Nanotechnology: A Twenty-First-Century Approach Towards the Control of Antibiotic-Resistant Bacteria

  • Sadhana Sagar
  • Shilpa Kaistha
  • Amar Jyoti Das
  • Rajesh Kumar


Control of drug-resistant bacteria with commercially available antibiotics is a challenging task for the medical practitioners. Since the last three decades, there is no new medicine that has been introduced in the market for commercial purposes. Hence, medical practitioners are highly thirsty for new and novel antibiotics, and they are impatiently waiting for that. In the meantime, they have adopted new alternatives for the control of drug-resistant pathogens. Nanotechnology is an emerging field of science and technology, and it has changed the attitude of medical researchers towards chemotherapeutics. Nanomaterials having remarkable properties; these properties make them highly reactive, since they are utilized for the control of infectious diseases. Herein, in this chapter we have illustrated different properties of nanomaterials and their application in the field of medicine.


  1. Alagarasi A (2011) Introduction to nanomaterials. National Center for Environmental Research. Conference on Production Engineering, August 26–29, 1974, Tokyo, pp 18–23Google Scholar
  2. Ali Z, Sharma PK, Warsi MH (2016) Fabrication and evaluation of ketorolac loaded cubosome for ocular drug delivery. J Appl Pharm Sci 6(9):204–208Google Scholar
  3. Allaker RP (2010) The use of nanoparticles to control oral biofilm formation. J Dent Res 89(11):1175–1186CrossRefPubMedGoogle Scholar
  4. Andrade F, Rafael D, Videira M, Ferreira D, Sosnik A, Sarmento B (2013) Nanotechnology and pulmonary delivery to overcome resistance in infectious diseases. Adv Drug Deliv Rev 65(13–14):1816–1827CrossRefPubMedGoogle Scholar
  5. Ansari MA, Khan HM, Khan AA, Pal R, Cameotra SS (2013) Antibacterial potential of Al 2 O 3 nanoparticles against multidrug resistance strains of Staphylococcus aureus isolated from skin exudates. J Nanopart Res 15(10):1970CrossRefGoogle Scholar
  6. Brown AN, Smith K, Samuels TA, Lu J, Obare SO, Scott ME (2012) Nanoparticles functionalized with ampicillin destroy multiple-antibiotic-resistant isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and methicillin-resistant Staphylococcus aureus. 78(8):2768–2774Google Scholar
  7. Cavalcanti A, Shirinzadeh B, Freitas RA Jr, Hogg T (2007) Nanorobot architecture for medical target identification. Nanotechnology 19(1):015103CrossRefGoogle Scholar
  8. Cavalli R, Gasco MR, Chetoni P, Burgalassi S, Saettone MF (2002) Solid lipid nanoparticles (SLN) as ocular delivery system for tobramycin. Int J Pharm 238(1–2):241–245CrossRefPubMedGoogle Scholar
  9. Cha SH, Hong J, McGuffie M, Yeom B, VanEpps JS, Kotov NA (2015) Shape-dependent biomimetic inhibition of enzyme by nanoparticles and their antibacterial activity. ACS Nano 9(9):9097–9105CrossRefPubMedGoogle Scholar
  10. Chatterjee AK, Chakraborty R, Basu T (2014) Mechanism of antibacterial activity of copper nanoparticles. Nanotechnology 25(13):135101CrossRefPubMedGoogle Scholar
  11. Chaurasia AK, Thorat ND, Tandon A, Kim JH, Park SH, Kim KK (2016) Coupling of radiofrequency with magnetic nanoparticles treatment as an alternative physical antibacterial strategy against multiple drug resistant bacteria. Sci Rep 6:33662CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chen YC, Huang XC, Luo YL, Chang YC, Hsieh YZ, Hsu HY (2013) Non-metallic nanomaterials in cancer theranostics: a review of silica- and carbon-based drug delivery systems. Sci Technol Adv Mater 14:44407. Scholar
  13. Cheng Y, Qu H, Ma M, Xu Z, Xu P, Fang Y, Xu T (2007) Polyamidoamine (PAMAM) dendrimers as biocompatible carriers of quinolone antimicrobials: an in vitro study. Eur J Med Chem 42(7):1032–1038CrossRefPubMedGoogle Scholar
  14. Dakal TC, Kumar A, Majumdar RS, Yadav V (2016) Mechanistic basis of antimicrobial actions of silver nanoparticles. Front Microbiol 7:1831CrossRefPubMedPubMedCentralGoogle Scholar
  15. De Jong WH, Borm PJ (2008) Drug delivery and nanoparticles:applications and hazards. Int J Nanomedicine 3(2):133–149CrossRefPubMedPubMedCentralGoogle Scholar
  16. Devasahayam G, Scheld WM, Hoffman PS (2010) Newer antibacterial drugs for a new century. Expert Opin Investig Drugs 19(2):215–234CrossRefPubMedPubMedCentralGoogle Scholar
  17. Dhanabalan K, Gurunathan K (2015) Microemulsion mediated synthesis and characterization of CdS nanoparticles and its anti-biofilm efficacy against Escherichia coli ATCC 25922. J Nanosci Nanotechnol 15(6):4200–4204CrossRefPubMedGoogle Scholar
  18. Djafari J, Marinho C, Santos T, Igrejas G, Torres C, Capelo JL, Poeta P, Lodeiro C, Fernández-Lodeiro J (2016) New synthesis of gold-and silver-based nano-tetracycline composites. ChemistryOpen 5(3):206–212CrossRefPubMedPubMedCentralGoogle Scholar
  19. Durán N, Durán M, de Jesus MB, Seabra AB, Fávaro WJ, Nakazato G (2016) Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity. Nanomedicine 12(3):789–799CrossRefPubMedGoogle Scholar
  20. Esmaeillou M, Zarrini G, Rezaee MA (2017) Vancomycin capped with silver nanoparticles as an antibacterial agent against multi-drug resistance Bacteria. Adv Pharm Bull 7(3):479CrossRefPubMedPubMedCentralGoogle Scholar
  21. Fayaz AM, Girilal M, Mahdy SA, Somsundar SS, Venkatesan R, Kalaichelvan PT (2011) Vancomycin bound biogenic gold nanoparticles: a different perspective for development of anti VRSA agents. Process Biochem 46(3):636–641CrossRefGoogle Scholar
  22. Franci G, Falanga A, Galdiero S, Palomba L, Rai M, Morelli G, Galdiero M (2015) Silver nanoparticles as potential antibacterial agents. Molecules 20(5):8856–8874CrossRefPubMedPubMedCentralGoogle Scholar
  23. Gupta A, Mumtaz S, Li CH, Hussain I, Rotello VM (2019) Combatting antibiotic-resistant bacteria using nanomaterials. Chem Soc Rev 48(2):415–427CrossRefPubMedGoogle Scholar
  24. Hemeg HA (2017) Nanomaterials for alternative antibacterial therapy. Int J Nanomedicine 12:8211CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hernandez-Delgadillo R, Velasco-Arias D, Diaz D, Arevalo-Niño K, Garza-Enriquez M, De la Garza-Ramos MA, Cabral-Romero C (2012) Zerovalent bismuth nanoparticles inhibit Streptococcus mutans growth and formation of biofilm. Int J Nanomedicine 7:2109PubMedPubMedCentralGoogle Scholar
  26. Huang Y, Yu F, Park YS, Wang J, Shin MC, Chung HS, Yang VC (2010) Co-administration of protein drugs with gold nanoparticles to enable percutaneous delivery. Biomaterials 31(34):9086–9091CrossRefPubMedPubMedCentralGoogle Scholar
  27. Huang N, Chen X, Zhu X, Xu M, Liu J (2017) Ruthenium complexes/polypeptide self-assembled nanoparticles for identification of bacterial infection and targeted antibacterial research. Biomaterials 141:296–313CrossRefPubMedGoogle Scholar
  28. Huo S, Jiang Y, Gupta A, Jiang Z, Landis RF, Hou S, Liang XJ, Rotello VM (2016) Fully zwitterionic nanoparticle antimicrobial agents through tuning of core size and ligand structure. ACS Nano 10(9):8732–8737CrossRefPubMedPubMedCentralGoogle Scholar
  29. Inbaraj BS, Chen BH (2016) Nanomaterial-based sensors for detection of foodborne bacterial pathogens and toxins as well as pork adulteration in meat products. J Food Drug Anal 24(1):15–28CrossRefGoogle Scholar
  30. Jain KK (2005) Nanotechnology in clinical laboratory diagnostics. Clin Chim Acta 358(1–2):37–54CrossRefPubMedGoogle Scholar
  31. JankauskaitĿ V, VitkauskienĿ A, Lazauskas A, Baltrusaitis J, ProsyĿevas I, AndruleviĿius M (2016) Bactericidal effect of graphene oxide/Cu/Ag nanoderivatives against Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus. Int J Pharm 511(1):90–97CrossRefPubMedGoogle Scholar
  32. Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK (2018) Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol 9(1):1050–1074CrossRefPubMedPubMedCentralGoogle Scholar
  33. Jeng HA, Swanson J (2006) Toxicity of metal oxide nanoparticles in mammalian cells. J Environ Sci Health A 41(12):2699–2711CrossRefGoogle Scholar
  34. Kaittanis C, Santra S, Perez JM (2010) Emerging nanotechnology-based strategies for the identification of microbial pathogenesis. Adv Drug Deliv Rev 62(4–5):408–423CrossRefPubMedGoogle Scholar
  35. Khan I, Saeed K, Khan I (2017) Nanoparticles: properties, applications and toxicities. Arab J Chem 5:1–23Google Scholar
  36. Khashan KS, Sulaiman GM, Ameer A, Kareem FA, Napolitano G (2016) Synthesis, characterization and antibacterial activity of colloidal NiO nanoparticles. Pak J Pharm Sci 29(2):541–546PubMedPubMedCentralGoogle Scholar
  37. Kruk T, Szczepanowicz K, Stefańska J, Socha RP, Warszyński P (2015) Synthesis and antimicrobial activity of monodisperse copper nanoparticles. Colloids Surf B: Biointerfaces 128:17–22CrossRefPubMedGoogle Scholar
  38. Kumar N, Kumbhat S (2016. Carbon-Based Nanomaterials) Essentials in nanoscience and nanotechnology. Wiley, Hoboken, pp 189–236CrossRefGoogle Scholar
  39. Kumar V, Sharma N, Maitra SS (2017) In vitro and in vivo toxicity assessment of nanoparticles. Int Nano Lett 7(4):243–256CrossRefGoogle Scholar
  40. Kumar M, Curtis A, Hoskins C (2018) Application of nanoparticle technologies in the combat against anti-microbial resistance. Pharmaceutics 10(1):11CrossRefPubMedCentralGoogle Scholar
  41. Kuo WS, Chang CN, Chang YT, Yeh CS (2009) Antimicrobial gold nanorods with dual-modality photodynamic inactivation and hyperthermia. Chem Commun 32:4853–4855CrossRefGoogle Scholar
  42. Lee JH, Kim YG, Cho MH, Lee J (2014) ZnO nanoparticles inhibit Pseudomonas aeruginosa biofilm formation and virulence factor production. Microbiol Res 169(12):888–896CrossRefPubMedGoogle Scholar
  43. Lellouche J, Friedman A, Gedanken A, Banin E (2012) Antibacterial and antibiofilm properties of yttrium fluoride nanoparticles. Int J Nanomedicine 7:5611PubMedPubMedCentralGoogle Scholar
  44. Leonard P, Hearty S, Brennan J, Dunne L, Quinn J, Chakraborty T, O’Kennedy R (2003) Advances in biosensors for detection of pathogens in food and water. Enzym Microb Technol 32(1):3–13CrossRefGoogle Scholar
  45. Li Y, Zhang W, Niu J, Chen Y (2012) Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano 6(6):5164–5173CrossRefPubMedGoogle Scholar
  46. Mahtab R, Murphy CJ (2005) Probing DNA structure with nanoparticles. In: Nanobiotechnology protocols. Humana Press, Totowa, pp 179–190CrossRefGoogle Scholar
  47. Mainous AG III, Diaz VA, Matheson EM, Gregorie SH, Hueston WJ (2011) Trends in hospitalizations with antibiotic-resistant infections: US, 1997–2006. Public Health Rep 126(3):354–360CrossRefPubMedPubMedCentralGoogle Scholar
  48. Murphy CJ (2001) Photophysical probes of DNA sequence-directed structure and dynamics. Adv Photochem 26:145–218Google Scholar
  49. Murphy CJ, Coffer JL (2002) Quantum dots: a primer. Appl Spectrosc 56(1):16A–27ACrossRefGoogle Scholar
  50. Nagvenkar AP, Deokar A, Perelshtein I, Gedanken A (2016) A one-step sonochemical synthesis of stable ZnO–PVA nanocolloid as a potential biocidal agent. J Mater Chem B 4(12):21CrossRefGoogle Scholar
  51. Nune SK, Gunda P, Thallapally PK, Lin YY, Forrest ML, Berkland CJ (2009) Nanoparticles for biomedical imaging. Expert Opin Drug Deliv 6(11):1175–1194CrossRefPubMedPubMedCentralGoogle Scholar
  52. Omri A, Suntres ZE, Shek PN (2002) Enhanced activity of liposomal polymyxin B against Pseudomonas aeruginosa in a rat model of lung infection. Biochem Pharmacol 64(9):1407–1413CrossRefPubMedGoogle Scholar
  53. Otari SV, Patil RM, Waghmare SR, Ghosh SJ, Pawar SH (2013) A novel microbial synthesis of catalytically active Ag–alginate biohydrogel and its antimicrobial activity. Dalton Trans 42(27):9966–9975CrossRefPubMedGoogle Scholar
  54. Padmavathy N, Vijayaraghavan R (2011) Interaction of ZnO nanoparticles with microbes—a physio and biochemical assay. J Biomed Nanotechnol 7(6):813–822CrossRefPubMedGoogle Scholar
  55. Pantarotto D, Partidos CD, Hoebeke J, Brown F, Kramer ED, Briand JP, Muller S, Prato M, Bianco A (2003) Immunization with peptide-functionalized carbon nanotubes enhances virus-specific neutralizing antibody responses. Chem Biol 10(10):961–966CrossRefPubMedGoogle Scholar
  56. Payne JN, Waghwani HK, Connor MG, Hamilton W, Tockstein S, Moolani H et al (2016) Novel synthesis of kanamycin conjugated gold nanoparticles with potent antibacterial activity. Front Microbiol 7:607. Scholar
  57. Pei Y, Mohamed MF, Seleem MN, Yeo Y (2017) Particle engineering for intracellular delivery of vancomycin to methicillin-resistant Staphylococcus aureus (MRSA)-infected macrophages. J Control Release 267:133–143CrossRefPubMedGoogle Scholar
  58. Pelgrift RY, Friedman AJ (2013) Nanotechnology as a therapeutic tool to combat microbial resistance. Adv Drug Deliv Rev 65(13–14):1803–1815CrossRefPubMedGoogle Scholar
  59. Pokropivny VV, Skorokhod VV (2007) Classification of nanostructures by dimensionality and concept of surface forms engineering in nanomaterial science. Mater Sci Eng C 27(5–8):990–993CrossRefGoogle Scholar
  60. Pokropivny V, Lohmus R, Hussainova I, Pokropivny A, Vlassov S (2007) Introduction to nanomaterials and nanotechnology. Tartu University Press, Ukraine, pp 45–100Google Scholar
  61. Rai MK, Deshmukh SD, Ingle AP, Gade AK (2012) Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. J Appl Microbiol 112(5):841–852CrossRefPubMedGoogle Scholar
  62. Ramalingam B, Parandhaman T, Das SK (2016) Antibacterial effects of biosynthesized silver nanoparticles on surface ultrastructure and nanomechanical properties of gram-negative bacteria viz. Escherichia coli and Pseudomonas aeruginosa. ACS Appl Mater Interfaces 8(7):4963–4976CrossRefPubMedGoogle Scholar
  63. Reddy LS, Nisha MM, Joice M, Shilpa PN (2014) Antimicrobial activity of zinc oxide (ZnO) nanoparticle against Klebsiella pneumoniae. Pharm Biol 52(11):1388–1397CrossRefPubMedGoogle Scholar
  64. Rizwan M, Singh M, Mitra CK, Morve RK (2014) Ecofriendly application of nanomaterials: nanobioremediation. J Nanopart 2014:7CrossRefGoogle Scholar
  65. Roy AS, Parveen A, Koppalkar AR, Prasad MA (2010) Effect of nano-titanium dioxide with different antibiotics against methicillin-resistant Staphylococcus aureus. J Biomat Nanobiotechnol 1(01):37CrossRefGoogle Scholar
  66. Saeb A, Alshammari AS, Al-Brahim H, Al-Rubeaan KA (2014) Production of silver nanoparticles with strong and stable antimicrobial activity against highly pathogenic and multidrug resistant bacteria. Sci World J 2014:704708CrossRefGoogle Scholar
  67. Salata OV (2004) Applications of nanoparticles in biology and medicine. J Nanobiotechnol 2(1):3CrossRefGoogle Scholar
  68. Sarwar S, Chakraborti S, Bera S, Sheikh IA, Hoque KM, Chakrabarti P (2016) The antimicrobial activity of ZnO nanoparticles against Vibrio cholerae: variation in response depends on biotype. Nanomedicine 12(6):1499–1509CrossRefPubMedGoogle Scholar
  69. Schiffelers R, Storm G, Bakker-Woudenberg I (2001) Liposome-encapsulated aminoglycosides in pre-clinical and clinical studies. J Antimicrob Chemother 48(3):333–344CrossRefPubMedGoogle Scholar
  70. Shaikh S, Rizvi SMD, Shakil S, Hussain T, Alshammari TM, Ahmad W, Tabrez S, Al-Qahtani MH, Abuzenadah AM (2017) Synthesis and characterization of cefotaxime conjugated gold nanoparticles and their use to target drug-resistant CTX-M-producing bacterial pathogens. J Cell Biochem 118(9):2802–2808CrossRefPubMedGoogle Scholar
  71. Shaker MA, Shaaban MI (2017) Formulation of carbapenems loaded gold nanoparticles to combat multi-antibiotic bacterial resistance: in vitro antibacterial study. Int J Pharm 525(1):71–84CrossRefPubMedGoogle Scholar
  72. Shamaila S, Zafar N, Riaz S, Sharif R, Nazir J, Naseem S (2016) Gold nanoparticles: an efficient antimicrobial agent against enteric bacterial human pathogen. Nano 6(4):71Google Scholar
  73. Sharma VK, Filip J, Zboril R, Varma RS (2015) Natural inorganic nanoparticles–formation, fate, and toxicity in the environment. Chem Soc Rev 44(23):8410–8423CrossRefPubMedGoogle Scholar
  74. Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, Hasan H, Mohamad D (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett 7(3):219–242CrossRefGoogle Scholar
  75. Spellberg B, Guidos R, Gilbert D, Bradley J, Boucher HW, Scheld WM, Bartlett JG, Edwards J Jr, Infectious Diseases Society of America (2008) The epidemic of antibiotic-resistant infections: a call to action for the medical community from the Infectious Diseases Society of America. Clin Infect Dis 46(2):155–164CrossRefPubMedGoogle Scholar
  76. Taniguchi N, Arakawa C, Kobayashi T (1974) On the basic concept of ‘nano-technology’. In: Proceedings of the international conference on Production Engineering, 1974–8. vol 2, pp 18–23Google Scholar
  77. Turos E, Shim JY, Wang Y, Greenhalgh K, Reddy GSK, Dickey S, Lim DV (2007) Antibiotic-conjugated polyacrylate nanoparticles: new opportunities for development of anti-MRSA agents. Bioorg Med Chem Lett 17(1):53–56CrossRefPubMedGoogle Scholar
  78. Tyagi R, Lala S, Verma AK, Nandy AK, Mahato SB, Maitra A, Basu MK (2005) Targeted delivery of arjunglucoside I using surface hydrophilic and hydrophobic nanocarriers to combat experimental leishmaniasis. J Drug Target 13(3):161–171CrossRefPubMedGoogle Scholar
  79. Vajtai R (Ed.) (2013) Springer handbook of nanomaterials. Springer Science & Business MediaGoogle Scholar
  80. Wang Z, Dong K, Liu Z, Zhang Y, Chen Z, Sun H, Ren J, Qu X (2017) Activation of biologically relevant levels of reactive oxygen species by Au/g-C3N4 hybrid nanozyme for bacteria killing and wound disinfection. Biomaterials 113:145–157CrossRefPubMedGoogle Scholar
  81. Wong MS, Chen CW, Hsieh CC, Hung SC, Sun DS, Chang HH (2015) Antibacterial property of Ag nanoparticle-impregnated N-doped titania films under visible light. Sci Rep 5:11978CrossRefPubMedPubMedCentralGoogle Scholar
  82. World Health Organization Global Priority List of Antibiotic-Resistant Bacteria to Guide Research (2017) Discovery, and development of new antibiotics. Accessed 8 Dec 2017. Available online:
  83. Yang S, Han X, Yang Y, Qiao H, Yu Z, Liu Y, Wang J, Tang T (2018) Bacteria-targeting nanoparticles with microenvironment-responsive antibiotic release to eliminate intracellular Staphylococcus aureus and associated infection. ACS Appl Mater Interfaces 10(17):14299–14311CrossRefPubMedGoogle Scholar
  84. Yoon KY, Byeon JH, Park JH, Hwang J (2007) Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci Total Environ 373(2–3):572–575CrossRefPubMedGoogle Scholar
  85. Zhang Y, Zhu P, Li G, Wang W, Chen L, Lu DD, Sun R, Zhou F, Wong C (2015) Highly stable and re-dispersible nano Cu hydrosols with sensitively size-dependent catalytic and antibacterial activities. Nanoscale 7(32):13775–13783CrossRefPubMedGoogle Scholar
  86. Zinn CS, Westh H, Rosdahl V, T. and Sarisa Study Group (2004) An international multicenter study of antimicrobial resistance and typing of hospital Staphylococcus aureus isolates from 21 laboratories in 19 countries or states. Microb Drug Resist 10(2):160–168CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Sadhana Sagar
    • 1
  • Shilpa Kaistha
    • 2
  • Amar Jyoti Das
    • 3
  • Rajesh Kumar
    • 3
  1. 1.Department of MicrobiologyRani Lakshmi Bai Central Agricultural UniversityJhansiIndia
  2. 2.Department of MicrobiologyChhatrapati Sahu Ji Maharaj UniversityKanpurIndia
  3. 3.Department of Environmental MicrobiologyBabasaheb Bhimrao Ambedkar UniversityLucknowIndia

Personalised recommendations