Advertisement

Extrinsic Antibiotic-Resistant Mechanism in Bacteria

  • Sadhana Sagar
  • Shilpa Kaistha
  • Amar Jyoti Das
  • Rajesh Kumar
Chapter

Abstract

Bacteria have acquired a variety of resistance mechanisms to tackle with the challenging environmental conditions. These resistance mechanisms can be intrinsic and extrinsic. Bacteria can respond immediately to the changing environmental conditions by acquiring characteristic traits, altering the functionality of genome, or acquiring competent genome from other species. In case of extrinsic resistance mechanism, bacteria acquire resistance gene from other bacteria which have already resistance for the harsh environmental conditions. In this chapter we have discussed about the horizontal gene transfer, mobile gene transfer, and recombination.

References

  1. Alalam H, Graf FE, Palm M, Abadikhah M, Zackrisson M, Mattsson M, Hadjineophytou C, Persson L, Stenberg S, Ghiaci P, Sunnerhagen P, (2018) Conjugation factors controlling F-plasmid antibiotic resistance transmission. bioRxiv 271254Google Scholar
  2. Andam CP, Fournier GP, Gogarten JP (2011) Multilevel populations and the evolution of antibiotic resistance through horizontal gene transfer. FEMS Microbiol Rev 35(5):756–767PubMedCrossRefGoogle Scholar
  3. Ayoubi P, Kilic AO, Vijayakumar MN (1991) Tn5253, the pneumococcal omega (cat tet) BM6001 element, is a composite structure of two conjugative transposons, Tn5251 and Tn5252. J Bacteriol 173(5):1617–1622PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bennett PM (2008) Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria. Br J Pharmacol 153(S1):S347–S357PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bi D, Xu Z, Harrison EM, Tai C, Wei Y, He X, Jia S, Deng Z, Rajakumar K, Ou HY (2011) ICEberg: a web-based resource for integrative and conjugative elements found in Bacteria. Nucleic Acids Res 40(D1):D621–D626PubMedPubMedCentralCrossRefGoogle Scholar
  6. Blakely, GW (2015) Mechanisms of horizontal gene transfer and DNA recombination. In Molecular medical microbiology (pp. 291–302). Academic PressGoogle Scholar
  7. Buckner MM, Ciusa ML, Piddock LJ (2018) Strategies to combat antimicrobial resistance: anti-plasmid and plasmid curing. FEMS Microbiol Rev 42(6):781–804PubMedPubMedCentralCrossRefGoogle Scholar
  8. Burrus V, Pavlovic G, Decaris B, Guédon G (2002) Conjugative transposons: the tip of the iceberg. Mol Microbiol 46(3):601–610PubMedCrossRefGoogle Scholar
  9. Cabezón E, Ripoll-Rozada J, Peña A, de la Cruz F, Arechaga I (2014) Towards an integrated model of bacterial conjugation. FEMS Microbiol Rev 39(1):81–95PubMedGoogle Scholar
  10. Cabezón E, De la Cruz F, Arechaga I (2017) Conjugation inhibitors and their potential use to prevent dissemination of antibiotic resistance genes in bacteria. Front Microbiol 8:2329PubMedPubMedCentralCrossRefGoogle Scholar
  11. Cantón R, González-Alba JM, Galán JC (2012) CTX-M enzymes: origin and diffusion. Front Microbiol 3:110PubMedPubMedCentralCrossRefGoogle Scholar
  12. Carattoli A (2009) Resistance plasmid families in Enterobacteriaceae. Antimicrob Agents Chemother 53(6):2227–2238PubMedPubMedCentralCrossRefGoogle Scholar
  13. Carattoli A, Seiffert SN, Schwendener S, Perreten V, Endimiani A (2015) Differentiation of IncL and Inc M plasmid associated with the spread of clinically relevant antimicrobial resistance. PLoS One 10:1–14CrossRefGoogle Scholar
  14. Ciccarelli FD, Doerks T, Von Mering C, Creevey CJ, Snel B, Bork P (2006) Toward automatic reconstruction of a highly resolved tree of life. Science 311(5765):1283–1287PubMedCrossRefPubMedCentralGoogle Scholar
  15. Cirz RT, Chin JK, Andes DR, de Crécy-Lagard V, Craig WA, Romesberg FE (2005) Inhibition of mutation and combating the evolution of antibiotic resistance. PLoS Biol 3(6):e176PubMedPubMedCentralCrossRefGoogle Scholar
  16. Collis CM, Hall RM (1992) Gene cassettes from the insert region of integrons are excised as covalently closed circles. Mol Microbiol 6(19):2875–2885PubMedCrossRefGoogle Scholar
  17. Croucher NJ, Coupland PG, Stevenson AE, Callendrello A, Bentley SD, Hanage WP (2014) Diversification of bacterial genome content through distinct mechanisms over different timescales. Nat Commun 5:5471PubMedPubMedCentralCrossRefGoogle Scholar
  18. Culyba MJ, Mo CY, Kohli RM (2015) Targets for combating the evolution of acquired antibiotic resistance. Biochemistry 54(23):3573–3582PubMedPubMedCentralCrossRefGoogle Scholar
  19. de Vries J, Meier P, Wackernagel W (2001) The natural transformation of the soil bacteria Pseudomonas stutzeri and Acinetobacter sp. by transgenic plant DNA strictly depends on homologous sequences in the recipient cells. FEMS Microbiol Lett 195(2):211–215PubMedCrossRefPubMedCentralGoogle Scholar
  20. Deng Y, Bao X, Ji L, Chen L, Liu J, Miao J, Chen D, Bian H, Li Y, Yu G (2015) Resistance integrons: class 1, 2 and 3 integrons. Ann Clin Microbiol Antimicrob 14(1):45PubMedPubMedCentralCrossRefGoogle Scholar
  21. Didelot X, Maiden MC (2010) Impact of recombination on bacterial evolution. Trends Microbiol 18(7):315–322PubMedPubMedCentralCrossRefGoogle Scholar
  22. Feavers IM, Heath AB, Bygraves JA, Maiden MCJ (1992) Role of horizontal genetic exchange in the antigenic variation of the class 1 outer membrane protein of Neisseria meningitidis. Mol Microbiol 6(4):489–495PubMedCrossRefPubMedCentralGoogle Scholar
  23. Fernández de Henestrosa AR, Ogi T, Aoyagi S, Chafin D, Hayes JJ, Ohmori H, Woodgate R (2000) Identification of additional genes belonging to the LexA regulon in Escherichia coli. Mol Microbiol 35(6):1560–1572PubMedCrossRefPubMedCentralGoogle Scholar
  24. Fischer W, Hofreuter D, Haas R, (2001) Natural transformation, recombination, and repairGoogle Scholar
  25. Ford CW, Hamel JC, Stapert D, Moerman JK, Hutchinson DK, Barbachyn MR, Zurenko GE (1997) Oxazolidinones: new antibacterial agents. Trends Microbiol 5(5):196–200PubMedCrossRefPubMedCentralGoogle Scholar
  26. Foster PL (2007) Stress-induced mutagenesis in bacteria. Crit Rev Biochem Mol Biol 42(5):373–397PubMedPubMedCentralCrossRefGoogle Scholar
  27. Fraimow HS, Knob C, Mazur W, McNutt S (2005) Unsuspected emergence of linezolid resistance in coagulase-negative staphylococci in a university hospital. In: Forty-fifth interscience conference on antimicrobial agents and chemotherapy, Washington, DC, p 102Google Scholar
  28. Franke AE, Clewell DB (1981) Evidence for a chromosome-borne resistance transposon (Tn916) in Streptococcus faecalis that is capable of “conjugal” transfer in the absence of a conjugative plasmid. J Bacteriol 145(1):494–502PubMedPubMedCentralGoogle Scholar
  29. Garcillán-Barcia MP, de la Cruz F (2002) Distribution of IS 91 family insertion sequences in bacterial genomes: evolutionary implications. FEMS Microbiol Ecol 42(2):303–313PubMedCrossRefPubMedCentralGoogle Scholar
  30. Garcillán-Barcia MP, Francia MV, De La Cruz F (2009) The diversity of conjugative relaxases and its application in plasmid classification. FEMS Microbiol Rev 33(3):657–687PubMedCrossRefPubMedCentralGoogle Scholar
  31. Gawron-Burke C, Clewell DB (1982) A transposon in Streptococcus faecalis with fertility properties. Nature 300(5889):281PubMedCrossRefGoogle Scholar
  32. Gillespie SH (2002) Evolution of drug resistance in Mycobacterium tuberculosis: clinical and molecular perspective. Antimicrob Agents Chemother 46(2):267–274PubMedPubMedCentralCrossRefGoogle Scholar
  33. Guerin É, Cambray G, Sanchez-Alberola N, Campoy S, Erill I, Da Re S, Gonzalez-Zorn B, Barbé J, Ploy MC, Mazel D (2009) The SOS response controls integron recombination. Science 324(5930):1034–1034PubMedCrossRefGoogle Scholar
  34. Guglielmini J, Quintais L, Garcillán-Barcia MP, De La Cruz F, Rocha EP (2011) The repertoire of ICE in prokaryotes underscores the unity, diversity, and ubiquity of conjugation. PLoS Genet 7(8):e1002222PubMedPubMedCentralCrossRefGoogle Scholar
  35. Halle E, Padberg J, Rosseau S, Klare I, Werner G, Witte W (2004) Linezolid-resistant Enterococcus faecium and Enterococcus faecalis isolated from a septic patient: report of first isolates in Germany. Infection 32(3):182–183PubMedCrossRefGoogle Scholar
  36. Hallet B, Sherratt DJ (1997) Transposition and site-specific recombination: adapting DNA cut-and-paste mechanisms to a variety of genetic rearrangements. FEMS Microbiol Rev 21(2):157–178PubMedCrossRefPubMedCentralGoogle Scholar
  37. Hanage WP, Fraser C, Spratt BG (2005) Fuzzy species among recombinogenic bacteria. BMC Biol 3(1):6PubMedPubMedCentralCrossRefGoogle Scholar
  38. Hatfull, GF (1988) Resolvases and DNA invertases: a family of enzymes active in site-specific recombination. Genetic Recombination, pp. 357–396Google Scholar
  39. Hawkey PM (2003) Mechanisms of quinolone action and microbial response. J Antimicrob Chemother 51(suppl_1):29–z35PubMedCrossRefGoogle Scholar
  40. Huddleston JR (2014) Horizontal gene transfer in the human gastrointestinal tract: potential spread of antibiotic resistance genes. Infect Drug Resist 7:167PubMedPubMedCentralCrossRefGoogle Scholar
  41. Igarashi N, Harada J, Nagashima S, Matsuura K, Shimada K, Nagashima KV (2001) Horizontal transfer of the photosynthesis gene cluster and operon rearrangement in purple bacteria. J Mol Evol 52(4):333–341PubMedCrossRefGoogle Scholar
  42. Jaworski DD, Clewell DB (1995) A functional origin of transfer (oriT) on the conjugative transposon Tn916. J Bacteriol 177(22):6644–6651PubMedPubMedCentralCrossRefGoogle Scholar
  43. Kado CI (2015) Historical events that spawned the field of plasmid biology. In: Plasmids: biology and impact in biotechnology and discovery. American Society of Microbiology, Washington, DC, pp 3–11Google Scholar
  44. Kim L, McGee L, Tomczyk S, Beall B (2016) Biological and epidemiological features of antibiotic-resistant Streptococcus pneumoniae in pre-and post-conjugate vaccine eras: a United States perspective. Clin Microbiol Rev 29(3):525–552PubMedPubMedCentralCrossRefGoogle Scholar
  45. Klein HL (1995) Genetic control of intrachromosomal recombination. BioEssays 17(2):147–159PubMedCrossRefGoogle Scholar
  46. Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ (2007) A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130(5):797–810PubMedCrossRefGoogle Scholar
  47. Krauland MG, Marsh JW, Paterson DL, Harrison LH (2009) Integron-mediated multidrug resistance in a global collection of nontyphoidal Salmonella enterica isolates. Emerg Infect Dis 15(3):388PubMedPubMedCentralCrossRefGoogle Scholar
  48. Kreuzer KN (2013) DNA damage responses in prokaryotes: regulating gene expression, modulating growth patterns, and manipulating replication forks. Cold Spring Harb Perspect Biol 5:a012674PubMedPubMedCentralCrossRefGoogle Scholar
  49. Landy A (1989) Dynamic, structural, and regulatory aspects of lambda site-specific recombination. Annu Rev Biochem 58(1):913–941PubMedCrossRefGoogle Scholar
  50. Landy A (1993) Mechanistic and structural complexity in the site-specific recombination pathways of Int and FLP. Curr Opin Genet Dev 3(5):699–707PubMedCrossRefGoogle Scholar
  51. Lattar SM, Wu X, Brophy J, Sakai F, Klugman KP, Vidal JE (2018) A mechanism of unidirectional transformation, leading to antibiotic resistance, occurs within nasopharyngeal pneumococcal biofilm consortia. MBio 9(3):e00561–e00518PubMedPubMedCentralCrossRefGoogle Scholar
  52. Laurenceau R, Péhau-Arnaudet G, Baconnais S, Gault J, Malosse C, Dujeancourt A, Campo N, Chamot-Rooke J, Le Cam E, Claverys JP, Fronzes R (2013) A type IV pilus mediates DNA binding during natural transformation in Streptococcus pneumoniae. PLoS Pathog 9(6):e1003473PubMedPubMedCentralCrossRefGoogle Scholar
  53. Li LY, Shoemaker NB, Salyers AA (1995) Location and characteristics of the transfer region of a Bacteroides conjugative transposon and regulation of transfer genes. J Bacteriol 177(17):4992–4999PubMedPubMedCentralCrossRefGoogle Scholar
  54. Liu XQ, Liu YR (2016) Detection and genotype analysis of AmpC β-lactamase in Klebsiella pneumoniae from tertiary hospitals. Exp Ther Med 12(1):480–484PubMedPubMedCentralCrossRefGoogle Scholar
  55. Mahzounieh M, Khoshnood S, Ebrahimi A, Habibian S, Yaghoubian M (2014) Detection of antiseptic-resistance genes in Pseudomonas and Acinetobacter spp. isolated from burn patients. Jundishapur J Nat Pharm Prod 9(2):e15402PubMedPubMedCentralCrossRefGoogle Scholar
  56. Maiques E, Úbeda C, Campoy S, Salvador N, Lasa Í, Novick RP, Barbé J, Penadés JR (2006) β-Lactam antibiotics induce the SOS response and horizontal transfer of virulence factors in Staphylococcus aureus. J Bacteriol 188(7):2726–2729PubMedPubMedCentralCrossRefGoogle Scholar
  57. Marri PR, Hao W, Golding GB (2007) The role of laterally transferred genes in adaptive evolution. BMC Evol Biol 7(1):S8PubMedPubMedCentralCrossRefGoogle Scholar
  58. Matamoros S, van Hattem JM, Arcilla MS, Willemse N, Melles DC, Penders J, Vinh TN (2017)Google Scholar
  59. Mazel D (2006) Integrons: agents of bacterial evolution. Nat Rev Microbiol 4:608–620PubMedCrossRefGoogle Scholar
  60. Mazel D, Dychinco B, Webb VA, Davies J (1998) A distinctive class of integron in the Vibrio cholerae genome. Science 280(5363):605–608PubMedCrossRefGoogle Scholar
  61. Méjean V, Claverys JP (1993) DNA processing during entry in transformation of Streptococcus pneumoniae. J Biol Chem 268(8):5594–5599PubMedGoogle Scholar
  62. Meka VG, Pillai SK, Sakoulas G, Wennersten C, Venkataraman L, DeGirolami PC, Eliopoulos GM, Moellering RC Jr, Gold HS (2004) Linezolid resistance in sequential Staphylococcus aureus isolates associated with a T2500A mutation in the 23S rRNA gene and loss of a single copy of rRNA. J Infect Dis 190(2):311–317PubMedCrossRefPubMedCentralGoogle Scholar
  63. Mo CY, Manning SA, Roggiani M, Culyba MJ, Samuels AN, Sniegowski PD, Goulian M, Kohli RM (2016) Systematically altering bacterial SOS activity under stress reveals therapeutic strategies for potentiating antibiotics. MSphere 1(4):e00163–e00116PubMedPubMedCentralCrossRefGoogle Scholar
  64. Morales G, Picazo JJ, Baos E, Candel FJ, Arribi A, Peláez B, Andrade R, de la Torre MÁ, Fereres J, Sánchez-García M (2010) Resistance to linezolid is mediated by the cfr gene in the first report of an outbreak of linezolid-resistant Staphylococcus aureus. Clin Infect Dis 50(6):821–825PubMedCrossRefPubMedCentralGoogle Scholar
  65. Mostowy R, Croucher NJ, Hanage WP, Harris SR, Bentley S, Fraser C (2014) Heterogeneity in the frequency and characteristics of homologous recombination in pneumococcal evolution. PLoS Genet 10(5):e1004300PubMedPubMedCentralCrossRefGoogle Scholar
  66. Munita JM, Arias CA (2016) Mechanisms of antibiotic resistance. Microbiology spectrum 4:2.  https://doi.org/10.1128/microbiolspec.VMBF-0016-2015CrossRefGoogle Scholar
  67. Myeni S, Child R, Ng TW, Kupko JJ III, Wehrly TD, Porcella SF, Knodler LA, Celli J (2013) Brucella modulates secretory trafficking via multiple type IV secretion effector proteins. PLoS Pathog 9(8):e1003556PubMedPubMedCentralCrossRefGoogle Scholar
  68. Naas T, Oueslati S, Bonnin RA, Dabos ML, Zavala A, Dortet L, Retailleau P, Iorga BI (2017) Beta-lactamase database (BLDB)–structure and function. J Enzyme Inhib Med Chem 32(1):917–919PubMedPubMedCentralCrossRefGoogle Scholar
  69. Nash HA (1996) Site-specific recombination: integration, excision, resolution, and inversion of defined DNA segments. Escherichia coli and Salmonella: cellular and molecular biology 2:2363–2376Google Scholar
  70. Nemergut DR, Martin AP, Schmidt SK (2004) Integron diversity in heavy-metal-contaminated mine tailings and inferences about integron evolution. Appl Environ Microbiol 70(2):1160–1168PubMedPubMedCentralCrossRefGoogle Scholar
  71. Nordmann P, Poirel L (2002) Emerging carbapenemases in gram-negative aerobes. Clin Microbiol Infect 8(6):321–331PubMedCrossRefPubMedCentralGoogle Scholar
  72. North SE, Ellington MJ, Johnson AP, Livermore DM, Woodford N (2005) Novel pyrosequencing assays to detect T2500A and other mutations conferring linezolid resistance in Staphylococcus aureus (abstract C2-272). In Program and Abstracts of the 45th Interscience Conference on Antimicrobial Agents and Chemotherapy, Washington Convention Center Washington, DC, USA, pp 16–19Google Scholar
  73. Novick RP (1987) Plasmid incompatibility. Microbiol Rev 51(4):381PubMedPubMedCentralGoogle Scholar
  74. Paltansing S, Vlot JA, Kraakman ME, Mesman R, Bruijning ML, Bernards AT, Visser LG, Veldkamp KE (2013) Extended-spectrum β-lactamase–producing Enterobacteriaceae among travelers from the Netherlands. Emerg Infect Dis 19(8):1206PubMedPubMedCentralCrossRefGoogle Scholar
  75. Partridge SR (2011) Analysis of antibiotic resistance regions in gram-negative bacteria. FEMS Microbiol Rev 35(5):820–855PubMedCrossRefGoogle Scholar
  76. Partridge SR, Tsafnat G, Coiera E, Iredell JR (2009) Gene cassettes and cassette arrays in mobile resistance integrons. FEMS Microbiol Rev 33(4):757–784PubMedCrossRefGoogle Scholar
  77. Peterson SN, Sung CK, Cline R, Desai BV, Snesrud EC, Luo P, Walling J, Li H, Mintz M, Tsegaye G, Burr PC (2004) Identification of competence pheromone responsive genes in Streptococcus pneumoniae by use of DNA microarrays. Mol Microbiol 51(4):1051–1070PubMedCrossRefGoogle Scholar
  78. Rozwandowicz M, Brouwer MSM, Fischer J, Wagenaar JA, Gonzalez-Zorn B, Guerra B, Mevius DJ, Hordijk J (2018) Plasmids carrying antimicrobial resistance genes in Enterobacteriaceae. J Antimicrob Chemother 73(5):1121–1137PubMedCrossRefGoogle Scholar
  79. Rubio-Cosials A, Schulz EC, Lambertsen L, Smyshlyaev G, Rojas-Cordova C, Forslund K, Karaca E, Bebel A, Bork P, Barabas O (2018) Transposase-DNA complex structures reveal mechanisms for conjugative transposition of antibiotic resistance. Cell 173(1):208–220PubMedPubMedCentralCrossRefGoogle Scholar
  80. Salyers AA, Shoemaker NB, Stevens AM, Li LY (1995) Conjugative transposons: an unusual and diverse set of integrated gene transfer elements. Microbiol Rev 59(4):579–590PubMedPubMedCentralGoogle Scholar
  81. Schneiders T, Amyes SGB, Levy SB (2003) Role of AcrR and RamA in fluoroquinolone resistance in clinical Klebsiella pneumoniae isolates from Singapore. Antimicrob Agents Chemother 47(9):2831–2837PubMedPubMedCentralCrossRefGoogle Scholar
  82. Skippington E, Ragan MA (2011) Lateral genetic transfer and the construction of genetic exchange communities. FEMS Microbiol Rev 35(5):707–735PubMedCrossRefPubMedCentralGoogle Scholar
  83. Smillie C, Garcillán-Barcia MP, Francia MV, Rocha EP, de la Cruz F (2010) Mobility of plasmids. Microbiol Mol Biol Rev 74(3):434–452PubMedPubMedCentralCrossRefGoogle Scholar
  84. Spratt BG, Dowson CG, Zhang Q, Bowler LD, Brannigan JA, Hutchison A (1991) Mosaic genes, hybrid penicillin-binding proteins, and the origins of penicillin resistance inNeis-Seria meningitidisandStreptococcus pneumoniae. In: Campisi J, Cunningham D, Inouye M, Riley M (eds) Perspectives on cellular regulation: from Bacteria to Cancered. Wiley-Liss Inc, New York, pp 73–83Google Scholar
  85. Stock AM, Martinez-Hackert E, Rasmussen BF, West AH, Stock JB et al (1993) Structure of the Mg2+−bound form of CheY and mechanism of phosphoryl transfer in bacterial chemotaxis. Biochemistry 32:13375–13380PubMedCrossRefGoogle Scholar
  86. Straume D, Stamsås GA, Håvarstein LS (2015) Natural transformation and genome evolution in Streptococcus pneumoniae. Infect Genet Evol 33:371–380PubMedCrossRefGoogle Scholar
  87. Tankovic J, Perichon B, Duval J, Courvalin P (1996) Contribution of mutations in gyrA and parC genes to fluoroquinolone resistance of mutants of Streptococcus pneumoniae obtained in vivo and in vitro. Antimicrob Agents Chemother 40(11):2505–2510PubMedPubMedCentralCrossRefGoogle Scholar
  88. Toleman MA, Bennett PM, Walsh TR (2006) ISCR elements: novel gene-capturing systems of the 21st century? Microbiol Mol Biol Rev 70(2):296–316PubMedPubMedCentralCrossRefGoogle Scholar
  89. Touchon M, Hoede C, Tenaillon O, Barbe V, Baeriswyl S, Bidet P, Bingen E, Bonacorsi S, Bouchier C, Bouvet O, Calteau A (2009) Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Genet 5(1):e1000344PubMedPubMedCentralCrossRefGoogle Scholar
  90. Uemura S, Yokota SI, Mizuno H, Sakawaki E, Sawamoto K, Maekawa K, Tanno K, Mori K, Asai Y, Fujii N (2010) Acquisition of a transposon encoding extended-spectrum β-lactamase SHV-12 by Pseudomonas aeruginosa isolates during the clinical course of a burn patient. Antimicrob Agents Chemother 54(9):3956–3959PubMedPubMedCentralCrossRefGoogle Scholar
  91. van Hal SJ, Ip CL, Ansari MA, Wilson DJ, Espedido BA, Jensen SO, Bowden R (2016) Evolutionary dynamics of Enterococcus faecium reveals complex genomic relationships between isolates with independent emergence of vancomycin resistance. Microb Genom 2(1):19Google Scholar
  92. von Wintersdorff CJ, Wolffs PF, van Niekerk JM, Beuken E, van Alphen LB, Stobberingh EE, Oude Lashof AM, Hoebe CJ, Savelkoul PH, Penders J (2016) Detection of the plasmid-mediated colistin-resistance gene mcr-1 in faecal metagenomes of Dutch travellers. J Antimicrob Chemother 71(12):3416–3419CrossRefGoogle Scholar
  93. Waksman G, Fronzes R (2010) Molecular architecture of bacterial type IV secretion systems. Trends Biochem Sci 35(12):691–698PubMedCrossRefPubMedCentralGoogle Scholar
  94. Wang H, Roberts AP, Lyras D, Rood JI, Wilks M, Mullany P (2000a) Characterization of the ends and target sites of the novel conjugative transposon Tn5397 from Clostridium difficile: excision and circularization is mediated by the large resolvase, TndX. J Bacteriol 182(13):3775–3783PubMedPubMedCentralCrossRefGoogle Scholar
  95. Wang H, Roberts AP, Mullany P (2000b) DNA sequence of the insertional hot spot of Tn 916 in the Clostridium difficile genome and discovery of a Tn 916-like element in an environmental isolate integrated in the same hot spot. FEMS Microbiol Lett 192(1):15–20PubMedCrossRefPubMedCentralGoogle Scholar
  96. Welch RA, Burland V, Plunkett GIII, Redford P, Roesch P, Rasko D, Buckles EL, Liou SR, Boutin A, Hackett J, Stroud D (2002) Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc Natl Acad Sci 99(26):17020–17024PubMedCrossRefPubMedCentralGoogle Scholar
  97. Wolter N, Smith AM, Farrell DJ, Schaffner W, Moore M, Whitney CG, Jorgensen JH, Klugman KP (2005) Novel mechanism of resistance to oxazolidinones, macrolides, and chloramphenicol in ribosomal protein L4 of the pneumococcus. Antimicrob Agents Chemother 49(8):3554–3557PubMedPubMedCentralCrossRefGoogle Scholar
  98. Zurenko GE, Todd WM, Hafkin B, Meyers B, Kauffman C, Bock J, Slightom J, Shinabarger D, (1999) Development of linezolid-resistant Enterococcus faecium in two compassionate use program patients treated with linezolid. In 39th Interscience Conference on Antimicrobial Agents and Chemotherapy, San Francisco, vol 848Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Sadhana Sagar
    • 1
  • Shilpa Kaistha
    • 2
  • Amar Jyoti Das
    • 3
  • Rajesh Kumar
    • 3
  1. 1.Department of MicrobiologyRani Lakshmi Bai Central Agricultural UniversityJhansiIndia
  2. 2.Department of MicrobiologyChhatrapati Sahu Ji Maharaj UniversityKanpurIndia
  3. 3.Department of Environmental MicrobiologyBabasaheb Bhimrao Ambedkar UniversityLucknowIndia

Personalised recommendations