Advertisement

Mechanisms of Biofilm Development, Antibiotic Resistance and Tolerance and Their Role in Persistent Infections

  • Divya Srivastava
  • Suchi Srivastava
  • Poonam C. Singh
  • Adesh Kumar
Chapter

Abstract

Bacteria frequently form biofilms in response to stress factors that include exposure of planktonic cells to subinhibitory concentrations of antibiotics. When these attach to a surface, they switch to the biofilm mode of growth and undergo a phenotypic shift in behaviour. During this process, a large suite of genes are differentially regulated to develop a biofilm, which protect them from killing by antibiotics. This leads to the persistence of biofilm infections and the mechanisms used to protect bacteria in biofilms distinct from those that are responsible for conventional antibiotic resistance as well as tolerance. This tolerance to antibiotics is contributed to by multiple factors such as poor antibiotic penetration, nutrient limitation adaptive stress responses, slowed metabolism and the formation of persister cells. The present chapter deals with the introduction to biofilm and their mechanism to achieve antibiotic resistance as well as tolerance properties including their role in persistent infection with some advancement in biofilm research.

Keywords

Biofilm Tolerance Persistence Antibiotic resistance Challenge in chemotherapy 

References

  1. An, D., & Parsek, M. R. (2007). The promise and peril of transcriptional profiling in biofilm communities. Current Opinion in Microbiology, 10(3), 292–296.  https://doi.org/10.1016/j.mib.2007.05.011.CrossRefPubMedGoogle Scholar
  2. Anderl, J. N., Franklin, M. J., & Stewart, P. S. (2000). Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrobial Agents and Chemotherapy, 44(7), 1818–1824.CrossRefGoogle Scholar
  3. Anderson, G. G., Dodson, K. W., Hooton, T. M., & Hultgren, S. J. (2004). Intracellular bacterial communities of uropathogenic Escherichia coli in urinary tract pathogenesis. Trends in Microbiology, 12, 424–430.  https://doi.org/10.1016/j.tim.2004.07.005.CrossRefPubMedGoogle Scholar
  4. Ashby, M. J., Neale, J. E., Knott, S. J., & Critchley, I. A. (1994). Effect of antibiotics on non-growing planktonic cells and biofilms of Escherichia coli. Journal of Antimicrobial Chemotherapy, 33(3), 443–452.  https://doi.org/10.1093/jac/33.3.443.CrossRefPubMedGoogle Scholar
  5. Aslam, S. N., Cresswell-Maynard, T., Thomas, D. N., & Underwood, G. J. (2012). Production and characterization of the intra-and extracellular carbohydrates and polymeric substances (EPS) of three sea-ice diatom species, and evidence for a cryoprotective role for EPS. Journal of Phycology, 48(6), 1494–1509.  https://doi.org/10.1111/jpy.12004.CrossRefPubMedGoogle Scholar
  6. Balaban, N. Q., Merrin, J., Chait, R., Kowalik, L., & Leibler, S. (2004). Bacterial persistence as a phenotypic switch. Science, 305, 1622–1625.  https://doi.org/10.1126/science.1099390.CrossRefPubMedGoogle Scholar
  7. Baselga, R., Albizu, I., & Amorena, B. (1994). Staphylococcus aureus capsule and slime as virulence factors in ruminant mastitis. A review. Veterinary Microbiology, 39, 195–204.  https://doi.org/10.1016/0378-1135(94)90157-0.CrossRefPubMedGoogle Scholar
  8. Borriello, G., Werner, E., Roe, F., Kim, A. M., Ehrlich, G. D., & Stewart, P. S. (2004). Oxygen limitation contributes to antibiotic tolerance of Pseudomonas aeruginosa in biofilms. Antimicrobial Agents and Chemotherapy, 48(7), 2659–2664.  https://doi.org/10.1128/AAC.48.7.2659-2664.2004.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Branda, S. S., Chu, F., Kearns, D. B., Losick, R., & Kolter, R. (2006). A major protein component of the Bacillus subtilis biofilm matrix. Molecular Microbiology, 59(4), 1229–1238.  https://doi.org/10.1111/j.1365-2958.2005.05020.x.CrossRefPubMedGoogle Scholar
  10. Carl, V. C., Graham, J. C., Underwood, J. S., & David, M. P. (2014). Ecology of intertidal microbial biofilms: Mechanisms, patterns and future research needs. Journal of Sea Research, 92, 2–5.  https://doi.org/10.1016/j.seares.2014.07.003.CrossRefGoogle Scholar
  11. Chakraborty, S., Dutta, T. K., De, A., Das, M., & Ghosh, S. (2018). Impact of bacterial biofilm in veterinary medicine: An overview. International Journal of Current Microbiology and Applied Sciences, 7(04), 3228–3239.  https://doi.org/10.20546/ijcmas.2018.704.366.CrossRefGoogle Scholar
  12. Chiang, W. C., Nilsson, M., Jensen, P. Ø., Høiby, N., Nielsen, T. E., Givskov, M., & Tolker-Nielsen, T. (2013). Extracellular DNA shields against aminoglycosides in Pseudomonas aeruginosa biofilms. Antimicrobial Agents and Chemotherapy, 57(5), 2352–2361.  https://doi.org/10.1128/AAC.00001-13. Epub 2013 Mar 11.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Chimileski, S., Franklin, M. J., & Papke, R. T. (2014). Biofilms formed by the archaeon Haloferax volcanii exhibit cellular differentiation and social motility, and facilitate horizontal gene transfer. BMC Biology, 12, 65.  https://doi.org/10.1186/s12915-014-0065-5.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Ciofu, O., Tolker-Nielsen, T., Jensen, P. Ø., Wang, H., & Høiby, N. (2014). Antimicrobial resistance, respiratory tract infections and role of biofilms in lung infections in cystic fibrosis patients. Advanced Drug Delivery Reviews, 85, 7–23.  https://doi.org/10.1016/j.addr.2014.11.017. Epub 2014 Dec 2.CrossRefPubMedGoogle Scholar
  15. Costerone, J. W., Stewart, P. S., & Greenberg, E. P. (1999). Bacterial biofilms: A common cause of persistent infections. Science, 284, 1318–1322.  https://doi.org/10.1126/science.284.5418.1318.CrossRefGoogle Scholar
  16. Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R., & Lappin-Scott, H. M. (1995). Microbial biofilms. Annual Review of Microbiology, 49(1), 711–745.  https://doi.org/10.1146/annurev.mi.49.100195.003431.CrossRefPubMedGoogle Scholar
  17. Costerton, J. W., Veeh, R., & Shirtliff, M. (2003). The application of biofilm science to the study and control of chronic bacterial infections. Journal of Clinical Investigation, 112, 1466–1477.  https://doi.org/10.1172/JCI20365.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Danhorn, T., & Fuqua, C. (2007). Biofilm formation by plant-associated bacteria. Annual Review of Microbiology, 61, 401–422.  https://doi.org/10.1146/annurev.micro.61.080706.093316.CrossRefPubMedGoogle Scholar
  19. de Beer, D., Stoodley, P., & Lewandowski, Z. (1997). Measurement of local diffusion coefficients in biofilms by microinjection and confocal microscopy. Biotechnology and Bioengineering, 53(2), 151–158.  https://doi.org/10.1002/(SICI)1097-0290(19970120)53:2<151::AID-BIT4>3.0.CO;2-N.CrossRefPubMedGoogle Scholar
  20. Donlan, R. M., & Costerton, J. W. (2002). Biofilms survival mechanisms of clinically relevant microorganisms. Clinical Microbiology Reviews, 15, 167–193.  https://doi.org/10.1128/CMR.15.2.167-193.2002.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Fux, C. A., Wilson, S., & Stoodley, P. (2004). Detachment characteristics and oxacillin resistance of Staphyloccocus aureus biofilm emboli in an in vitro catheter infection model. Journal of Bacteriology, 186(14), 4486–4491.  https://doi.org/10.1128/JB.186.14.4486-4491.2004.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hall-Stoodley, L., & Stoodley, P. (2009). Evolving concepts in biofilm infections. Cellular Microbiology, 11(7), 1034–1043.  https://doi.org/10.1111/j.1462-5822.2009.01323.x. Epub 2009 Apr 6.CrossRefPubMedGoogle Scholar
  23. Hall-Stoodley, L., Costerton, J. W., & Stoodley, P. (2004). Bacterial biofilms: From the natural environment to infectious diseases. Nature Reviews Microbiology, 2(2), 95–108.  https://doi.org/10.1038/nrmicro821.CrossRefPubMedGoogle Scholar
  24. Hoffman, L. R., D’Argenio, D. A., MacCoss, M. J., Zhang, Z., Jones, R. A., & Miller, S. I. (2005). Aminoglycoside antibiotics induce bacterial biofilm formation. Nature, 436(7054), 1171–1175.  https://doi.org/10.1038/nature03912.CrossRefPubMedGoogle Scholar
  25. Hu, Y., & Coates, A. (2012). Nonmultiplying bacteria are profoundly tolerant to antibiotics. In A. R. M. Coates (Ed.), Antibiotic resistance (Handbook of experimental pharmacology) (Vol. 211, pp. 99–119). Berlin Heidelberg: Springer.  https://doi.org/10.1007/978-3-642-28951-4-7.CrossRefGoogle Scholar
  26. Jakubovics, N. S., Shields, R. C., Rajarajan, N., & Burgess, J. G. (2013). Life after death: The critical role of extracellular DNA in microbial biofilms. Letters in Applied Microbiology, 57(6), 467–475.  https://doi.org/10.1111/lam.12134.CrossRefPubMedGoogle Scholar
  27. Jolivet-Gougeon, A., & Bonnaure-Mallet, M. (2014). Biofilms as a mechanism of bacterial resistance. Drug Discovery Today: Technologies, 11, 49–56.  https://doi.org/10.1016/j.ddtec.2014.02.003.CrossRefPubMedGoogle Scholar
  28. Joubert, L. M., Wolfaardt, G. M., & Botha, A. (2006). Microbial exopolymers link predator and prey in a model yeast biofilm system. Microbial Ecology, 52(2), 187–197.  https://doi.org/10.1007/s00248-006-9063-7.CrossRefPubMedGoogle Scholar
  29. Karthik, R., Ambica, R., & Nagarathnamma, T. (2018). Study of biofilm production and antimicrobial susceptibility pattern in clinical isolates of proteus species at a tertiary care hospital. International Journal of Current Microbiology and Applied Sciences, 7(01), 574–586.  https://doi.org/10.20546/ijcmas.2018.701.070.CrossRefGoogle Scholar
  30. Keren, I., Shah, D., Spoering, A., Kaldalu, N., & Lewis, K. (2004). Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. Journal of Bacteriology, 186(24), 8172–8180.  https://doi.org/10.1128/JB.186.24.8172-8180.2004.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kindrachuk, J., Scruten, E., Attah-Poku, S., Bell, K., Potter, A., Babiuk, L. A., Griebel, P. J., & Napper, S. (2011). Stability, toxicity, and biological activity of host defense peptide BMAP28 and its inversed and retro-inversed isomers. Biopolymers, 96(1), 14–24.  https://doi.org/10.1002/bip.21441.CrossRefPubMedGoogle Scholar
  32. Lazăr, V., & Chifiriuc, M. C. (2010). Medical significance and new therapeutical strategies for biofilm associated infections. Romanian Archives of Microbiology and Immunology, 69(3), 125–138. on www.researchgate.net/publication/50849066.PubMedGoogle Scholar
  33. Leid, J. G., Willson, C. J., Shirtliff, M. E., Hassett, D. J., Parsek, M. R., & Jeffers, A. K. (2005). The exopolysaccharide alginate protects Pseudomonas aeruginosa biofilm bacteria from IFNgamma- mediated macrophage killing. Journal of Immunology, 175(11), 7512–7518.  https://doi.org/10.4049/jimmunol.175.11.7512.CrossRefGoogle Scholar
  34. Lenz, A. P., Williamson, K. S., Pitts, B., Stewart, P. S., & Franklin, M. J. (2008). Localized gene expression in Pseudomonas aeruginosa biofilms. Applied and Environmental Microbiology, 74(14), 4463–4471.  https://doi.org/10.1128/AEM.00710-08. Epub 2008 May 16.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Lewis, K. (2007). Persister cells, dormancy and infectious disease. Nature Reviews Microbiology, 5(1), 48–56.  https://doi.org/10.1038/nrmicro1557.CrossRefPubMedGoogle Scholar
  36. Lewis, K. (2012). Persister cells: molecular mechanisms related to antibiotic tolerance. In A. R. M. Coates (Ed.), Antibiotic resistance (Handbook of experimental pharmacology) (Vol. 211, pp. 121–133). Berlin Heidelberg: Springer.  https://doi.org/10.1007/978-3-642-28951-4_8.CrossRefGoogle Scholar
  37. Luppens, S. B., Reij, M. W., van der Heijden, R. W., Rombouts, F. M., & Abee, T. (2002). Development of a standard test to assess the resistance of Staphylococcus aureus biofilm cells to disinfectants. Applied and Environmental Microbiology, 68(9), 4194–4200.  https://doi.org/10.1128/AEM.68.9.4194-4200.2002.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Mckenney, D. (1998). The ica locus of Staphylococcus epidermidis encodes production of the capsular polysaccharide/adhesin. Infect Immunity, 66, 4711–4720.Google Scholar
  39. Molin, S., & Tolker-Nielsen, T. (2003). Gene transfer occurs with enhanced efficiency in biofilms and induces enhanced stabilisation of the biofilm structure. Current Opinion in Biotechnology, 14(3), 255–261.  https://doi.org/10.1016/S0958-1669(03)00036-3.CrossRefPubMedGoogle Scholar
  40. Monroe, D. (2007). Looking for chinks in the armor of bacterial biofilms. PLoS Biology, 5(11).  https://doi.org/10.1371/journal.pbio.0050307.CrossRefGoogle Scholar
  41. Muhsin, J., Ahmad, W., Andleeb, S., Jalil, F., Nawaz, M. A., Hussain, T., Muhammad, A., Muhammad, R., & Muhammad, A. K. (2018). Bacterial biofilm and associated infections. Journal of the Chinese Medical Association, 81(1), 7–11.  https://doi.org/10.1016/j.jcma.2017.07.012.CrossRefGoogle Scholar
  42. Nadell, C. D., Xavier, J. B., & Foster, K. R. (2009). The sociobiology of biofilms. FEMS Microbiology Reviews, 33(1), 206–224.  https://doi.org/10.1111/j.1574-6976.2008.00150.x.CrossRefPubMedGoogle Scholar
  43. Nickel, J. C., Ruseska, I., Wright, J. B., & Costerton, J. W. (1985). Tobramycin resistance of Pseudomonas aeruginosa cells growing as a biofilm on urinary catheter material. Antimicrobial Agents and Chemotherapy, 27(4), 619–624.  https://doi.org/10.1128/AAC.27.4.619.CrossRefPubMedPubMedCentralGoogle Scholar
  44. O’Toole, G. A., & Kolter, R. (May 1998). Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: A genetic analysis. Molecular Microbiology, 28(3), 449–461.  https://doi.org/10.1046/j.1365-2958.1998.00797.x.CrossRefPubMedGoogle Scholar
  45. Ojha, A. K., Baughn, A. D., & Sambandan, D. (2008). Growth of Mycobacterium tuberculosis biofilms containing free mycolic acids and harbouring drug-tolerant bacteria. Molecular Microbiology, 69, 164–174.  https://doi.org/10.1111/j.1365-2958.2008.06274.x.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Pamp, S. J., Gjermansen, M., Johansen, H. K., & Tolker-Nielsen, T. (2008). Tolerance to the antimicrobial peptide colistin in Pseudomonas aeruginosa biofilms is linked to metabolically active cells, and depends on the pmr and mexAB-oprM genes. Molecular Microbiology, 68(1), 223–240.  https://doi.org/10.1111/j.1365-2958.2008.06152.x. Epub 2008 Feb 28.CrossRefPubMedGoogle Scholar
  47. Paramasivam, N., Pandian, S. K., Kushmaro, A., Voravuthi kunchai, S., & Wilson, A. (2017). Recent advances in biofilmology and antibiofilm measures. BioMed Research International, 5409325.  https://doi.org/10.1155/2017/5409325.CrossRefGoogle Scholar
  48. Parsek, M. R., & Singh, P. K. (2003). Bacterial biofilms: An emerging link to disease pathogenesis. Annual Review of Microbiology, 57, 677–701.  https://doi.org/10.1146/annurev.micro.57.030502.090720.CrossRefPubMedGoogle Scholar
  49. Römling, U., & Balsalobre, C. (2012). Biofilm infections, their resilience to therapy and innovative treatment strategies. Journal of Internal Medicine, 272(6), 541–561.  https://doi.org/10.1111/joim.12004. Epub 2012 Oct 29.CrossRefPubMedGoogle Scholar
  50. Savage, V. J., Chopra, I., & O’Neill, A. J. (2013). Staphylococcus aureus biofilms promote horizontal transfer of antibiotic resistance. Antimicrobial Agents and Chemotherapy, 57(4), 1968–1970.  https://doi.org/10.1128/AAC.02008-12.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Schaible, B., Taylor, C. T., & Schaffer, K. (2012). Hypoxia increases antibiotic resistance in Pseudomonas aeruginosa through altering the composition of multidrug efflux pumps. Antimicrobial Agents and Chemotherapy, 56(4), 2114–2118.  https://doi.org/10.1128/AAC.05574-11.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Singh, P. K., Schaefer, A. L., & Parsek, M. R. (2000). Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature, 407, 762–764.  https://doi.org/10.1038/35037627.CrossRefPubMedGoogle Scholar
  53. Spoering, A. L., & Lewis, K. (2001). Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials. Journal of Bacteriology, 183(23), 6746–6751.  https://doi.org/10.1128/JB.183.23.6746-6751.2001.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Stewart, P. S., & Costerton, J. W. (2001). Antibiotic resistance of bacteria in biofilms. Lancet, 358(9276), 135–138.  https://doi.org/10.1016/S0140-6736(01)05321-1.CrossRefPubMedGoogle Scholar
  55. Stoodley, P., deBeer, D., & Zbigniew, L. (1994). Liquid flow in biofilm systems. Applied and Environmental Microbiology, 60(8), 2711–2716.PubMedPubMedCentralGoogle Scholar
  56. Suci, P. A., Mittelman, M. W., Yu, F. P., & Geesey, G. G. (1994). Investigation of ciprofloxacin penetration into Pseudomonas aeruginosa biofilms. Antimicrobial Agents and Chemotherapy, 38(9), 2125–2133.  https://doi.org/10.1128/AAC.38.9.2125.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Taylor, P. K., Yeung, A. T., & Hancock, R. E. (2014). Antibiotic resistance in Pseudomonas aeruginosa biofilms: Towards the development of novel anti-biofilm therapies. Journal of Biotechnology, 191, 121–130.  https://doi.org/10.1016/j.jbiotec.2014.09.003. Epub 2014 Sep 18.CrossRefPubMedGoogle Scholar
  58. Vert, M., Doi, Y., Hellwich, K. H., Hess, M., Hodge, P., Kubisa, P., Rinaudo, M., & Schué, F. (2012). Terminology for biorelated polymers and applications (IUPAC Recommendations 2012). Pure and Applied Chemistry, 84(2), 377–410.  https://doi.org/10.1351/PAC-REC-10-12-04.CrossRefGoogle Scholar
  59. Vlamakis, H., Aguilar, C., Losick, R., & Kolter, R. (2008). Control of cell fate by the formation of an architecturally complex bacterial community. Genes & Development, 22(7), 945–953.  https://doi.org/10.1101/gad.1645008.CrossRefGoogle Scholar
  60. Walters, M. C., Roe, F., Bugnicourt, A., Franklin, M. J., & Stewart, P. S. (2003). Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrobial Agents and Chemotherapy, 47(1), 317–323.  https://doi.org/10.1128/AAC.47.1.317-323.2003.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Werner, E., Roe, F., Bugnicourt, A., Franklin, M. J., Heydorn, A., Molin, S., Pitts, B., & Stewart, P. S. (2004). Stratified growth in Pseudomonas aeruginosa biofilms. Applied and Environmental Microbiology, 70(10), 6188–6196.  https://doi.org/10.1128/AEM.70.10.6188-6196.2004.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Wingender, J., & Flemming, H. C. (2010). The biofilm matrix. Nature Reviews Microbiology, 8, 623–633.  https://doi.org/10.1038/nrmicro2415.CrossRefPubMedGoogle Scholar
  63. Xu, K. D., McFeters, G. A., & Stewart, P. S. (2000). Biofilm resistance to antimicrobial agents. Microbiology, 146(Pt 3), 547–549.  https://doi.org/10.1099/00221287-146-3-547.CrossRefPubMedGoogle Scholar
  64. Zhang, L., & Mah, T. F. (2008). Involvement of a novel efflux system in biofilm-specific resistance to antibiotics. Journal of Bacteriology, 190(13), 4447–4452.  https://doi.org/10.1128/JB.01655-07.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Divya Srivastava
    • 1
  • Suchi Srivastava
    • 2
  • Poonam C. Singh
    • 2
  • Adesh Kumar
    • 1
  1. 1.Narendra Deva University of Agriculture and TechnologyFaizabadIndia
  2. 2.CSIR- National Botanical Research InstituteLucknowIndia

Personalised recommendations