis strain. J Bacteriol 187:2426–2438CrossRefPubMedPubMedCentralGoogle Scholar
  36. Gionechetti F, Zucca P, Gombac F, Monti-Bragadin C, Lagatolla C, Tonin E, Edalucci E, Vitali LA, Dolzani L (2008) Characterization of antimicrobial resistance and class 1 integrons in Enterobacteriaceae isolated from Mediterranean herring gulls (Larus cachinnans). Microb Drug Resist 14:93–99CrossRefPubMedPubMedCentralGoogle Scholar
  37. Happi CT, Gbotosho GO, Folarin OA, Akinboye DO, Yusuf BO, Ebong OO, Sowunmi A, Kyle DE, Milhous W, Wirth DT, Oduola AMJ (2005) Polymorphisms in Plasmodium falciparum dhfr and dhps genes and age related in vivo sulfadoxine-pyrimethamine resistance in malaria-infected patients from Nigeria. Acta Trop 95:183–193CrossRefPubMedPubMedCentralGoogle Scholar
  38. Herrero A, Rodicio MR, Echeita MA, Mendoza MC (2008) Salmonella enterica serotype Typhimuriumcarrying hybrid virulence-resistance plasmids (pUO-StVR): a new multidrug-resistant groupendemic in Spain. Int J Med Microbiol 298:253–261CrossRefPubMedPubMedCentralGoogle Scholar
  39. Heuer H, Krogerrecklenfort E, Wellington EM, Egan S, Elsas JD, Overbeek L, Collard JM, Guillaume G, Karagouni AD, Nikolakopoulou TL, Smalla K (2002) Gentamicin resistance genes in environmental bacteria: prevalence and transfer. FEMS Microbiol Ecol 42:289–302CrossRefPubMedPubMedCentralGoogle Scholar
  40. Holden MT, Hauser H, Sanders M, Ngo TH, Cherevach I, Cronin A, Goodhead I, Mungall K, Quail MA, Price C, Rabbinowitsch E, Sharp S, Croucher NJ, Chieu TB, Mai NT, Diep TS, Chinh NT, Kehoe M, Leigh JA, Ward PN, Dowson CG, Whatmore AM, Chanter N, Iversen P, Gottschalk M, Slater JD, Smith HE, Spratt BG, Xu J, Ye C, Bentley S, Barrell BG, Schultsz C, Maskell DJ, Parkhill J (2009) Rapid evolution of virulence and drug resistance in the emerging zoonotic pathogen Streptococcus suis. PLoS One 4:e6072CrossRefPubMedPubMedCentralGoogle Scholar
  41. Hollingshead S, Vapnek D (1985) Nucleotide sequence analysis of a gene encoding a streptomycin/spectinomycin adenylyltransferase. Plasmid 13:17–30. [PubMed: 2986186]CrossRefPubMedPubMedCentralGoogle Scholar
  42. Ishikawa J, Sunada A, Oyama R, Hotta K (2000) Identification and characterization of the point mutation which affects the transcription level of the chromosomal 3-N-acetyltransferase gene of Streptomyces griseus SS-1198. Antimicrob Agents Chemother 44:437–440CrossRefPubMedPubMedCentralGoogle Scholar
  43. Jacoby GA, Blaser MJ, Santanam P, Hachler H, Kayser FH, Hare RS, Miller GH (1990) Appearance of amikacin and tobramycin resistance due to 4′-aminoglycoside nucleotidyltransferase [ANT(4′)-II] in gram-negative pathogens. Antimicrob Agents Chemother 34:2381–2386. [PubMed:1965106]CrossRefPubMedPubMedCentralGoogle Scholar
  44. Kao SJ, You I, Clewell DB, Donabedian SM, Zervos MJ, Petrin J, Shaw KJ, Chow JW (2000) Detection ofthe high-level aminoglycoside resistance gene aph(2′′)-Ib in Enterococcus faecium. Antimicrob Agents Chemother 44:2876–2879CrossRefPubMedPubMedCentralGoogle Scholar
  45. Kaster KR, Burgett SG, Rao RN, Ingolia TD (1983) Analysis of a bacterial hygromycin B resistance gene bytranscriptional and translational fusions and by DNA sequencing. Nucleic Acids Res 11:6895–6911CrossRefPubMedPubMedCentralGoogle Scholar
  46. Kehrenberg C, Catry B, Haesebrouck F, de Kruif A, Schwarz S (2005) Novel spectinomycin/streptomycinresistance gene, aadA14, from Pasteurella multocida. Antimicrob Agents Chemother 49:3046–3049CrossRefPubMedPubMedCentralGoogle Scholar
  47. Kernodle DOS (2006) Mechanisms of resistance to β-lactam antibiotics. In: Fischetti VA et al (eds) Gram-positive pathogens, 2nd edn. ASM Press, Washington, DCGoogle Scholar
  48. Kitao T, Miyoshi-Akiyama T, Kirikae T (2009) AAC(6′)-Iaf, a novel aminoglycoside 6′-N-acetyltransferase from multidrug-resistant Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother 53:2327–2334CrossRefPubMedPubMedCentralGoogle Scholar
  49. Kumar A, Schweizer HP (2005) Bacterial resistance to antibiotics: active efflux and reduced uptake. Adv Drug Deliv Rev 57:1486–1513CrossRefPubMedPubMedCentralGoogle Scholar
  50. Lambert PA (2005) Bacterial resistance to antibiotics: modified target sites. Adv Drug Deliv Rev 57:1471–1485CrossRefPubMedPubMedCentralGoogle Scholar
  51. Lambert T, Gerbaud G, Galimand M, Courvalin P (1993) Characterization of Acinetobacter haemolyticus aac(6′)-Ig gene encoding an aminoglycoside 6′-N-acetyltransferase which modifies amikacin. Antimicrob Agents Chemother 37:2093–2100. [PubMed: 8257129]CrossRefPubMedPubMedCentralGoogle Scholar
  52. Lambert T, Gerbaud G, Courvalin P (1994a) Characterization of the chromosomal aac(6′)-Ij gene of Acinetobacter sp. 13 and the aac(6′)-Ih plasmid gene of Acinetobacter baumannii. Antimicrob Agents Chemother 38:1883–1889. [PubMed: 7810994]CrossRefPubMedPubMedCentralGoogle Scholar
  53. Lambert T, Ploy MC, Courvalin P (1994b) A spontaneous point mutation in the aac(6′)-Ib’ gene results in altered substrate specificity of aminoglycoside 6′-N-acetyltransferase of a Pseudomonas fluorescens strain. FEMS Microbiol Lett 115:297–304. [PubMed: 8138142]PubMedPubMedCentralGoogle Scholar
  54. LeBlanc DJ, Lee LN, Inamine JM (1991) Cloning and nucleotide base sequence analysis of a spectinomycinadenyltransferase AAD(9) determinant from Enterococcus faecalis. Antimicrob Agents Chemother 35:1804–1810CrossRefPubMedPubMedCentralGoogle Scholar
  55. Livermore DM (2003) Bacterial resistance: origins, epidemiology and impact. Clin Infect Dis 36:11–23CrossRefGoogle Scholar
  56. Llanes C, Neuwirth C, El Garch F, Hocquet D, Plesiat P (2006) Genetic analysis of a multiresistant strain of Pseudomonas aeruginosa producing PER-1 β-lactamase. Clin Microbiol Infect 12:270–278CrossRefPubMedPubMedCentralGoogle Scholar
  57. Lopez-Cabrera M, Perez-Gonzalez JA, Heinzel P, Piepersberg W, Jimenez A (1989) Isolation and nucleotide sequencing of an aminocyclitol acetyltransferase gene from Streptomyces rimosus forma paromomycinus. J Bacteriol 171:321–328CrossRefPubMedPubMedCentralGoogle Scholar
  58. Magnet S, Blanchard JS (2005) Molecular insights into aminoglycoside action and resistance. Chem Rev 105:477–498CrossRefPubMedPubMedCentralGoogle Scholar
  59. Martin P, Jullien E, Courvalin P (1988) Nucleotide sequence of Acinetobacter baumannii aphA-6 gene:evolutionary and functional implications of sequence homologies with nucleotide-bindingproteins, kinases and other aminoglycoside-modifying enzymes. Mol Microbiol 2:615–625CrossRefPubMedPubMedCentralGoogle Scholar
  60. Massova I, Mobashery S (1998) Kinship and diversification of bacterial penicillin-binding proteins and β- lactamases. Antimicrob Agents Chemother 42:1–17CrossRefPubMedPubMedCentralGoogle Scholar
  61. Mazodier P, Cossart P, Giraud E, Gasser F (1985) Completion of the nucleotide sequence of the centralregion of Tn5 confirms the presence of three resistance genes. Nucleic Acids Res 13:195–205CrossRefPubMedPubMedCentralGoogle Scholar
  62. Mendes R, Toleman M, Ribeiro J, Sader H, Jones R, Walsh T (2004) Integron carrying a novel metallo-b-lactamase gene, blaIMP-16, and a fused form of aminoglycoside-resistance gene aac(6′)-30/aac(6′)-Ib: report from the SENTRY antimicrobial surveillance program. Antimicrob Agents Chemother 48:4693–4702CrossRefPubMedPubMedCentralGoogle Scholar
  63. Michael GB, Cardoso M, Schwarz S (2005) Class 1 integron-associated gene cassettes in Salmonella entericasubsp. enterica serovar Agona isolated from pig carcasses in Brazil. J Antimicrob Chemother 55:776–779CrossRefPubMedPubMedCentralGoogle Scholar
  64. Miller WR, Munita JM, Arias CA (2014) Mechanisms of antibiotic resistance in enterococci. Expert Rev Anti-Infect Ther 12(10):1221–1236CrossRefPubMedPubMedCentralGoogle Scholar
  65. Mingeot-Leclercq MP, Glupczynski Y, Tulkens PM (1999) Aminoglycosides: activity and resistance. Antimicrob Agents Chemother 43(4):727–737CrossRefPubMedPubMedCentralGoogle Scholar
  66. Mobashery S, Azucena EF (1999) Bacterial antibiotic resistance. In: Encyclopedia of life sciences. Nature Publishing Group, London.
  67. Mortazavi SMJ, Darvish L, Abounajmi M, Zarei S, Zare T, Taheri M, Nematollahi S (2015) Alteration of bacterial antibiotic sensitivity after short-term exposure to diagnostic ultrasound. Iran Red Crescent Med J 17(11):e26622CrossRefPubMedPubMedCentralGoogle Scholar
  68. Munita JM, Arias CA (2016) Mechanisms of antibiotic resistance. Microbiol Spectr 4(2)Google Scholar
  69. Murphy E (1985) Nucleotide sequence of a spectinomycin adenyltransferase AAD(9) determinant from Staphylococcus aureus and its relationship to AAD(3′′) (9). Mol Gen Genet 200:33–39CrossRefPubMedPubMedCentralGoogle Scholar
  70. Nobuta K, Tolmasky ME, Crosa LM, Crosa JH (1988) Sequencing and expression of the 6′-Nacetyltransferase gene of transposon Tn1331 from Klebsiella pneumoniae. J Bacteriol 170:3769–3773CrossRefPubMedPubMedCentralGoogle Scholar
  71. Noguchi N, Sasatsu M, Kono M (1993) Genetic mapping in Bacillus subtilis 168 of the aadK gene whichencodes aminoglycoside 6-adenylyltransferase. FEMS Microbiol Lett 114:47–52CrossRefPubMedPubMedCentralGoogle Scholar
  72. Ohmiya K, Tanaka T, Noguchi N, O’Hara K, Kono M (1989) Nucleotide sequence of the chromosomal genecoding for the aminoglycoside 6-adenylyltransferase from Bacillus subtilis Marburg 168. Gene 78:377–378CrossRefPubMedPubMedCentralGoogle Scholar
  73. Okazaki A, Avison MB (2007) Aph(3′)-IIc, an aminoglycoside resistance determinant from Stenotrophomonas maltophilia. Antimicrob Agents Chemother 51:359–360. [PubMed:74CrossRefPubMedPubMedCentralGoogle Scholar
  74. Parent R, Roy PH (1992) The chloramphenicol acetyltransferase gene of Tn2424: a new breed of cat. J Bacteriol 174:2891–2897CrossRefPubMedPubMedCentralGoogle Scholar
  75. Parkhill J, Sebaihia M, Preston A, Murphy LD, Thomson N, Harris DE, Holden MT, Churcher CM, Bentley SD, Mungall KL, Cerdeno-Tarraga AM, Temple L, James K, Harris B, Quail MA, Achtman M, Atkin R, Baker S, Basham D, Bason N, Cherevach I, Chillingworth T, Collins M, Cronin A, Davis P, Doggett J, Feltwell T, Goble A, Hamlin N, Hauser H, Holroyd S, Jagels K, Leather S, Moule S, Norberczak H, O’Neil S, Ormond D, Price C, Rabbinowitsch E, Rutter S, Sanders M, Saunders D, Seeger K, Sharp S, Simmonds M, Skelton J, Squares R, Squares S, Stevens K, Unwin L, Whitehead S, Barrell BG, Maskell DJ (2003) Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Nat Genet 35:32–40. [PubMed: 12910271]CrossRefPubMedPubMedCentralGoogle Scholar
  76. Partridge SR, Collis CM, Hall RM (2002) Class 1 integron containing a new gene cassette, aadA10, associated with Tn1404 from R151. Antimicrob Agents Chemother 46:2400–2408CrossRefPubMedPubMedCentralGoogle Scholar
  77. Pawlowski AC, Johnson JW, Wright GD (2016) Evolving medicinal chemistry strategies in antibiotic discovery. Curr Opin Biotechnol 42:108–117CrossRefPubMedPubMedCentralGoogle Scholar
  78. Perichon B, Bogaerts P, Lambert T, Frangeul L, Courvalin P, Galimand M (2008) Sequence of conjugative plasmid pIP1206 mediating resistance to aminoglycosides by 16S rRNA methylation and to hydrophilic fluoroquinolones by efflux. Antimicrob Agents Chemother 52:2581–2592. [PubMed: 18458128]CrossRefPubMedPubMedCentralGoogle Scholar
  79. Ramirez MS, Tolmasky ME (2010) Aminoglycoside modifying enzymes. Drug Resist Updat 13(6):151–171CrossRefPubMedPubMedCentralGoogle Scholar
  80. Ramon-Garcia S, Otal I, Martin C, Gomez-Lus R, Ainsa JA (2006) Antibiotics of aminoglycosides. Antimicrob Agents Chemother 50:3920–3922. [PubMed:16954315]CrossRefPubMedPubMedCentralGoogle Scholar
  81. Rather PN, Munayyer H, Mann PA, Hare RS, Miller GH, Shaw KJ (1992) Genetic analysis of bacterialacetyltransferases: identification of amino acids determining the specificities of theaminoglycoside 6′-N-acetyltransferase Ib and IIa proteins. J Bacteriol 174:3196–3203CrossRefPubMedPubMedCentralGoogle Scholar
  82. Rather PN, Mann PA, Mierzwa R, Hare RS, Miller GH, Shaw KJ (1993) Analysis of the aac(3)-VIa gene encoding a novel 3-N-acetyltransferase. Antimicrob Agents Chemother 37:2074–2079CrossRefPubMedPubMedCentralGoogle Scholar
  83. Revilla C, Garcillan-Barcia MP, Fernandez-Lopez R, Thomson NR, Sanders M, Cheung M, Thomas CM, de la Cruz F (2008) Different pathways to acquiring resistance genes illustrated by the recentevolution of IncW plasmids. Antimicrob Agents Chemother 52:1472–1480CrossRefPubMedPubMedCentralGoogle Scholar
  84. Riccio ML, Docquier JD, Dell’Amico E, Luzzaro F, Amicosante G, Rossolini GM (2003) Novel 3-Naminoglycoside acetyltransferase gene, aac(3)-Ic, from a Pseudomonas aeruginosa integron. Antimicrob Agents Chemother 47:1746–1748CrossRefPubMedPubMedCentralGoogle Scholar
  85. Robicsek A, Strahilevitz J, Jacoby GA, Macielag M, Abbanat D, Park CH, Bush K, Hooper DC (2006) Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase. Nat Med 12:83–88. [PubMed: 16369542]CrossRefPubMedPubMedCentralGoogle Scholar
  86. Rouch DA, Byrne ME, Kong YC, Skurray RA (1987) The aacA-aphD gentamicin and kanamycin resistance determinant of Tn4001 from Staphylococcus aureus: expression and nucleotide sequence analysis. J Gen Microbiol 133:3039–3052. [PubMed: 2833561]PubMedPubMedCentralGoogle Scholar
  87. Sabtcheva S, Galimand M, Gerbaud G, Courvalin P, Lambert T (2003) Aminoglycoside resistance geneant(4′)-IIb of Pseudomonas aeruginosa BM4492, a clinical isolate from Bulgaria. Antimicrob Agents Chemother 47:1584–1588CrossRefPubMedPubMedCentralGoogle Scholar
  88. Salauze D, Perez-Gonzalez JA, Piepersberg W, Davies J (1991) Characterisation of aminoglycoside acetyltransferase-encoding genes of neomycin-producing Micromonospora chalcea and Streptomyces fradiae. Gene 101:143–148CrossRefPubMedPubMedCentralGoogle Scholar
  89. Sandvang D (1999) Novel streptomycin and spectinomycin resistance gene as a gene cassette within a class 1integron isolated from Escherichia coli. Antimicrob Agents Chemother 43:3036–3038CrossRefPubMedPubMedCentralGoogle Scholar
  90. Schwarz FV, Perreten V, Teuber M (2001) Sequence of the 50-kb conjugative multiresistance plasmidpRE25 from Enterococcus faecalis RE25. Plasmid 46:170–187CrossRefPubMedPubMedCentralGoogle Scholar
  91. Schwocho LR, Schaffner CP, Miller GH, Hare RS, Shaw KJ (1995) Cloning and characterization of a 3-Naminoglycoside acetyltransferase gene, aac(3)-Ib, from Pseudomonas aeruginosa. Antimicrob Agents Chemother 39:1790–1796. [PubMed: 7486920]CrossRefPubMedPubMedCentralGoogle Scholar
  92. Sekiguchi J, Asagi T, Miyoshi-Akiyama T, Fujino T, Kobayashi I, Morita K, Kikuchi Y, Kuratsuji T, Kirikae T (2005) Multidrug-resistant Pseudomonas aeruginosa strain that caused an outbreak in a neurosurgery ward and its aac(6′)-Iae gene cassette encoding a novel aminoglycoside acetyltransferase. Antimicrob Agents Chemother 49:3734–3742. [PubMed: 16127047]CrossRefPubMedPubMedCentralGoogle Scholar
  93. Shaw KJ, Cramer CA, Rizzo M, Mierzwa R, Gewain K, Miller GH, Hare RS (1989) Isolation, characterization, and DNA sequence analysis of an AAC(6′)-II gene from Pseudomonas aeruginosa. Antimicrob Agents Chemother 33:2052–2062CrossRefPubMedPubMedCentralGoogle Scholar
  94. Shaw KJ, Rather PN, Sabatelli FJ, Mann P, Munayyer H, Mierzwa R, Petrikkos GL, Hare RS, Miller GH, Bennett P et al (1992) Characterization of the chromosomal aac(6′)-Ic gene from Serratia marcescens. Antimicrob Agents Chemother 36:1447–1455CrossRefPubMedPubMedCentralGoogle Scholar
  95. Shaw KJ, Rather PN, Hare RS, Miller GH (1993) Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiol Rev 57:138–163PubMedPubMedCentralGoogle Scholar
  96. Tauch A, Krieft S, Kalinowski J, Puhler A (2000) The 51,409-bp R-plasmid pTP10 from the multiresistantclinical isolate Corynebacterium striatum M82B is composed of DNA segments initiallyidentified in soil bacteria and in plant, animal, and human pathogens. Mol Gen Genet 263:1–11CrossRefPubMedPubMedCentralGoogle Scholar
  97. Tauch A, Gotker S, Puhler A, Kalinowski J, Thierbach G (2002) The 27.8-kb R-plasmid pTET3 from Corynebacterium glutamicum encodes the aminoglycoside adenyltransferase gene cassette aadA9and the regulated tetracycline efflux system Tet 33 flanked by active copies of the widespreadinsertion sequence IS6100. Plasmid 48:117–129CrossRefPubMedPubMedCentralGoogle Scholar
  98. Tennstedt T, Szczepanowski R, Braun S, Puhler A, Schluter A (2003) Occurrence of integron-associated resistance gene cassettes located on antibiotic resistance plasmids isolated from a wastewatertreatment plant. FEMS Microbiol Ecol 45:239–252CrossRefPubMedPubMedCentralGoogle Scholar
  99. Tenover FC (2001) Development and spread of bacterial resistance to antimicrobial agents: an overview. Clin Infect Dis (Suppl) 33:108–115CrossRefGoogle Scholar
  100. Tenover FC, Filpula D, Phillips KL, Plorde JJ (1988) Cloning and sequencing of a gene encoding an aminoglycoside 6′-N-acetyltransferase from an R factor of Citrobacter diversus. J Bacteriol 170:471–473CrossRefPubMedPubMedCentralGoogle Scholar
  101. Tenover FC, Gilbert T, O’Hara P (1989) Nucleotide sequence of a novel kanamycin resistance gene, aphA-7, from campylobacter jejuni and comparison to other kanamycin phosphotransferase genes. Plasmid 22:52–58CrossRefPubMedPubMedCentralGoogle Scholar
  102. Teran FJ, Suarez JE, Mendoza MC (1991) Cloning, sequencing, and use as a molecular probe of a geneencoding an aminoglycoside 6′-N-acetyltransferase of broad substrate profile. Antimicrob AgentsChemother 35:714–719CrossRefGoogle Scholar
  103. Thompson CJ, Gray GS (1983) Nucleotide sequence of a streptomycete aminoglycoside phosphotransferasegene and its relationship to phosphotransferases encoded by resistance plasmids. Proc Natl Acad Sci U S A 80:5190–5194CrossRefPubMedPubMedCentralGoogle Scholar
  104. Tolmasky ME (1990) Sequencing and expression of aadA, bla, and tnpR from the multiresistance transposonTn1331. Plasmid 24:218–226CrossRefPubMedPubMedCentralGoogle Scholar
  105. Vliegenthart JS, Ketelaar-van Gaalen PA, Eelhart J, van de Klundert JA (1991) Localisation of the aminoglycoside-(3)-N-acetyltransferase isoenzyme II in Escherichia coli. FEMS Microbiol Lett 65:101–105CrossRefPubMedPubMedCentralGoogle Scholar
  106. Vogtli M, Hutter R (1987) Characterisation of the hydroxystreptomycin phosphotransferase gene (sph) of Streptomyces glaucescens: nucleotide sequence and promoter analysis. Mol Gen Genet 208:195–203CrossRefPubMedPubMedCentralGoogle Scholar
  107. Walsh C (2000) Molecular mechanisms that confer antibacterial drug resistance. Nature 406:775–781CrossRefPubMedPubMedCentralGoogle Scholar
  108. Walsh C (2003) Antibiotics, action, origins and resistance. ASM Press, Washington, D.C.Google Scholar
  109. Wei Q, Jiang X, Yang Z, Chen N, Chen X, Li G, Lu Y (2009) dfrA27, a new integron-associatedtrimethoprim resistance gene from Escherichia coli. J Antimicrob Chemother 63:405–406CrossRefPubMedPubMedCentralGoogle Scholar
  110. Wilson NL, Hall RM (2010) Unusual class 1 integron configuration found in Salmonella genomic island 2from Salmonella enterica serovar Emek. Antimicrob Agents Chemother 54:513–516CrossRefPubMedPubMedCentralGoogle Scholar
  111. Wohlleben W, Arnold W, Bissonnette L, Pelletier A, Tanguay A, Roy PH, Gamboa GC, Barry GF, Aubert E, Davies J et al (1989) On the evolution of Tn21-like multiresistance transposons: sequence analysis of the gene (aacC1) for gentamicin acetyltransferase-3-I(AAC(3)-I), another member of the Tn21-based expression cassette. Mol Gen Genet 217:202–208CrossRefPubMedPubMedCentralGoogle Scholar
  112. Wright GD (2005) Bacterial resistance to antibiotics: enzymatic degradation and modification. Adv Drug Deliv Rev 57:1451–1470CrossRefPubMedPubMedCentralGoogle Scholar
  113. Wybenga-Groot LE, Draker K, Wright GD, Berghuis AM (1999) Crystal structure of an aminoglycoside 6′-N-acetyltransferase: defining the GCN5-related N-acetyltransferase superfamily fold. Structure 7:497–507CrossRefPubMedPubMedCentralGoogle Scholar
  114. Yan JJ, Hsueh PR, Lu JJ, Chang FY, Ko WC, Wu JJ (2006) Characterization of acquired β-lactamases andtheir genetic support in multidrug-resistant Pseudomonas aeruginosa isolates in Taiwan: theprevalence of unusual integrons. J Antimicrob Chemother 58:530–536Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Sadhana Sagar
    • 1
  • Shilpa Kaistha
    • 2
  • Amar Jyoti Das
    • 3
  • Rajesh Kumar
    • 3
  1. 1.Department of MicrobiologyRani Lakshmi Bai Central Agricultural UniversityJhansiIndia
  2. 2.Department of MicrobiologyChhatrapati Sahu Ji Maharaj UniversityKanpurIndia
  3. 3.Department of Environmental MicrobiologyBabasaheb Bhimrao Ambedkar UniversityLucknowIndia

Personalised recommendations