Advertisement

Antibiotic Resistance in Campylobacter jejuni: Mechanism, Status, and Public Health Significance

  • Javed Ahamad Khan
  • Hussein Hasan AbulreeshEmail author
  • Ramesh Kumar
  • Samreen
  • Iqbal Ahmad
Chapter

Abstract

Emergence of antibiotic resistance is a never-ending process in the bacteria due its vast capacity to resist and acquire various resistance mechanisms against antibacterial drugs. Campylobacter is a well-known pathogenic bacteria to human and animals and survive in different environment including foods. Species of campylobacters is responsible of gastritis and diarrheal and other diseases. Common resistance mechanisms present in Gram-negative bacteria include modification in the target site of antibiotic, inability of the antibiotic to reach its target by expressing major outer membrane proteins (MOMPs), efflux action of the antibiotic through CmeABC pumps, and inactivation or modification of the antibiotic. The plasmid along with chromosomal encoded genes are responsible for resistance. Mutation and acquisition of resistance genes are the common genetic mechanism found in Campylobacter spp.; considering the widespread occurrence of drug-resistant campylobacters in the environment, specific strategies to control the emergence and spread are needed. In this chapter, we have reviewed the recent literature on the mechanism of resistance and current status of prevalence of Campylobacter jejuni in the environment and its significance in human health.

Keywords

Campylobacter C. jejuni Antibiotic Antibiotic resistance Public health 

References

  1. Abulreesh, H. H., Paget, T. A., & Goulder, R. (2006). Campylobacter in waterfowl and aquatic environments: Incidence and methods of detection. Environmental Science and Technology, 40, 7122–7131.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Abulreesh, H. H., Organji, S. R., Elbanna, K., Osman, G. E. H., Almalki, M. H. K., & Ahmad, I. (2017). Campylobacter in the environment: A major threat to public health. Asian Pacific Journal of Tropical Diseases, 7, 374–384.CrossRefGoogle Scholar
  3. Alfredson, D. A., & Korolik, V. (2007). Antibiotic resistance and resistance mechanisms in Campylobacter jejuni and Campylobacter coli. FEMS Microbiology Letters, 277(2007), 123–132.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Allos, B. M., Iovine, N. M., & Blaser, M. J. (2015). Campulobacter jejuni and related species. In Principles and practices of infectious diseases, Douglas and Benetteds (8th ed.). Philadelphia: Elsevier.Google Scholar
  5. Al-Natour MQ., Alaboudi AR, Osaili, TM. And Obaidat MM (2016).Resistance of Campylobacter jejuni isolated from layer farms in northern Jordan using microbroth dilution and disc diffusion techniques. Journal of Food Science 81(7):M1749-M1753.PubMedCrossRefPubMedCentralGoogle Scholar
  6. Anjum, A., Brathwaite, K. J., Aidley, J., Connerton, P. L., Cummings, N. J., Parkhill, J., Connerton, I., & bayliss, C. D. (2016). Phase variation of type IIG restriction modification enzyme alert site specific methylation patterns and gene expression in Campylobacter jejuni strain NCTC11168. Nucleic Acids Research, 44(10), 4581–4594.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Arsic, B. (2012). Macrolide antibiotics as anti-bacterial and potential anti-malarial medicines. PhD thesis submitted to University of Manchester, UK.Google Scholar
  8. Arsic, B., Barber, J., Cikos, A., Mladenovic, M., Stankovic, N., & And Novak, P. (2017). 16-membered macrolides antibiotics: A review. International Journal of Antimicrobial Agents, 51(3), 283–298.PubMedCrossRefPubMedCentralGoogle Scholar
  9. Azrad, M., Tkhawkho, L., Isakovich, N., Nitzan, O., & Peretz, A. (2018). Antimicrobial susceptibility of Campylobacter jejuni and Campylobacter coli: Comparison between Etest and broth dilution method. Annals of Clinical Microbiology and Antimicrobials, 17, 23.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bae, J., Oh, E., & Jeon, B. (2014). Enhanced transmission of antibiotic resistance in Campylobacter jejuni biofilms by natural transformation. Antimicrobial Agents and Chemotherapy, 58(12), 7573–7575.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bisht, R., Katiyar, A., Singh, R., & Mittal, P. (2009). Antibiotic resistance-A global issue of concern. Asian Journal of Pharmaceutical and Clinical Research, 2(2), 34–39.Google Scholar
  12. Bollinger, H., & Kathariou, S. (2017). The current state of macrolides resistance in Campylobacter spp.: Trends and impacts of resistance mechanism. Applied and Environmental Microbiology, 83(12), e00416–e00417.CrossRefGoogle Scholar
  13. Collado, L., Munoz, N., Porte, L., Ochoa, S., Varela, C., & Munoz, I. (2018). Genetic diversity and clonal characteristics of ciprofloxacin-resistant Campylobacter jejuni isolated from Chilean patients with gateroenteritis. Infection, Genetics and Evolution, 58, 290–293.PubMedCrossRefPubMedCentralGoogle Scholar
  14. Dasti, J. I., Groß, U., Pohl, S., Lugert, R., Weig, M., & Schmidt-Ott, R. (2007). Role of the plasmid-encoded tet(O) in tetracycline-resistant clinical isolates of Campylobacter jejuni and Campylobacter coli. Journal of Medical Microbiology, 56, 833–837.PubMedCrossRefPubMedCentralGoogle Scholar
  15. EFSA. (2010). Antimicrobial resistance in zoonotic and indicator bacteria from animals and food in the European Union in 2004-2007. The EFSA Journal, 8, 1309.CrossRefGoogle Scholar
  16. ElHadidy, M., Miller, M. G., Arguello, H., Alvarez-Ordonez, A., Durate, A., Dierick, K., & Bottledoorn, N. (2018). Genetic basis and clonal population structure of antibiotic resistance in Campylobacter jejuni isolated from broiler carcasses in Belgium. Frontiers in Microbiology, 9, 1–9.CrossRefGoogle Scholar
  17. Fallon, R., O’Sullivan, N., Maher, M., & Carrol, C. (2003). Antimicrobial resistance of Campylobacter jejuni and Campylobacter coli isolates from broiler chickens isolated at an Irish poultry processing plant. Letters in Applied Microbiology, 36, 277–281.PubMedCrossRefPubMedCentralGoogle Scholar
  18. Fitzgerald, C. (2015). Campylobacter. Clinical Laboratory Medicine, 35, 289–298.CrossRefGoogle Scholar
  19. Frasao, B. D., Medeiros, V., Barbosa, A. V., de Aguiar, W. S., dos Santos, F. F., Abreu, D. L., Clementino, M. M., & de Aquino, M. H. (2015). Detection of fluoroquinolone resistance by mutation in gyrA gene of Campylobacter spp. isolates from broiler and laying (Gallus gallusdomesticus) hens, from Rio de Janeiro State, Brazil. Ciencia Rural, 45(11), 2013–2018.CrossRefGoogle Scholar
  20. Gaisser, S., Reather, J., Wirtz, G., Kellenberger, L., Staunton, J., & Leadlay, P. F. (2000). A defined system for hybrid macrolide biosynthesis in Saccharopolysporaerythraea. Molecular Microbiology, 36(2), 391–401.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Garneau-Tsodikova, S., & Labby, K. J. (2016). Mechanism of resistance to aminoglycoside antibiotics: Overview and perspective. MedChemComm, 7(1), 11–27.PubMedCrossRefPubMedCentralGoogle Scholar
  22. Ge, B. L., Zhao, S. H., Hall, R., & Meng, J. H. (2002). A PCR-ELISA for detecting Shiga toxinproducing Escherichia coli. Microbes and Infection, 4, 285–290.PubMedCrossRefPubMedCentralGoogle Scholar
  23. Ge, B., Wang, F., Sjolund-Karlsson, M., & McDermott, P. F. (2013). Antimicrobial resistance in Campylobacter: Susceptibility testing methods and resistance trends. Journal of Microbiological Methods, 95, 57–67.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Geissler, A. L., Bustos Carrillo, F., Swanson, K., Patrick, M. E., Fullerton, K. E., Bennett, C., Barrett, K., & Mahon, B. E. (2017). Increasing Campylobacter infections, outbreaks, and antimicrobial resistance in the United States, 2004-2012. Clinical Infectious Diseases, 65, 1624–1631.PubMedCrossRefPubMedCentralGoogle Scholar
  25. Gouvea, R., Dos Santos, F. F., De Aquino, M. H. C., & Pereia VL De, A. (2015). Fluoroquinolones in industrial poultry production, bacterial resistance and food residues: A review. Brazilian Journal of Poultry Science, 17(1), 1–10.CrossRefGoogle Scholar
  26. Hao, H., Sander, P., Iqbal, Z., Wang, Y., Cheng, G., & And Yuan, Z. (2016). The risk of some veterinary antimicrobial agents on public health associated with antimicrobial resistance and their molecular basis. Frontiers in Microbiology, 7, 1626.PubMedPubMedCentralGoogle Scholar
  27. Haruna, M., Sasaki, Y., Murakami, M., Mori, T., Asai, T., Ito, K., & Yamada, Y. (2012). Prevalence and antimicrobial resistance of campylobacter isolates from beef cattle and pigs in Japan. Journal of Veterinary Medical Science, 75(5), 625–628.PubMedCrossRefPubMedCentralGoogle Scholar
  28. Havelaar, A. H., Kirk, M. D., Torgerson, P. R., Gibb, H. J., Hald, T., Lake, R. J., et al. (2015). World Health Organization Global estimates and regional comparisons of the burden of foodborne disease in 2010. PLoS Medicine, 12, e10011923.CrossRefGoogle Scholar
  29. Huat Tang, J. Y., Khalid, M. I., Aimi, S., Abu Bakar, C. A., & Radu, S. (2016). Antibiotic resistance profile and RAPD analysis of campylobacter jejuni isolated from vegetables farms and retail markets. Asian Pacific Journal of Tropical Biomedicine, 6(1), 71–75.CrossRefGoogle Scholar
  30. Iovine, N. M. (2013). Resistance mechanisms in Campylobacter jejuni. Virulence, 4, 230–240.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Kaakouch, N. O., Castano-Rodriguez, N., Mitchell, H. M., & Man, S. M. (2015). Global epidemiology of Campylobacter infection. Clinical Microbiology Reviews, 28, 687–720.CrossRefGoogle Scholar
  32. Khan, J. A. (2012). Enumeration, detection and characterization of foodborne bacterial pathogens by conventional and molecular techniques. PhD thesis submitted at Department of agricultural microbiology, Aligarh Muslim University, India.Google Scholar
  33. Khan, J. A., Rathore, R. S., Abulreesh, H. H., Abul Qais, F., & Ahmad, I. (2018). Prevalence and antibiotic resistance profiles of Campylobacter jejuni isolated from poultry meat and related samples at retail shops in Northern India. Foodborne Pathogens and Disease, 15(4), 218–225.PubMedCrossRefGoogle Scholar
  34. King, D. T., Sobhanifar, S., & Strynadka, N. C. J. (2017). The mechanism of resistance to lactam antibiotics. In Handbook of antimicrobial resistance (pp. 177–201). Cham: Springer Nature.CrossRefGoogle Scholar
  35. Kovac, J., Cadez, N., Stessl, B., Stingl, K., Gruntar, I., Ocepek, M., Trkov, M., Wagner, M., & Mozina, S. S. (2015). High genetic similarity of ciprofloxacin-resistant Campylobacter jejuni in Central Europe. Frontiers in Microbiology, 6, 1169.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Luangtongkum, T., Jeon, B., Han, J., Plummer, P., Logue, C. M., & Zhang, Q. (2009). Antibiotic resistance in Campylobacter: Emergence, transmission and persistence. Future Microbiology, 4, 189–200.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Memish, Z. A., Venkatesh, S., & Shibl, A. M. (2003). Impact of travel on international spread of antimicrobial resistance. International Journal of Antimicrobial Agents, 21, 135–142.PubMedCrossRefGoogle Scholar
  38. Mozina, S. S., Kurincic, M., Klancnik, A., & Mavri, A. (2011). Campylobacter and its multi-resistance in the food chain. Trends in Food Science and Technology, 22, 91–98.CrossRefGoogle Scholar
  39. Mukherjee, P., Ramamurthy, T., Bhattacharya, M. K., Rajendran, K., & Mukhopadhyay, A. K. (2013). Campylobacter jejuni in hospitalized patients with diarrhea, Kolkata, India. Emerging Infectious Diseases, 19(7), 1155.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Munita, J. M., & Arias, C. A. (2016). Mechanisms of antibiotic resistance. Microbiology Spectrum, 4, 1–37.CrossRefGoogle Scholar
  41. Natsos, G., Koutoulis, K., Sossidou, E., Chemaly, M., & Mouttotou, N. (2016). Campylobacter spp. infection in humans and poultry. Journal of the Hellenic Veterinary Medical Society, 67, 65–82.CrossRefGoogle Scholar
  42. Nigatu, S. (2007). Detection of Campylobacter and Arcobacter species from various sources by conventional and molecular techniques. MVSc thesis submitted in Department of Veterinary Public Health, India Veterinary Research Institute, India.Google Scholar
  43. Obeng, A. S., Rickard, H., Sexton, M., pang, Y., peng, H., & Barton, M. (2012). Antimicrobial susceptibilities and resistance genes in Campylobacter strains isolated from poultry and pigs in Australia. Jornal of Applied Microbiology, 113(2), 294–307.CrossRefGoogle Scholar
  44. Okeke, I. N., & Edelman, R. (2001). Dissemination of antibiotic resistant bacteria across geographic borders. Clinical Infectious Diseases, 33, 364–369.PubMedCrossRefPubMedCentralGoogle Scholar
  45. Otigbu, A. C., Clarke, A. M., Fri, J., Akanbi, E. O., & And Njom, H. A. (2018). Antibiotic sensitivity profiling and virulence potential of Campylobacter jejuni isolates from estuarine water in the Eastern Cape Province, South Africa. International Journal of Environmental Research and Public Health, 15(5), 925.PubMedCentralCrossRefGoogle Scholar
  46. Palzkill, T. (2018). Structural and mechanistic basis for extended spectrum drug resistance mutation in altering the specificity of TEM, CTX-Mand KPC ß-lactamases. Frontiers Molecular BioSciences, 5, 16.  https://doi.org/10.3389/fmolb.2018.00016.CrossRefGoogle Scholar
  47. Pitkanen, T. (2013). Review of Campylobacter spp. in drinking and environmental waters. Journal of Microbiological Methods, 95, 39–47.PubMedCrossRefPubMedCentralGoogle Scholar
  48. Pomeri, A. P. (2011). Quinolones antibiotics. Uploaded on 25/04/2011.Google Scholar
  49. Reddy, S., & And Zishiri, O. T. (2017). Detection and prevalence of antimicrobial resistance genes in Campylobacter spp. isolated from chickens and humans. Onderstepoort Journal of Veterinary Research, 84(1), a1411.CrossRefGoogle Scholar
  50. Sierra-Arguello, M. Y., Morgan, R. B., Perdoncin, G., Lima, L. M., MJP, G., & Pinheiro do Nascimento, V. (2015). Resistance to lactam and tetracycline in Campylobacter spp. isolated from broilers laughter houses in southern Brazil. Pesquisa Veterinaria Brasileira, 35(7), 637–642.CrossRefGoogle Scholar
  51. Sierra-Arguillo, Y. M., QuediFurian, T., Perdoncini, G., Moraes, H. L. S., Salle, C. T. P., Rodrigues, L. B., Dos Santos, L. R., & Pereira Gomes, M. J. (2018). Fluoroquinolone resistance in Campylobacter jejuni and Campylobacter coli from poultry and human samples assesses by PCR restriction fragment length polymorphism assay. PLoS One, 13(7), e0199974.CrossRefGoogle Scholar
  52. Silva, W. C., Tagino, B. N., Mendonca, R. S., San’Ana, A. S., & Hungaro, H. M. (2018). Campylobacter: An overview of cases, occurrence in food, contamination sources, and antimicrobial resistance in Brazil. Food Reviews International, 34, 364–389.CrossRefGoogle Scholar
  53. Szczepanska, B., Andrzejewska, M., Spica, D., & Klawe, J. J. (2017). Prevalence and antimicrobial resistance of Campylobacter jejuni and Campylobacter coli isolated from children and environmental sources in urban and suburban areas. BMC Microbiology, 17(80), 1–9.Google Scholar
  54. Tang, Y., Fang, L., Xu, C., & Zhang, Q. (2017a). Antibiotic resistance and trends in the foodborne pathogen, Campylobacter. Animal Health Research Reviews, 18(2), 87–98.PubMedCrossRefPubMedCentralGoogle Scholar
  55. Tang, Y., Sahin, O., Pavlovic, N., LeJeune, J., Carlson, J., Zuowei, W., Dai, L., & Zhang, O. (2017b). Rising fluoroquinolone resistance in Campylobacter isolated from feedlot cattle in the United States. Scientific Reports, 7, 494.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Vaishnavi, C., Singh, M., Thakur, J. S., & Thapa, B. R. (2015). Low prevalence of Campylobacteriosis in the northern region of India. Advances in Microbiology, 5, 155–165.  https://doi.org/10.4236/aim.2015.53015.CrossRefGoogle Scholar
  57. Vila, J., & Pal, T. (2010). Update on antibacterial resistance in low-income countries: Factors favouring the emergence of resistance. The Open Infectious Diseases Journal, 4, 3854.Google Scholar
  58. von Wintersdorff, C. J. H., Penders, J., Stobberingh, E. E., Lashof, A. M. L. O., Hoebe, C. J. P. A., Savelkoul, P. H. M., & Wolffs, P. F. G. (2014). High rates of antimicrobial drug resistance gene acquisition after international travel, the Netherlands. Emerging Infectious Diseases, 20, 649–657.CrossRefGoogle Scholar
  59. WHO. (2018). Antibiotic resistance. Fact sheet. http://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance. Accessed on 25 July 2018.
  60. Wieczorek, K., & Osek, J. (2013). Antimicrobial resistance mechanisms among Campylobacter. BioMed Research International, 2013, 1–12. Article ID 340605.Google Scholar
  61. Wieczorek, K., Wolkowicz, T., & Osek, J. (2018). Antimicrobial resistance and virulence-associated traits of Campylobacter jejuni isolated from poultry food chain and humans with diarrhea. Frontiers in Microbiology, 9, 1905.CrossRefGoogle Scholar
  62. Yao, H., Liu, D., Wang, Y., Zhang, Q., & Shen, Z. (2017). High prevalence and predominance of the aph(2″)-if gene conferreing aminoglycoside resistance in Campylobacter. Antimicrobial Agents and Chemotherapy, 61(5), e00112-17.  https://doi.org/10.1128/AAC.00112-17.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Zhu, J., Zhang, Y., Hua, X., Hou, J., & Jiang, Y. (2006). Antibiotic resistant in Campylobacter. Reviews in Medical Microbiology, 17, 107–112.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Javed Ahamad Khan
    • 1
  • Hussein Hasan Abulreesh
    • 2
    Email author
  • Ramesh Kumar
    • 3
  • Samreen
    • 4
  • Iqbal Ahmad
    • 4
  1. 1.School of Graduate StudiesQuantum UniversityRoorkeeIndia
  2. 2.Department of Biology, Faculty of Applied ScienceUmm Al-Qura UniversityMakkahKingdom of Saudi Arabia
  3. 3.Division of BiochemistryIndian Veterinary Research InstituteBareillyIndia
  4. 4.Department of Agricultural Microbiology, Faculty of Agricultural SciencesAligarh Muslim UniversityAligarhIndia

Personalised recommendations