Advertisement

Nanoparticle-Based Drug Delivery Systems: Promising Approaches Against Bacterial Infections

  • Akhilesh RaiEmail author
  • Michela Comune
  • Lino FerreiraEmail author
Chapter

Abstract

Despite the arrays of antibiotics available on the market, bacterial infections, notably those produced by multi-drug-resistant (MDR) bacteria and nosocomial pathogens, have become global concerns and are leading factors of morbidity and mortality, especially for immunocompromised and hospitalized patients. The choice of antibiotics is largely empirical and sometimes requires administration of multiple drugs. Recently, the emergence of MDR bacteria has also put pressure on researchers and healthcare experts to discover alternative antimicrobial agents. Additionally, there is growing concern related to biofilm-associated infections that generally inhibit the penetration of antimicrobial agents inside biofilms, leaving almost no therapeutic options. Hence, there is a dire need to develop effective antimicrobial agents. Nanotechnology offers promising new weapons in treating bacterial infections and overcoming resistance, given that it is believed that numerous mechanisms of action, such as multiple gene mutations within same bacterial cell, are required to develop resistance against nanoparticles (NPs). The past decade has seen a surge in the application of innovative nanotechnology-based antimicrobial drugs in fighting bacterial infections. Diverse compositions of NPs and nanocarriers containing antimicrobial drugs have been developed for the efficient treatment of bacterial infections, including those of MDR pathogens in in vitro and in vivo models. This chapter encompasses the emerging efforts in combatting bacterial infections using diverse nanoformulations, such as polymer, liposomal, solid lipid, nanoemulsion, and metal NPs carrying antibiotics, antimicrobial peptides, and other antimicrobial drugs.

Keywords

Bacterial infections Biodegradable NPs Gold NPs Antibiotics Antimicrobial peptides Small molecules PLGA NPs Silver NPs 

Notes

Acknowledgments

AR would like to thank the support of FCT–Portuguese Science and Technology Foundation investigator program (IF/00539/2015).

References

  1. Ahangari, A., Salouti, M., Heidari, Z., Kazemizadeh, A. R., & Safari, A. A. (2013). Development of gentamicin-gold nanospheres for antimicrobial drug delivery to Staphylococcal infected foci. Drug Delivery, 20(1), 34–39.  https://doi.org/10.3109/10717544.2012.746402.CrossRefPubMedGoogle Scholar
  2. Akturk, O., Kismet, K., Yasti, A. C., Kuru, S., Duymus, M. E., Kaya, F., et al. (2016). Collagen/gold nanoparticle nanocomposites: A potential skin wound healing biomaterial. Journal of Biomaterials Applications, 31(2), 283–301.  https://doi.org/10.1177/0885328216644536.CrossRefPubMedGoogle Scholar
  3. Appelbaum, P. C., & Hunter, P. A. (2000). The fluoroquinolone antibacterials: Past, present and future perspectives. International Journal of Antimicrobial Agents, 16(1), 5–15.  https://doi.org/10.1016/S0924-8579(00)00192-8.CrossRefPubMedGoogle Scholar
  4. Baig, M. S., Ahad, A., Aslam, M., Imam, S. S., Aqil, M., & Ali, A. (2016). Application of Box-Behnken design for preparation of levofloxacin-loaded stearic acid solid lipid nanoparticles for ocular delivery: Optimization, in vitro release, ocular tolerance, and antibacterial activity. International Journal of Biological Macromolecules, 85, 258–270.  https://doi.org/10.1016/j.ijbiomac.2015.12.077.CrossRefPubMedGoogle Scholar
  5. Bakker-Woudenberg, I. A., ten Kate, M. T., Stearne-Cullen, L. E., & Woodle, M. C. (1995). Efficacy of gentamicin or ceftazidime entrapped in liposomes with prolonged blood circulation and enhanced localization in Klebsiella pneumoniae-infected lung tissue. The Journal of Infectious Diseases, 171(4), 938–947.  https://doi.org/10.1093/infdis/171.4.93.CrossRefPubMedGoogle Scholar
  6. Bi, L., Yang, L., Narsimhan, G., Bhunia, A. K., & Yao, Y. (2011). Designing carbohydrate nanoparticles for prolonged efficacy of antimicrobial peptide. Journal of Controlled Release, 150(2), 150–156.  https://doi.org/10.1016/j.jconrel.2010.11.024.CrossRefPubMedGoogle Scholar
  7. Birrenbach, G., & Speiser, P. P. (1976). Polymerized micelles and their use as adjuvants in immunology. Journal of Pharmaceutical Sciences, 65(12), 1763–1766.  https://doi.org/10.1002/jps.2600651217.CrossRefPubMedGoogle Scholar
  8. Borchard, G., Audus, K. L., Shi, F., & Kreuter, J. (1994). Uptake of surfactant-coated poly(methyl methacrylate)-nanoparticles by bovine brain microvessel endothelial cell monolayers. International Journal of Pharmaceutics, 110(1), 29–35.  https://doi.org/10.1016/0378-5173(94)90372-7.CrossRefGoogle Scholar
  9. Bresee, J., Bond, C. M., Worthington, R. J., Smith, C. A., Gifford, J. C., Simpson, C. A., et al. (2014). Nanoscale structure-activity relationships, mode of action, and biocompatibility of gold nanoparticle antibiotics. Journal of the American Chemical Society, 136(14), 5295–5300.  https://doi.org/10.1021/ja408505n.CrossRefPubMedGoogle Scholar
  10. Briones, E., Colino, C. I., & Lanao, J. M. (2008). Delivery systems to increase the selectivity of antibiotics in phagocytic cells. Journal of Controlled Release, 125(3), 210–227.  https://doi.org/10.1016/j.jconrel.2007.10.027.CrossRefPubMedGoogle Scholar
  11. Burkatovskaya, M., Tegos, G. P., Swietlik, E., Demidova, T. N., Castano, P. A., & Hamblin, M. R. (2006). Use of chitosan bandage to prevent fatal infections developing from highly contaminated wounds in mice. Biomaterials, 27(22), 4157–4164.  https://doi.org/10.1016/j.biomaterials.2006.03.028.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bush, K., Courvalin, P., Dantas, G., Davies, J., Eisenstein, B., Huovinen, P., et al. (2011). Tackling antibiotic resistance. Nature Reviews. Microbiology, 9(12), 894–896.  https://doi.org/10.1038/nrmicro2693.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Cao, Z. Y., Spilker, T., Fan, Y. Y., Kalikin, L. M., Ciotti, S., LiPuma, J. J., et al. (2017). Nanoemulsion is an effective antimicrobial for methicillin-resistant Staphylococcus aureus in infected wounds. Nanomedicine, 12(10), 1177–1185.  https://doi.org/10.2217/nnm-2017-0025.CrossRefPubMedGoogle Scholar
  14. Casciaro, B., Moros, M., Rivera-Fernandez, S., Bellelli, A., de la Fuente, J. M., & Mangoni, M. L. (2017). Gold-nanoparticles coated with the antimicrobial peptide esculentin-1a(1-21)NH2 as a reliable strategy for antipseudomonal drugs. Acta Biomaterialia, 47, 170–181.  https://doi.org/10.1016/j.actbio.2016.09.041.CrossRefPubMedGoogle Scholar
  15. Cavalli, R., Gasco, M. R., Chetoni, P., Burgalassi, S., & Saettone, M. F. (2002). Solid lipid nanoparticles (SLN) as ocular delivery system for tobramycin. International Journal of Pharmaceutics, 238(1–2), 241–245.  https://doi.org/10.1016/S0378-5173(02)00080-7.CrossRefPubMedGoogle Scholar
  16. Chakraborty, S. P., Sahu, S. K., Mahapatra, S. K., Santra, S., Bal, M., Roy, S., et al. (2010). Nanoconjugated vancomycin: New opportunities for the development of anti-VRSA agents. Nanotechnology, 21(10), 105103.  https://doi.org/10.1088/0957-4484/21/10/105103.CrossRefPubMedGoogle Scholar
  17. Chen, C. Z., & Cooper, S. L. (2002). Interactions between dendrimer biocides and bacterial membranes. Biomaterials, 23(16), 3359–3368.  https://doi.org/10.1016/S0142-9612(02)00036-4.CrossRefPubMedGoogle Scholar
  18. Chen, W.-Y., Chang, H.-Y., Lu, J.-K., Huang, Y.-C., Harroun, S. G., Tseng, Y.-T., et al. (2015). Self-assembly of antimicrobial peptides on gold nanodots: Against multidrug-resistant bacteria and wound-healing application. Advanced Functional Materials, 25(46), 7189–7199.  https://doi.org/10.1002/adfm.201503248.CrossRefGoogle Scholar
  19. Chen, H., Lan, G., Ran, L., Xiao, Y., Yu, K., Lu, B., et al. (2018). A novel wound dressing based on a Konjac glucomannan/silver nanoparticle composite sponge effectively kills bacteria and accelerates wound healing. Carbohydrate Polymers, 183, 70–80.  https://doi.org/10.1016/j.carbpol.2017.11.029.CrossRefPubMedGoogle Scholar
  20. Chereddy, K. K., Her, C. H., Comune, M., Moia, C., Lopes, A., Porporato, P. E., et al. (2014). PLGA nanoparticles loaded with host defense peptide LL37 promote wound healing. Journal of Controlled Release, 194, 138–147.  https://doi.org/10.1016/j.jconrel.2014.08.016.CrossRefPubMedGoogle Scholar
  21. Chetoni, P., Burgalassi, S., Monti, D., Tampucci, S., Tullio, V., Cuffini, A. M., et al. (2016). Solid lipid nanoparticles as promising tool for intraocular tobramycin delivery: Pharmacokinetic studies on rabbits. European Journal of Pharmaceutics and Biopharmaceutics, 109, 214–223.  https://doi.org/10.1016/j.ejpb.2016.10.006.CrossRefPubMedGoogle Scholar
  22. Chou, L. Y., Ming, K., & Chan, W. C. (2011). Strategies for the intracellular delivery of nanoparticles. Chemical Society Reviews, 40(1), 233–245.  https://doi.org/10.1039/c0cs00003e.CrossRefPubMedGoogle Scholar
  23. Comune, M., Rai, A., Chereddy, K. K., Pinto, S., Aday, S., Ferreira, A. F., et al. (2017). Antimicrobial peptide-gold nanoscale therapeutic formulation with high skin regenerative potential. Journal of Controlled Release, 262, 58–71.  https://doi.org/10.1016/j.jconrel.2017.07.007.CrossRefPubMedGoogle Scholar
  24. Dai, T., Tegos, G. P., Burkatovskaya, M., Castano, A. P., & Hamblin, M. R. (2009). Chitosan acetate bandage as a topical antimicrobial dressing for infected burns. Antimicrobial Agents and Chemotherapy, 53(2), 393–400.  https://doi.org/10.1128/AAC.00760-08.CrossRefPubMedGoogle Scholar
  25. Dai, T., Tanaka, M., Huang, Y. Y., & Hamblin, M. R. (2011). Chitosan preparations for wounds and burns: Antimicrobial and wound-healing effects. Expert Review of Anti-Infective Therapy, 9(7), 857–879.  https://doi.org/10.1586/eri.11.59.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Dai, X., Guo, Q., Zhao, Y., Zhang, P., Zhang, T., Zhang, X., et al. (2016). Functional silver nanoparticle as a benign antimicrobial agent that eradicates antibiotic-resistant bacteria and promotes wound healing. ACS Applied Materials & Interfaces, 8(39), 25798–25807.  https://doi.org/10.1021/acsami.6b09267.CrossRefGoogle Scholar
  27. Daniel, M. C., & Astruc, D. (2004). Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical Reviews, 104(1), 293–346.  https://doi.org/10.1021/cr030698+.CrossRefPubMedGoogle Scholar
  28. de Faria, T. J., Roman, M., de Souza, N. M., De Vecchi, R., de Assis, J. V., dos Santos, A. L., et al. (2012). An isoniazid analogue promotes Mycobacterium tuberculosis-nanoparticle interactions and enhances bacterial killing by macrophages. Antimicrobial Agents and Chemotherapy, 56(5), 2259–2267.  https://doi.org/10.1128/AAC.05993-11.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Drake, P. L., & Hazelwood, K. J. (2005). Exposure-related health effects of silver and silver compounds: A review. The Annals of Occupational Hygiene, 49(7), 575–585.  https://doi.org/10.1093/annhyg/mei019.CrossRefPubMedGoogle Scholar
  30. Ejim, L., Farha, M. A., Falconer, S. B., Wildenhain, J., Coombes, B. K., Tyers, M., et al. (2011). Combinations of antibiotics and nonantibiotic drugs enhance antimicrobial efficacy. Nature Chemical Biology, 7(6), 348–350.  https://doi.org/10.1038/nchembio.559.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Elsbach, P. (2003). What is the real role of antimicrobial polypeptides that can mediate several other inflammatory responses? The Journal of Clinical Investigation, 111(11), 1643–1645.  https://doi.org/10.1172/JCI18761.CrossRefPubMedPubMedCentralGoogle Scholar
  32. European Centre for Disease Prevention and Control/European Medicines Agency. n.d. Joint Technical report, The bacterial challenge: Time to react. http://www.emea.europa.eu/pdfs/human/antimicrobial_resistance/EMEA-576176-2009.pdf
  33. Falcao, C. B., de La Torre, B. G., Pérez-Peinado, C., Barron, A. E., Andreu, D., & Rádis-Baptista, G. (2014). Vipericidins: A novel family of cathelicidin-related peptides from the venom gland of South American pit vipers. Amino Acids, 46(11), 2561–2571.  https://doi.org/10.1007/s00726-014-1801-4.CrossRefPubMedGoogle Scholar
  34. Farha, M. A., & Brown, E. D. (2013). Discovery of antibiotic adjuvants. Nature Biotechnology, 31(2), 120–122.  https://doi.org/10.1038/nbt.2500.CrossRefPubMedGoogle Scholar
  35. Farokhzad, O. C., & Langer, R. (2009). Impact of nanotechnology on drug delivery. ACS Nano, 3(1), 16–20.  https://doi.org/10.1021/nn900002m.CrossRefPubMedGoogle Scholar
  36. Fattal, E., Youssef, M., Couvreur, P., & Andremont, A. (1989). Treatment of experimental salmonellosis in mice with ampicillin-bound nanoparticles. Antimicrobial Agents and Chemotherapy, 33(9), 1540–1543.  https://doi.org/10.1128/AAC.33.9.1540.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Fauci, A. S., & Morens, D. M. (2012). The perpetual challenge of infectious diseases. The New England Journal of Medicine, 366(5), 454–461.  https://doi.org/10.1056/NEJMra1108296.CrossRefPubMedGoogle Scholar
  38. Fielding, R. M., Lewis, R. O., & Moon-McDermott, L. (1998). Altered tissue distribution and elimination of amikacin encapsulated in unilamellar, low-clearance liposomes. Pharmaceutical Research, 15(11), 1775–1781.  https://doi.org/10.1023/A:1011925132473.CrossRefPubMedGoogle Scholar
  39. Forestier, F., Gerrier, P., Chaumard, C., Quero, A. M., Couvreur, P., & Labarre, C. (1992). Effect of nanoparticle-bound ampicillin on the survival of Listeria monocytogenes in mouse peritoneal macrophages. Antimicrobial Agents and Chemotherapy, 30(2), 173–179.  https://doi.org/10.1093/jac/30.2.173.CrossRefGoogle Scholar
  40. French, G. L. (2005). Clinical impact and relevance of antibiotic resistance. Advanced Drug Delivery Reviews, 57(10), 1514–1527.  https://doi.org/10.1016/j.addr.2005.04.005.CrossRefPubMedGoogle Scholar
  41. Fumakia, M., & Ho, E. A. (2016). Nanoparticles encapsulated with LL37 and serpin A1 promotes wound healing and synergistically enhances antibacterial activity. Molecular Pharmaceutics, 13(7), 2318–2331.  https://doi.org/10.1021/acs.molpharmaceut.6b00099.CrossRefPubMedGoogle Scholar
  42. Gao, W., Thamphiwatana, S., Angsantikul, P., & Zhang, L. (2014). Nanoparticle approaches against bacterial infections. Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology, 6(6), 532–547.  https://doi.org/10.1002/wnan.1282.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Gold, H. S., & Moellering, R. C., Jr. (1996). Antimicrobial-drug resistance. The New England Journal of Medicine, 335(19), 1445–1453.  https://doi.org/10.1056/NEJM199611073351907.CrossRefPubMedGoogle Scholar
  44. Gomes, B., Augusto, M. T., Felício, M. R., Hollmann, A., Franco, O. L., Gonçalves, S., et al. (2018). Designing improved active peptides for therapeutic approaches against infectious diseases. Biotechnology Advances, 36(2), 415–429.  https://doi.org/10.1016/j.biotechadv.2018.01.004.CrossRefPubMedGoogle Scholar
  45. Gupta, P. V., Nirwane, A. M., Belubbi, T., & Nagarsenker, M. S. (2017). Pulmonary delivery of synergistic combination of fluoroquinolone antibiotic complemented with proteolytic enzyme: A novel antimicrobial and antibiofilm strategy. Nanomedicine and Nanotechnology, 13(7), 2371–2384.  https://doi.org/10.1016/j.nano.2017.06.011.CrossRefGoogle Scholar
  46. Habimana, O., Steenkeste, K., Fontaine-Aupart, M. P., Bellon-Fontaine, M. N., Kulakauskas, S., & Briandet, R. (2011). Diffusion of nanoparticles in biofilms is altered by bacterial cell wall hydrophobicity. Applied and Environmental Microbiology, 77(1), 367–368.  https://doi.org/10.1128/AEM.02163-10.CrossRefPubMedGoogle Scholar
  47. Hall-Stoodley, L., Costerton, J. W., & Stoodley, P. (2004). Bacterial biofilms: From the natural environment to infectious diseases. Nature Reviews. Microbiology, 2(2), 95–108.  https://doi.org/10.1038/nrmicro821.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Hancock, R. E. W., & Sahl, H.-G. (2006). Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nature Biotechnology, 24, 1551.  https://doi.org/10.1038/nbt1267.CrossRefPubMedGoogle Scholar
  49. Hsu, S. H., Chang, Y. B., Tsai, C. L., Fu, K. Y., Wang, S. H., & Tseng, H. J. (2011). Characterization and biocompatibility of chitosan nanocomposites. Colloids and Surfaces. B, Biointerfaces, 85(2), 198–206.  https://doi.org/10.1016/j.colsurfb.2011.02.029.CrossRefPubMedGoogle Scholar
  50. Huang, L., Dai, T., Xuan, Y., Tegos, G. P., & Hamblin, M. R. (2011). Synergistic combination of chitosan acetate with nanoparticle silver as a topical antimicrobial: Efficacy against bacterial burn infections. Antimicrobial Agents and Chemotherapy, 55(7), 3432–3438.  https://doi.org/10.1128/AAC.01803-10.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Huh, A. J., & Kwon, Y. J. (2011). “Nanoantibiotics”: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. Journal of Controlled Release, 156(2), 128–145.  https://doi.org/10.1016/j.jconrel.2011.07.002.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Hussain, S. M., Hess, K. L., Gearhart, J. M., Geiss, K. T., & Schlager, J. J. (2005). In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicology In Vitro, 19(7), 975–983.  https://doi.org/10.1016/j.tiv.2005.06.034.CrossRefPubMedGoogle Scholar
  53. Illum, L., Davis, S. S., Muller, R. H., Mak, E., & West, P. (1987). The organ distribution and circulation time of intravenously injected colloidal carriers sterically stabilized with a block copolymer – Poloxamine 908. Life Sciences, 40(4), 367–374.  https://doi.org/10.1016/0024-3205(87)90138-X.CrossRefPubMedGoogle Scholar
  54. Imperi, F., Massai, F., Ramachandran Pillai, C., Longo, F., Zennaro, E., Rampioni, G., et al. (2013). New life for an old drug: The anthelmintic drug niclosamide inhibits Pseudomonas aeruginosa quorum sensing. Antimicrobial Agents and Chemotherapy, 57(2), 996–1005.  https://doi.org/10.1128/AAC.01952-12.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Jain, D., & Banerjee, R. (2008). Comparison of ciprofloxacin hydrochloride-loaded protein, lipid, and chitosan nanoparticles for drug delivery. Journal of Biomedical Materials Research – Part B: Applied Biomaterials, 86B(1), 105–112.  https://doi.org/10.1002/jbm.b.30994.CrossRefGoogle Scholar
  56. Jeong, S., Lee, J., Im, B. N., Park, H., & Na, K. (2017). Combined photodynamic and antibiotic therapy for skin disorder via lipase-sensitive liposomes with enhanced antimicrobial performance. Biomaterials, 141, 243–250.  https://doi.org/10.1016/j.biomaterials.2017.07.009.CrossRefPubMedGoogle Scholar
  57. Kalashnikova, I., Das, S., & Seal, S. (2015). Nanomaterials for wound healing: Scope and advancement. Nanomedicine (London, England), 10(16), 2593–2612.  https://doi.org/10.2217/NNM.15.82.CrossRefGoogle Scholar
  58. Kalomiraki, M., Thermos, K., & Chaniotakis, N. A. (2016). Dendrimers as tunable vectors of drug delivery systems and biomedical and ocular applications. International Journal of Nanomedicine, 11, 1–12.  https://doi.org/10.2147/IJN.S93069.CrossRefPubMedGoogle Scholar
  59. Kang, H.-K., Kim, C., Seo, C. H., & Park, Y. (2017). The therapeutic applications of antimicrobial peptides (AMPs): A patent review. Journal of Microbiology, 55(1), 1–12.  https://doi.org/10.1007/s12275-017-6452-1.CrossRefGoogle Scholar
  60. Khameneh, B., Diab, R., Ghazvini, K., & Fazly Bazzaz, B. S. (2016). Breakthroughs in bacterial resistance mechanisms and the potential ways to combat them. Microbial Pathogenesis, 95, 32–42.  https://doi.org/10.1016/j.micpath.2016.02.009.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Khanna, S. C., Soliva, M., & Speiser, P. (1969). Epoxy resin beads as a pharmaceutical dosage form. II. Dissolution studies of epoxy-amine beads and release of drug. Journal of Pharmaceutical Sciences, 58(11), 1385–1388.  https://doi.org/10.1002/jps.2600581120.CrossRefPubMedGoogle Scholar
  62. Koczulla, A. R., & Bals, R. (2003). Antimicrobial peptides: Current status and therapeutic potential. Drugs, 63(4), 389–406.  https://doi.org/10.2165/00003495-200363040-0000543.CrossRefPubMedGoogle Scholar
  63. Ladaviere, C., & Gref, R. (2015). Toward an optimized treatment of intracellular bacterial infections: Input of nanoparticulate drug delivery systems. Nanomedicine (London, England), 10(19), 3033–3055.  https://doi.org/10.2217/nnm.15.128.CrossRefGoogle Scholar
  64. Lambadi, P. R., Sharma, T. K., Kumar, P., Vasnani, P., Thalluri, S. M., Bisht, N., et al. (2015). Facile biofunctionalization of silver nanoparticles for enhanced antibacterial properties, endotoxin removal, and biofilm control. International Journal of Nanomedicine, 10, 2155–2171.  https://doi.org/10.2147/ijn.s72923.CrossRefPubMedPubMedCentralGoogle Scholar
  65. Li, Y. H., Su, T. T., Zhang, Y., Huang, X. L., Li, J., & Li, C. (2015). Liposomal co-delivery of daptomycin and clarithromycin at an optimized ratio for treatment of methicillin-resistant Staphylococcus aureus infection. Drug Delivery, 22(5), 627–637.  https://doi.org/10.3109/10717544.2014.880756.CrossRefPubMedGoogle Scholar
  66. Li, Y., Tian, Y., Zheng, W., Feng, Y., Huang, R., Shao, J., et al. (2017). Composites of bacterial cellulose and small molecule-decorated gold nanoparticles for treating Gram-negative bacteria-infected wounds. Small, 13(27), 10.  https://doi.org/10.1002/smll.201700130.CrossRefPubMedCentralGoogle Scholar
  67. Liu, L. H., Xu, K. J., Wang, H. Y., Tan, P. K. J., Fan, W. M., Venkatraman, S. S., et al. (2009). Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent. Nature Nanotechnology, 4(7), 457–463.  https://doi.org/10.1038/Nnano.2009.153.CrossRefPubMedGoogle Scholar
  68. Liu, X., Hao, W., Lok, C. N., Wang, Y. C., Zhang, R., & Wong, K. K. (2014). Dendrimer encapsulation enhances anti-inflammatory efficacy of silver nanoparticles. Journal of Pediatric Surgery, 49(12), 1846–1851.  https://doi.org/10.1016/j.jpedsurg.2014.09.033.CrossRefPubMedGoogle Scholar
  69. Liu, S., Qiao, S., Li, L., Qi, G., Lin, Y., Qiao, Z., et al. (2015). Surface charge-conversion polymeric nanoparticles for photodynamic treatment of urinary tract bacterial infections. Nanotechnology, 26(49), 495602.  https://doi.org/10.1088/0957-4484/26/49/495602.CrossRefPubMedGoogle Scholar
  70. Lok, C. N., Ho, C. M., Chen, R., He, Q. Y., Yu, W. Y., Sun, H., et al. (2006). Proteomic analysis of the mode of antibacterial action of silver nanoparticles. Journal of Proteome Research, 5(4), 916–924.  https://doi.org/10.1021/pr0504079.CrossRefPubMedGoogle Scholar
  71. Magallanes, M., Dijkstra, J., & Fierer, J. (1993). Liposome-incorporated ciprofloxacin in treatment of murine salmonellosis. Antimicrobial Agents and Chemotherapy, 37(11), 2293–2297.  https://doi.org/10.1128/AAC.37.11.2293.CrossRefPubMedPubMedCentralGoogle Scholar
  72. Mahlapuu, M., Håkansson, J., Ringstad, L., & Björn, C. (2016). Antimicrobial peptides: An emerging category of therapeutic agents. Frontiers in Cellular and Infection Microbiology, 6, 194.  https://doi.org/10.3389/fcimb.2016.00194.CrossRefPubMedPubMedCentralGoogle Scholar
  73. Merkle, H. P., & Speiser, P. (1973). Preparation and in vitro evaluation of cellulose acetate phthalate coacervate microcapsules. Journal of Pharmaceutical Sciences, 62(9), 1444–1448.  https://doi.org/10.1002/jps.2600620910.CrossRefPubMedGoogle Scholar
  74. Miller, K. P., Wang, L., Benicewicz, B. C., & Decho, A. W. (2015). Inorganic nanoparticles engineered to attack bacteria. Chemical Society Reviews, 44(21), 7787–7807.  https://doi.org/10.1039/c5cs00041f.CrossRefPubMedGoogle Scholar
  75. Mirnejad, R., Mofazzal Jahromi, M. A., Al-Musawi, S., Pirestani, M., Fasihi Ramandi, M., Ahmadi, K., et al. (2014). Curcumin-loaded chitosan tripolyphosphate nanoparticles as a safe, natural and effective antibiotic inhibits the infection of Staphylococcus aureus and Pseudomonas aeruginosa in vivo. Iranian Journal of Biotechnology, 12(3), 1–8.  https://doi.org/10.15171/ijb.1012.CrossRefGoogle Scholar
  76. Mofazzal Jahromi, M. A., Sahandi Zangabad, P., Moosavi Basri, S. M., Sahandi Zangabad, K., Ghamarypour, A., Aref, A. R., et al. (2018). Nanomedicine and advanced technologies for burns: Preventing infection and facilitating wound healing. Advanced Drug Delivery Reviews, 123, 33–64.  https://doi.org/10.1016/j.addr.2017.08.001.CrossRefPubMedGoogle Scholar
  77. Mugabe, C., Halwani, M., Azghani, A. O., Lafrenie, R. M., & Omri, A. (2006). Mechanism of enhanced activity of liposome-entrapped aminoglycosides against resistant strains of Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 50(6), 2016–2022.  https://doi.org/10.1128/AAC.01547-05.CrossRefPubMedPubMedCentralGoogle Scholar
  78. Muzammil, S., Hayat, S., Fakhar, E. A. M., Aslam, B., Siddique, M. H., Nisar, M. A., et al. (2018). Nanoantibiotics: Future nanotechnologies to combat antibiotic resistance. Frontiers in Bioscience (Elite Edition), 10, 352–374.  https://doi.org/10.2741/e827.CrossRefGoogle Scholar
  79. Nisini, R., Poerio, N., Mariotti, S., De Santis, F., & Fraziano, M. (2018). The multirole of liposomes in therapy and prevention of infectious diseases. Frontiers in Immunology, 9, 155. ARTN 15510.3389/fimmu.2018.00155.CrossRefGoogle Scholar
  80. Omri, A., Suntres, Z. E., & Shek, P. N. (2002). Enhanced activity of liposomal polymyxin B against Pseudomonas aeruginosa in a rat model of lung infection. Biochemical Pharmacology, 64(9), 1407–1413.  https://doi.org/10.1016/S0006-2952(02)01346-1.CrossRefPubMedGoogle Scholar
  81. Onyeji, C. O., Nightingale, C. H., & Marangos, M. N. (1994). Enhanced killing of methicillin-resistant Staphylococcus aureus in human macrophages by liposome-entrapped vancomycin and teicoplanin. Infection, 22(5), 338–342.  https://doi.org/10.1007/BF01715542.CrossRefPubMedGoogle Scholar
  82. Pandey, R., & Khuller, G. K. (2005). Solid lipid particle-based inhalable sustained drug delivery system against experimental tuberculosis. Tuberculosis (Edinburgh, Scotland), 85(4), 227–234.  https://doi.org/10.1016/j.tube.2004.11.003.CrossRefGoogle Scholar
  83. Pandey, R., Zahoor, A., Sharma, S., & Khuller, G. K. (2003). Nanoparticle encapsulated antitubercular drugs as a potential oral drug delivery system against murine tuberculosis. Tuberculosis (Edinburgh, Scotland), 83(6), 373–378.  https://doi.org/10.1016/j.tube.2003.07.001.CrossRefGoogle Scholar
  84. Parani, M., Lokhande, G., Singh, A., & Gaharwar, A. K. (2016). Engineered nanomaterials for infection control and healing acute and chronic wounds. ACS Applied Materials & Interfaces, 8(16), 10049–10069.  https://doi.org/10.1021/acsami.6b00291.CrossRefGoogle Scholar
  85. Peetla, C., Jin, S. H., Weimer, J., Elegbede, A., & Labhasetwar, V. (2014). Biomechanics and thermodynamics of nanoparticle interactions with plasma and endosomal membrane lipids in cellular uptake and endosomal escape. Langmuir, 30(25), 7522–7532.  https://doi.org/10.1021/la5015219.CrossRefPubMedPubMedCentralGoogle Scholar
  86. Pelgrift, R. Y., & Friedman, A. J. (2013). Nanotechnology as a therapeutic tool to combat microbial resistance. Advanced Drug Delivery Reviews, 65(13–14), 1803–1815.  https://doi.org/10.1016/j.addr.2013.07.011.CrossRefPubMedPubMedCentralGoogle Scholar
  87. Perichon, B., & Courvalin, P. (2009). VanA-type vancomycin-resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 53(11), 4580–4587.  https://doi.org/10.1128/AAC.00346-09.CrossRefPubMedPubMedCentralGoogle Scholar
  88. Peters, B. M., Shirtliff, M. E., & Jabra-Rizk, M. A. (2010). Antimicrobial peptides: Primeval molecules or future drugs? PLoS Pathogens, 6(10), e1001067.  https://doi.org/10.1371/journal.ppat.1001067.CrossRefPubMedPubMedCentralGoogle Scholar
  89. Peulen, T. O., & Wilkinson, K. J. (2011). Diffusion of nanoparticles in a biofilm. Environmental Science & Technology, 45(8), 3367–3373.  https://doi.org/10.1021/es103450g.CrossRefGoogle Scholar
  90. Piras, A. M., Maisetta, G., Sandreschi, S., Gazzarri, M., Bartoli, C., Grassi, L., et al. (2015). Chitosan nanoparticles loaded with the antimicrobial peptide temporin B exert a long-term antibacterial activity in vitro against clinical isolates of Staphylococcus epidermidis. Frontiers in Microbiology, 6, 372. UNSP 37210.3389/fmicb.2015.00372.CrossRefGoogle Scholar
  91. Poulikakos, P., & Falagas, M. E. (2013). Aminoglycoside therapy in infectious diseases. Expert Opinion on Pharmacotherapy, 14(12), 1585–1597.  https://doi.org/10.1517/14656566.2013.806486.CrossRefPubMedGoogle Scholar
  92. Prior, S., Gamazo, C., Irache, J. M., Merkle, H. P., & Gander, B. (2000). Gentamicin encapsulation in PLA/PLGA microspheres in view of treating Brucella infections. International Journal of Pharmaceutics, 196(1), 115–125.  https://doi.org/10.1016/S0378-5173(99)00448-2.CrossRefPubMedGoogle Scholar
  93. Qiu, Z., Yu, Y., Chen, Z., Jin, M., Yang, D., Zhao, Z., et al. (2012). Nanoalumina promotes the horizontal transfer of multiresistance genes mediated by plasmids across genera. Proceedings of the National Academy of Sciences of the United States of America, 109(13), 4944–4949.  https://doi.org/10.1073/pnas.1107254109.CrossRefPubMedPubMedCentralGoogle Scholar
  94. Radovic-Moreno, A. F., Lu, T. K., Puscasu, V. A., Yoon, C. J., Langer, R., & Farokhzad, O. C. (2012). Surface charge-switching polymeric nanoparticles for bacterial cell wall-targeted delivery of antibiotics. ACS Nano, 6(5), 4279–4287.  https://doi.org/10.1021/nn3008383.CrossRefPubMedPubMedCentralGoogle Scholar
  95. Rai, A., Prabhune, A., & Perry, C. C. (2010). Antibiotic mediated synthesis of gold nanoparticles with potent antimicrobial activity and their application in antimicrobial coatings. Journal of Materials Chemistry, 20(32), 6789–6798.  https://doi.org/10.1039/c0jm00817f.CrossRefGoogle Scholar
  96. Rai, A., Pinto, S., Velho, T. R., Ferreira, A. F., Moita, C., Trivedi, U., et al. (2016). One-step synthesis of high-density peptide-conjugated gold nanoparticles with antimicrobial efficacy in a systemic infection model. Biomaterials, 85, 99–110.  https://doi.org/10.1016/j.biomaterials.2016.01.051.CrossRefPubMedGoogle Scholar
  97. Ramge, P., Unger, R. E., Oltrogge, J. B., Zenker, D., Begley, D., Kreuter, J., et al. (2000). Polysorbate-80 coating enhances uptake of polybutylcyanoacrylate (PBCA)-nanoparticles by human and bovine primary brain capillary endothelial cells. The European Journal of Neuroscience, 12(6), 1931–1940.  https://doi.org/10.1046/j.1460-9568.2000.00078.x.CrossRefPubMedGoogle Scholar
  98. Sala, M., Diab, R., Elaissari, A., & Fessi, H. (2018). Lipid nanocarriers as skin drug delivery systems: Properties, mechanisms of skin interactions and medical applications. The International Journal of Pharmaceutics, 535(1–2), 1–17.  https://doi.org/10.1016/j.ijpharm.2017.10.046.CrossRefPubMedGoogle Scholar
  99. Salditt, T., Li, C., & Spaar, A. (2006). Structure of antimicrobial peptides and lipid membranes probed by interface-sensitive X-ray scattering. Biochimica et Biophysica Acta, Biomembranes, 1758(9), 1483–1498.  https://doi.org/10.1016/j.bbamem.2006.08.002.CrossRefGoogle Scholar
  100. Schiffelers, R., Storm, G., & Bakker-Woudenberg, I. (2001). Liposome-encapsulated aminoglycosides in pre-clinical and clinical studies. The Journal of Antimicrobial Chemotherapy, 48(3), 333–344.  https://doi.org/10.1093/jac/48.3.333.CrossRefPubMedGoogle Scholar
  101. Schumacher, I., & Margalit, R. (1997). Liposome-encapsulated ampicillin: Physiochemical and antibacterial properties. Journal of Pharmaceutical Sciences, 86(5), 635–641.  https://doi.org/10.1021/js9503690.CrossRefPubMedGoogle Scholar
  102. Shai, Y. (2002). From innate immunity to de-novo designed antimicrobial peptides. Current Pharmaceutical Design, 8(9), 715–725.  https://doi.org/10.2174/1381612023395367.CrossRefPubMedGoogle Scholar
  103. Shariff, B., Barati, N., & Rahim, F. (2010). Development of solid lipid nanoparticles as eschar delivery system for Nitrofurazone using Taguchi design approach. International Journal of Pharmaceutical Sciences and Research (IJPSR), 1(4), 466–472.Google Scholar
  104. Shrestha, A., Hamblin, M. R., & Kishen, A. (2012). Characterization of a conjugate between Rose Bengal and chitosan for targeted antibiofilm and tissue stabilization effects as a potential treatment of infected dentin. Antimicrobial Agents and Chemotherapy, 56(9), 4876–4884.  https://doi.org/10.1128/AAC.00810-12.CrossRefPubMedPubMedCentralGoogle Scholar
  105. Shrestha, A., Hamblin, M. R., & Kishen, A. (2014). Photoactivated rose bengal functionalized chitosan nanoparticles produce antibacterial/biofilm activity and stabilize dentin-collagen. Nanomedicine, 10(3), 491–501.  https://doi.org/10.1016/j.nano.2013.10.010.CrossRefPubMedGoogle Scholar
  106. Silva, J. P., Goncalves, C., Costa, C., Sousa, J., Silva-Gomes, R., Castro, A. G., et al. (2016). Delivery of LLKKK18 loaded into self-assembling hyaluronic acid nanogel for tuberculosis treatment. Journal of Controlled Release, 235, 112–124.  https://doi.org/10.1016/j.jconrel.2016.05.064.CrossRefPubMedGoogle Scholar
  107. Singh, R., & Lillard, J. W., Jr. (2009). Nanoparticle-based targeted drug delivery. Experimental and Molecular Pathology, 86(3), 215–223.  https://doi.org/10.1016/j.yexmp.2008.12.004.CrossRefPubMedPubMedCentralGoogle Scholar
  108. Song, Z., Sun, H. W., Yang, Y., Jing, H. M., Yang, L. Y., Tong, Y. N., et al. (2016). Enhanced efficacy and anti-biofilm activity of novel nanoemulsions against skin burn wound multi-drug resistant MRSA infections. Nanomedicine and Nanotechnology, 12(6), 1543–1555.  https://doi.org/10.1016/j.nano.2016.01.015.CrossRefGoogle Scholar
  109. Soppimath, K. S., Aminabhavi, T. M., Kulkarni, A. R., & Rudzinski, W. E. (2001). Biodegradable polymeric nanoparticles as drug delivery devices. Journal of Controlled Release, 70(1–2), 1–20.  https://doi.org/10.1016/S0168-3659(00)00339-4.CrossRefPubMedGoogle Scholar
  110. Stewart, P. S. (1998). A review of experimental measurements of effective diffusive permeabilities and effective diffusion coefficients in biofilms. Biotechnology and Bioengineering, 59(3), 261–272.  https://doi.org/10.1002/(SICI)1097-0290(19980805)59:3<261::AID-BIT1>3.0.CO;2-9.CrossRefPubMedGoogle Scholar
  111. Sugumar, S., Mukherjee, A., & Chandrasekaran, N. (2015). Eucalyptus oil nanoemulsion-impregnated chitosan film: Antibacterial effects against a clinical pathogen, Staphylococcus aureus, in vitro. International Journal of Nanomedicine, 10(l), 67–75.  https://doi.org/10.2147/IJN.S79982.CrossRefPubMedPubMedCentralGoogle Scholar
  112. Svenson, S. (2009). Dendrimers as versatile platform in drug delivery applications. European Journal of Pharmaceutics and Biopharmaceutics, 71(3), 445–462.  https://doi.org/10.1016/j.ejpb.2008.09.023.CrossRefPubMedGoogle Scholar
  113. Takenaka, S., Pitts, B., Trivedi, H. M., & Stewart, P. S. (2009). Diffusion of macromolecules in model oral biofilms. Applied and Environmental Microbiology, 75(6), 1750–1753.  https://doi.org/10.1128/AEM.02279-08.CrossRefPubMedPubMedCentralGoogle Scholar
  114. Torchilin, V. P. (2005). Recent advances with liposomes as pharmaceutical carriers. Nature Reviews. Drug Discovery, 4(2), 145–160.  https://doi.org/10.1038/nrd1632.CrossRefPubMedGoogle Scholar
  115. Turos, E., Reddy, G. S., Greenhalgh, K., Ramaraju, P., Abeylath, S. C., Jang, S., et al. (2007a). Penicillin-bound polyacrylate nanoparticles: Restoring the activity of beta-lactam antibiotics against MRSA. Bioorganic & Medicinal Chemistry Letters, 17(12), 3468–3472.  https://doi.org/10.1016/j.bmcl.2007.03.077.CrossRefGoogle Scholar
  116. Turos, E., Shim, J. Y., Wang, Y., Greenhalgh, K., Reddy, G. S., Dickey, S., et al. (2007b). Antibiotic-conjugated polyacrylate nanoparticles: New opportunities for development of anti-MRSA agents. Bioorganic & Medicinal Chemistry Letters, 17(1), 53–56.  https://doi.org/10.1016/j.bmcl.2006.09.098.CrossRefGoogle Scholar
  117. Umamaheshwari, R. B., & Jain, N. K. (2003). Receptor mediated targeting of lectin conjugated gliadin nanoparticles in the treatment of Helicobacter pylori. Journal of Drug Targeting, 11(7), 415–423.  https://doi.org/10.1080/10611860310001647771.CrossRefPubMedGoogle Scholar
  118. Vignoni, M., de Alwis Weerasekera, H., Simpson, M. J., Phopase, J., Mah, T. F., Griffith, M., et al. (2014). LL37 peptide@silver nanoparticles: Combining the best of the two worlds for skin infection control. Nanoscale, 6(11), 5725–5728.  https://doi.org/10.1039/c4nr01284d.CrossRefPubMedGoogle Scholar
  119. Wang, H. Y., Xu, K. J., Liu, L. H., Tan, J. P. K., Chen, Y. B., Li, Y. T., et al. (2010). The efficacy of self-assembled cationic antimicrobial peptide nanoparticles against Cryptococcus neoformans for the treatment of meningitis. Biomaterials, 31(10), 2874–2881.  https://doi.org/10.1016/j.biomaterials.2009.12.042.CrossRefPubMedGoogle Scholar
  120. Wang, L., Hu, C., & Shao, L. (2017). The antimicrobial activity of nanoparticles: Present situation and prospects for the future. International Journal of Nanomedicine, 12, 1227–1249.  https://doi.org/10.2147/IJN.S121956.CrossRefPubMedPubMedCentralGoogle Scholar
  121. Water, J. J., Smart, S., Franzyk, H., Foged, C., & Nielsen, H. M. (2015). Nanoparticle-mediated delivery of the antimicrobial peptide plectasin against Staphylococcus aureus in infected epithelial cells. The European Journal of Pharmaceutics and Biopharmaceutics, 92, 65–73.  https://doi.org/10.1016/j.ejpb.2015.02.009.CrossRefPubMedGoogle Scholar
  122. Webber, M. A., & Piddock, L. J. (2003). The importance of efflux pumps in bacterial antibiotic resistance. The Journal of Antimicrobial Chemotherapy, 51(1), 9–11.  https://doi.org/10.1093/jac/dkg050.CrossRefPubMedGoogle Scholar
  123. Yang, X. L., Yang, J. C., Wang, L., Ran, B., Jia, Y. X., Zhang, L. M., et al. (2017). Pharmaceutical intermediate-modified gold nanoparticles: Against multidrug-resistant bacteria and wound-healing application via an electrospun scaffold. ACS Nano, 11(6), 5737–5745.  https://doi.org/10.1021/acsnano.7b01240.CrossRefPubMedGoogle Scholar
  124. Zasloff, M. (2002). Antimicrobial peptides of multicellular organisms. Nature, 415, 389.  https://doi.org/10.1038/415389a.CrossRefPubMedGoogle Scholar
  125. Zhang, L., Pornpattananangku, D., Hu, C. M., & Huang, C. M. (2010). Development of nanoparticles for antimicrobial drug delivery. Current Medicinal Chemistry, 17(6), 585–594.  https://doi.org/10.2174/092986710790416290.CrossRefPubMedGoogle Scholar
  126. Zhao, Y., & Jiang, X. (2013). Multiple strategies to activate gold nanoparticles as antibiotics. Nanoscale, 5(18), 8340–8350.  https://doi.org/10.1039/c3nr01990j.CrossRefPubMedGoogle Scholar
  127. Zhao, Y., Tian, Y., Cui, Y., Liu, W., Ma, W., & Jiang, X. (2010). Small molecule-capped gold nanoparticles as potent antibacterial agents that target Gram-negative bacteria. Journal of the American Chemical Society, 132(35), 12349–12356.  https://doi.org/10.1021/ja1028843.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Faculty of MedicineUniversity of CoimbraCoimbraPortugal
  2. 2.Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal

Personalised recommendations