Advertisement

Nanomaterials as a Novel Class of Anti-infective Agents that Attenuate Bacterial Quorum Sensing

  • Fohad Mabood HusainEmail author
  • Mohammad Shavez Khan
  • Iqbal Ahmad
  • Rais Ahmad Khan
  • Nasser A. Al-Shabib
  • Mohammad Oves
  • Rodolfo García Contreras
  • Mohd Shahnawaz Khan
  • Mohammed Arshad
  • Abdullah A. Alyousef
Chapter

Abstract

Excessive and unabated use of antibiotics has led to the emergence of multi-drug resistant (MDR) bacteria. The ineffectiveness of current antibiotic therapy and the slow development of new drugs with novel modes of action have made the task of combating MDR infections even more difficult. The problem of multi-drug resistance among pathogens has prompted the scientific community to look for alternative strategies. One such approach, termed antipathogenic/antivirulence therapy, is considered to be a viable alternative. This strategy is focused on rendering the pathogen ineffective by inhibiting its virulence traits rather than killing it. Since antipathogenic/antivirulence compounds target bacterial virulence, the likelihood of developing resistance is also reduced considerably. The areas of major interest in the antivirulence approach include the inhibition of quorum sensing and biofilm formation. The pioneering discovery of halogenated furanones as quorum sensing inhibitors (QSIs) has prompted the scientific community to search for novel QSIs of both natural and synthetic origin. However, QSIs like furanones are not recommended for human use due to issues related to their toxicity and stability. Recently, researchers across the globe have turned their attention toward nanomaterials as potential anti-infective drugs, targeting QS and biofilm formation. Although there are numerous studies regarding the antibacterial effect of nanoparticles, current reports on the antiquorum sensing and biofilm inhibition properties are still scarce. Therefore, in this article we have made an honest attempt to summarize the reports on the anti-QS properties of nanoparticles and their future as novel anti-infective drugs.

Keywords

Anti-infective Quorum sensing Biofilm Nanoparticles Nanocarriers Nano-QSIs 

Notes

Acknowledgement

The authors acknowledge the Deanship of Scientific Research and Research Centre, College of Applied Medical Sciences, King Saud University, Riyadh, KSA for funding this research.

Disclosure

The authors report no conflicts of interest.

References

  1. Addae, E., Dong, X., McCoy, E., Yang, C., Chen, W., & Yang, L. (2014). Investigation of antimicrobial activity of photothermal therapeutic gold/copper sulphide core/shell nanoparticles to bacterial spores and cells. Journal of Biological Engineering, 8, 11.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Adeli, M., Hosainzadegan, H., Pakzad, I., Zabihi, F., Alizadeh, M., & Karimi, F. (2013). Preparation of the silver nanoparticle containing starch foods and evaluation of antimicrobial activity. Jundishapur Journal of Microbiology, 6(4), e5075.Google Scholar
  3. Ahmad, I., Zahin, M., Aqil, F., Khan, M. S. A., & Ahmad, S. (2009). Novel approaches to combating drug-resistant bacteria. In I. Ahmad & F. Aqil (Eds.), New strategies combating bacterial infections (pp. 47–70). Weinheim: Wiley-Blackwell, Wiley- VCH.Google Scholar
  4. Ahmed, N. A., Petersen, F. C., & Scheie, A. A. (2007). AI-2 quorum sensing affects antibiotic susceptibility in Streptococcus anginosus. The Journal of Antimicrobial Chemotherapy, 60(1), 49–53.PubMedCrossRefPubMedCentralGoogle Scholar
  5. Alavi, M., & Karimi, N. (2018). Antiplanktonic, antibiofilm, antiswarming motility and antiquorum sensing activities of green synthesized Ag–TiO2, TiO2–Ag, Ag–Cu and Cu–Ag nanocomposites against multi-drug-resistant bacteria. Artificial cells, nanomedicine, and biotechnology, 7, 1–5.Google Scholar
  6. Al-Shabib, N. A., Husain, F. M., Ahmed, F., Khan, R. A., Alsharaeh, E., Khan, M. S., et al. (2016). Biogenic synthesis of Zinc oxide nanostructures from Nigella sativa seed: Prospective role as food packaging material inhibiting broad-spectrum quorum sensing. Scientific Reports, 6, 36761.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Al-Shabib, N. A., Husain, F. M., Hassan, I., Khan, M. S., Ahmed, F., Qais, F. A., et al. (2018). Biofabrication of zinc oxide nanoparticle from Ochradenus baccatus leaves: Broad-spectrum antibiofilm activity, proteinbinding studies, and in vivo toxicity and stress studies. Journal of Nanomaterials, 2018, 8612158.Google Scholar
  8. Aqil, F., Ahmad, I., & Owais, M. (2006). Targeted screening of bioactive plant extracts and phytocompounds against problematic groups of Multidrug resistant bacteria. In I. F. Aqil & M. Owais (Eds.), Modern phytomedicine: Turning medicinal plants into drugs (pp. 173–197). Weinheim: Wiley-Blackwell, Wiley-VCH.CrossRefGoogle Scholar
  9. Arunkumar, M., Suhashini, K., Mahesh, N., et al. (2014). Quorum quenching and antibacterial activity of silver nanoparticles synthesized from Sargassum polyphyllum. Bangladesh Journal of Pharmacology, 9, 6.CrossRefGoogle Scholar
  10. Barbachyn, M. R., & Ford, C. W. (2003). Oxazolidinone structure-activity relationships leading to linezolid. Angewandte Chemie, International Edition, 42(18), 2010–2023.CrossRefGoogle Scholar
  11. Bassetti, M., Ginocchio, F., & Mikulska, M. (2011). New treatment options against gram-negative organisms. Critical Care, 15, 215.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bassler, B. L., Wright, M., Showalter, R. E., & Silverman, M. R. (1993). Intercellular signalling in Vibrio harveyi: sequence and function of genes regulating expression of luminescence. Molecular Microbiology, 9, 773–786.PubMedCrossRefPubMedCentralGoogle Scholar
  13. Bhainsa, K. C., & D’Souza, S. F. (2006). Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids and Surfaces B: Biointerfaces, 47, 160–164.PubMedCrossRefPubMedCentralGoogle Scholar
  14. Bhardwaj, A. K., Vinothkumar, K., & Rajpara, N. (2013). Bacterial quorum sensing inhibitors: attractive alternatives for control of infectious pathogens showing multiple drug resistance. Recent Patents on Anti-infective Drug Discovery, 8, 68–83.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Byeon, J. Y., Sim, J., Ryu, E. J., Sim, J., Lee, H., Cho, K. H., Choi, B. K., & Lee, J. (2017 Jul). In silico development of quorum-sensing inhibitors. Bulletin of the Korean Chemical Society, 38(7), 728–734.CrossRefGoogle Scholar
  16. Cámara, M., Hardman, A., Williams, P., & Milton, D. (2002). Quorum sensing in Vibrio cholerae. Nature Genetics, 32(2), 217–218.PubMedCrossRefPubMedCentralGoogle Scholar
  17. Cegelski, L., Marshall, G. R., Eldridge, G. R., & Hultgren, S. J. (2008). The biology and future prospects of antivirulence therapies. Nature Reviews. Microbiology, 6, 17–27.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Chan, W. C., Coyle, B. J., & Williams, P. (2004). Virulence regulation and quorum sensing in staphylococcal infections: competitive AgrC antagonists as quorum sensing inhibitors. Journal of Medicinal Chemistry, 47(19), 4633–4641.PubMedCrossRefPubMedCentralGoogle Scholar
  19. Chan, Y. Y., Bian, H. S., Tan, T. M., Mattmann, M. E., Geske, G. D., Igarashi, J., Hatano, T., Suga, H., Blackwell, H. E., & Chua, K. L. (2007). Control of quorum sensing by a Burkholderia pseudomallei multidrug efflux pump. Journal of Bacteriology, 189, 4320–4324.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Chaudhari, A. A., Jasper, S. L., Dosunmu, E., et al. (2015). Novel pegylated silver coated carbon nanotubes kill Salmonella but they are non-toxic to eukaryotic cells. Journal of Nanbiotechnology, 13, 23.CrossRefGoogle Scholar
  21. Chen, X., Schauder, S., Potier, N., et al. (2002). Structural identification of a bacterial quorum-sensing signal containing boron. Nature, 415(6871), 545–549.PubMedCrossRefPubMedCentralGoogle Scholar
  22. Chen, F., Gao, Y., Chen, X., Yu, Z., & Li, X. (2013 Sep). Quorum quenching enzymes and their application in degrading signal molecules to block quorum sensing-dependent infection. International Journal of Molecular Sciences, 14(9), 17477–17500.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Coulthurst, S. J., Leopold, K. C., & Salmond, G. P. C. (2004). luxS mutants of Serratia defective in autoinducer-2-dependent ‘quorum sensing’ show strain-dependent impacts on virulence and production of carbapenem and prodigiosin. Microbiol, 150, 1901–1910.CrossRefGoogle Scholar
  24. Cvitkovitch, D. G., Li, Y. H., & Ellen, R. P. (2003). Quorum sensing and biofilm formation in Streptococcal infections. The Journal of Clinical Investigation, 112(11), 1626–1632.PubMedPubMedCentralCrossRefGoogle Scholar
  25. D’Costa, V. M., McGrann, K. M., Hughes, D. W., & Wright, G. D. (2006). Sampling the antibiotic resistome. Science, 311, 374–377.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Davies, D. G., Parsek, M. R., Pearson, J. P., Iglewski, B. H., Costerton, J. W., & Greenberg, E. P. (1998). The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science, 280(5361), 295–298.PubMedCrossRefPubMedCentralGoogle Scholar
  27. Defoirdt, T. (2017). Quorum-sensing systems as targets for antivirulence therapy. Trends in Microbiology, 26(4), 313–328.PubMedCrossRefPubMedCentralGoogle Scholar
  28. Ding, T., Li, T., & Li, J. (2019 Jul 1). Discovery of quorum sensing inhibitors of Pseudomonas fluorescens P07 by using a receptor-based pharmacophore model and virtual screening. LWT, 109, 171–178.CrossRefGoogle Scholar
  29. Dolgin, E. (2010). Sequencing of superbugs seen as key to combating their spread. Nature Medicine, 16, 1054.PubMedPubMedCentralGoogle Scholar
  30. Dong, Y. H., Xu, J. L., Li, X. Z., & Zhang, L. H. (2000). AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proceedings of the National Acad.Google Scholar
  31. Dubern, J. F., & Diggle, S. P. (2008). Quorum sensing by 2-alkyl-4-quinolones in Pseudomonas aeruginosa and other bacterial species. Molecular BioSystems, 4, 882–888.PubMedCrossRefPubMedCentralGoogle Scholar
  32. Dubey, G. P., & Yahuda, S. B. (2011). Intercellular nanotubes mediate bacterial communication. Cell, 144, 590–600.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Escaich, S. (2010). Novel agents to inhibit microbial virulence and pathogenicity. Expert Opinion on Therapeutic Patents, 20, 1401–1418.PubMedCrossRefPubMedCentralGoogle Scholar
  34. Evans, K., Passador, L., Srikumar, R., Tsang, E., Nezezon, J., & Poole, K. (1998). Influence of the MexAB-OprM multidrug efflux system on quorum sensing in Pseudomonas aeruginosa. Journal of Bacteriology, 180, 5443–5447.PubMedPubMedCentralGoogle Scholar
  35. Federle, M. J., & Bassler, B. L. (2003). Interspecies communication in bacteria. The Journal of Clinical Investigation, 112(9), 1291–1299.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Fernandes, R., Roy, V., Wu, H. C., et al. (2010). Engineered biological nanofactories trigger quorum sensing response in targeted bacteria. Nature Nanotechnology, 5, 213–217.PubMedCrossRefPubMedCentralGoogle Scholar
  37. Galdiero, S., Falanga, A., Vitiello, M., Cantisani, M., Marra, V., & Galdiero, M. (2011). Silver nanoparticles as potential antiviral agents. Molecules, 16(10), 8894–8918.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Gambino, M., Marzano, V., Villa, F., et al. (2015). Effects of sublethal doses of silver nanoparticles on Bacillus subtilis planktonic and sessile cells. Journal of Applied Microbiology, 118, 1103–1115.PubMedCrossRefPubMedCentralGoogle Scholar
  39. Garcıa-Lara, B., Saucedo-Mora, M. A., & Roldan-Sanchez, J. (2015). Inhibition of quorum-sensing-dependent virulence factors and biofilm formation of clinical and environmental Pseudomonas aeruginosa strains by ZnO nanoparticles. Letters in Applied Microbiology, 61, 299–305.PubMedCrossRefPubMedCentralGoogle Scholar
  40. Geske, G. D., O’Neill, J. C., Miller, D. M., Mattmann, M. E., & Blackwell, H. E. (2007 Nov 7). Modulation of bacterial quorum sensing with synthetic ligands: Systematic evaluation of Nacylated homoserine lactones in multiple species and new insights into their mechanisms of action. Journal of the American Chemical Society, 129(44), 13613–13625.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Geske, G. D., O’Neill, J. C., & Blackwell, H. E. (2008). Expanding dialogues: from natural autoinducers to non-natural analogues that modulate quorum sensing in Gram-negative bacteria. Chemical Society Reviews, 37, 1432–1447.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Gilbertson, L. M., Goodwin, D. G., Taylor, A. D., Pfefferle, L., & Zimmerman, J. B. (2014). Toward tailored functional design of Multi-Walled Carbon Nanotubes (MWNTs): electrochemical and antimicrobial activity enhancement via oxidation and selective reduction. Environmental Science & Technology, 48, 5938–5945.CrossRefGoogle Scholar
  43. Gonzales, R. D., Schreckenberger, P. C., Graham, M. B., Kelkar, S., DenBesten, K., & Quinn, J. P. (2001). Infections due to vancomycin-resistant Enterococcus faecium resistant to linezolid. Lancet, 357(9263), 1179.PubMedCrossRefPubMedCentralGoogle Scholar
  44. Guo, M., Zheng, Y., Starks, R., Opoku-Temeng, C., Ma, X., & Sintim, H. O. (2015). 3-Aminooxazolidinone AHL analogs as hydrolytically-stable quorum sensing agonists in Gramnegative bacteria. Medicinal Chemistry Communications, 6(6), 1086–1092.CrossRefGoogle Scholar
  45. Hauck, T., Hübner, Y., Brühlmann, F., & Schwab, W. (2003). Alternative pathway for the formation of 4,5-dihydroxy-2,3- pentanedione, the proposed precursor of 4-hydroxy-5-methyl-3(2H)-furanone as well as autoinducer-2, and its detection as natural constituent of tomato fruit. Biochimica et Biophysica Acta, 1623(2–3), 109–119.PubMedCrossRefPubMedCentralGoogle Scholar
  46. Hentzer, M., & Givskov, M. (2003). Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections. The Journal of Clinical Investigation, 112, 1300–1307.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Heras, B., Scanlon, M. J., & Martin, J. L. (2014). Targeting virulence not viability in search for future antibacterials. British Journal of Clinical Pharmacology, 79, 208–215.CrossRefGoogle Scholar
  48. Higgins, D. A., Pomianek, M. E., Kraml, C. M., Taylor, R. K., Semmelhack, M. F., & Bassler, B. L. (2007). The major Vibrio cholerae autoinducer and its role in virulence factor production. Nature, 450(7171), 883–886.PubMedCrossRefPubMedCentralGoogle Scholar
  49. Hiramatsu, K., Hanaki, H., Ino, T., Yabuta, K., Oguri, T., & Tenover, F. C. (1997). Methicillin-resistant Staphylococus aureus clinical strain with reduced vancomycin susceptibility. The Journal of Antimicrobial Chemotherapy, 40(1), 135–136.PubMedCrossRefPubMedCentralGoogle Scholar
  50. Hoang, T. T., & Schweizer, H. P. (1999). Characterization of Pseudomonas aeruginosa enoyl-acyl carrier protein reductase (FabI): a target for the antimicrobial triclosan and its role in acylated homoserine lactone synthesis. Journal of Bacteriology, 181, 5489–5497.PubMedPubMedCentralGoogle Scholar
  51. Horinouchi, S., Ohnishi, Y., & Kang, D. K. (2001). The A factor regulatory cascade and cAMP in the regulation of physiological and morphological development in Streptomyces griseus. Journal of Industrial Microbiology & Biotechnology, 27, 177–182.CrossRefGoogle Scholar
  52. Hoseinzadeh, E., Makhdoumi, P., Taha, P., Hossini, H., Stelling, J., & Amjad, K. M. (2017). A review on nano-antimicrobials: Metal nanoparticles, methods and mechanisms. Current Drug Metabolism, 18(2), 120–128.PubMedCrossRefPubMedCentralGoogle Scholar
  53. Huang, J. J., Han, J. I., Zhang, L. H., & Leadbetter, J. R. (2003). Utilization of acylhomoserine lactone quorum signals for growth by a soil pseudomonad and Pseudomonas aeruginosa PAO1. Applied and Environmental Microbiology, 69, 5941–5949.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Hughes, D. T., & Sperandio, V. (2008). Inter-kingdom signaling: communication between bacteria and their hosts. Nature Reviews. Microbiology, 6(2), 111–120.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Janssens, J. C., Metzger, K., Daniels, R., et al. (2007). Synthesis of N-acyl homoserine lactone analogues reveals strong activators of SdiA, the Salmonella enterica serovar Typhimurium LuxR homologue. Applied and Environmental Microbiology, 73(2), 535–544.PubMedCrossRefPubMedCentralGoogle Scholar
  56. Ji, G., Beavis, R., & Novick, R. P. (1997). Bacterial interference caused by autoinducing peptide variants. Science, 276(5321), 2027–2030.PubMedCrossRefPubMedCentralGoogle Scholar
  57. Jimenez, P. N., Koch, G., Thompson, J. A., Xavier, K. B., Cool, R. H., & Quax, W. J. (2012). The multiple signaling systems regulating virulence in Pseudomonas aeruginosa. Microbiology and Molecular Biology Reviews, 76, 46–65.PubMedCrossRefPubMedCentralGoogle Scholar
  58. Jones, R. N., Della-Latta, P., Lee, L. V., & Biedenbach, D. J. (2002). Linezolid-resistant Enterococcus faecium isolated from a patient without prior exposure to an oxazolidinone: Report from the SENTRY Antimicrobial Surveillance Program. Diagnostic Microbiology and Infectious Disease, 42(2), 137–139.PubMedCrossRefPubMedCentralGoogle Scholar
  59. Kalia, V. C. (2013). Quorum sensing inhibitors: An overview. Biotechnology Advances, 31(2), 224–245.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Kalishwaralal, K., Barath, M. K. S., Pandian, S. R., et al. (2010). Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. Colloids and Surfaces. B, Biointerfaces, 79, 340–344.PubMedCrossRefPubMedCentralGoogle Scholar
  61. Kamal, A. A. M., Christine, K. M., Giuseppe, A., Jörg, H., Martin, E., & Rolf, W. H. (2017). Quorum sensing inhibitors as pathoblockers for Pseudomonas aeruginosa infections: A new concept in Anti-Infective drug discovery. In J. Fisher, S. Mobashery, & M. Miller (Eds.), Antibacterials. Topics in Medicinal Chemistry (Vol. 26, pp. 1–26). Champions: Springer.Google Scholar
  62. Khan, M. F., Ansari, A. H., Hameedullah, M., Ahmad, E., Husain, F. M., et al. (2016). Sol-gel synthesis of ZnO nanoparticles endorsing mechanical stirring effect and their antimicrobial activities: Potential role as nano-antibiotics. Scientific Reports, 6, 27689.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Khan, M. S., Qais, F. A., & Ahmad, I. (2018). Quorum sensing interference by natural products from medicinal plants: Significance in combating bacterial infection. In Biotechnological applications of quorum sensing inhibitors 2018 (pp. 417–445). Singapore: Springer.CrossRefGoogle Scholar
  64. Kim, S. Y., Lee, S. E., Kim, Y. R., et al. (2003). Regulation of Vibrio vulnificus virulence by the LuxS quorum-sensing system. Molecular Microbiology, 48(6), 1647–1664.PubMedCrossRefPubMedCentralGoogle Scholar
  65. Koh, C. L., Sam, C. K., Yin, W. F., Tan, L., Krishnan, T., Chong, Y., & Chan, K. G. (2013 May). Plant-derived natural products as sources of anti-quorum sensing compounds. Sensors, 13(5), 6217–6228.PubMedCrossRefPubMedCentralGoogle Scholar
  66. Kulshrestha, S., Khan, S., Hasan, S., Khan, M. E., Misra, L., & Khan, A. U. (2016). Calcium fluoride nanoparticles induced suppression of Streptococcus mutans biofilm: an in vitro and in vivo approach. Applied Microbiology and Biotechnology, 100, 1901–1914.PubMedCrossRefPubMedCentralGoogle Scholar
  67. Lara-Garcıa, B., Saucedo-Mora, M. A., & Roldan-Sanchez, J. (2015). Inhibition of quorum-sensing- dependent virulence factors and biofilm formation of clinical and environmental Pseudomonas aeruginosa strains by ZnO nanoparticles. Letters in Applied Microbiology, 61, 299–305.CrossRefGoogle Scholar
  68. Lee, J. H., Kim, Y. G., Cho, M. H., & Lee, J. (2014). ZnO nanoparticles inhibit Pseudomonas aeruginosa biofilm formation and virulence factor production. Microbiological Research, 169, 888–896.PubMedCrossRefPubMedCentralGoogle Scholar
  69. Leadbetter, J. R., & Greenberg, E. P. (2000 Dec 15). Metabolism of acyl-homoserine lactone quorum-sensing signals by Variovorax paradoxus. Journal of Bacteriology., 182(24), 6921–6926.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Lin, Y. H., Xu, J. L., Hu, J., Wang, L. H., Ong, S. L., Leadbetter, J. R., & Zhang, L. H. (2003 Feb). Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes. Molecular Microbiology, 47(3), 849–860.PubMedCrossRefPubMedCentralGoogle Scholar
  71. Li, J., Wang, L., Hashimoto, Y., et al. (2006). A stochastic model of Escherichia coli AI-2 quorum signal circuit reveals alternative synthesis pathways. Molecular Systems Biology, 2, 67.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Loo, C. Y., Rohanizadeh, R., Young, P. M., Traini, D., Cavaliere, R., Whitchurch, D., & Lee, W. H. (2016). Combination of silver nanoparticles and curcumin nanoparticles for enhanced anti-biofilm activities. Journal of Agricultural and Food Chemistry, 64(12), 2513–2522.PubMedCrossRefPubMedCentralGoogle Scholar
  73. Lu, H. D., Spiegel, A. C., Hurley, A., et al. (2015). Modulating Vibrio cholerae quorum-sensing-controlled communication using autoinducer-loaded nanoparticles. Nano Letters, 15, 2235–2241.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Martinez, J. L. (2008). Antibiotics and antibiotic resistance genes in natural environments. Science, 321, 365–367.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Martinez-Gutierrez, F., Boegli, L., Agostinho, A., et al. (2013). Anti-biofilm activity of silver nanoparticles against different microorganisms. Biofouling, 29, 651–660.PubMedCrossRefPubMedCentralGoogle Scholar
  76. Masurkar, S. A., Chaudhari, P. R., Shidore, V. B., et al. (2012). Effect of biologically synthesised silver nanoparticles on Staphylococcus aureus biofilm quenching and prevention of biofilm formation. IET Nanobiotechnology, 6, 110–114.PubMedCrossRefPubMedCentralGoogle Scholar
  77. Michael, B., Smith, J. N., Swift, S., Heffron, F., & Ahmer, B. M. M. (2001). SdiA of Salmonella enterica is a LuxR homolog that detects mixed microbial communities. Journal of Bacteriology, 183(19), 5733–5742.PubMedPubMedCentralCrossRefGoogle Scholar
  78. Miller, S. T., Xavier, K. B., Campagna, S. R., et al. (2004). Salmonella typhimurium recognizes a chemically distinct form of the bacterial quorum-sensing signal AI-2. Molecular Cell, 15(5), 677–687.PubMedCrossRefPubMedCentralGoogle Scholar
  79. Miller, K. P., Wang, L., Chen, Y. P., et al. (2015). Engineering nanoparticles to silence bacterial communication. Frontiers in Microbiology, 6, 189.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Misba, L., Kulshrestha, S., & Khan, A. U. (2016). Antibiofilm action of a toluidine blue O-silver nanoparticle conjugate on Streptococcus mutans: a mechanism of type I photodynamic therapy. Biofouling, 32(3), 313–328.PubMedCrossRefPubMedCentralGoogle Scholar
  81. Mukherjee, P., Ahmad, A., Mandal, D., Senapati, S., Sainkar, S. R., et al. (2001). Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: A novel biological approach to nanoparticle synthesis. Nano Letters, 1, 515–519.CrossRefGoogle Scholar
  82. Nafees, N., Husari, A., Maurer, C. K., et al. (2014). Antibiotic-free nanotherapeutics: ultra-small, mucus-penetrating solid lipid nanoparticles enhance the pulmonary delivery and antivirulence efficacy of novel quorum sensing inhibitors. Journal of Controlled Release, 192, 131–140.CrossRefGoogle Scholar
  83. Naik, K., & Kowshik, M. (2014). Anti-quorum sensing activity of AgCl-TiO2 nanoparticles with potential use as active food packaging material. Journal of Applied Microbiology, 117, 972–983.PubMedCrossRefPubMedCentralGoogle Scholar
  84. Ngoy, J. M., Iyuke, S. E., Neuse, W. E., & Yah, C. S. (2011). Covalent functionalization for multi-walled carbon nanotube (f-MWCNT) -folic acid bound bioconjugate. Journal of Applied Sciences, 11(15), 2700–2711.CrossRefGoogle Scholar
  85. Ni, N., Li, M., Wang, J., & Wang, B. (2009). Inhibitors and antagonists of bacterial quorum sensing. Medicinal Research Reviews, 29, 65–124.PubMedCrossRefPubMedCentralGoogle Scholar
  86. Ohtani, K., Hayashi, H., & Shimizu, T. (2002). The luxS gene is involved in cell-cell signalling for toxin production in Clostridium perfringens. Molecular Microbiology, 44(1), 171–179.PubMedCrossRefPubMedCentralGoogle Scholar
  87. Paczkowski, J. E., Mukherjee, S., McCready, A. R., Cong, J. P., Aquino, C. J., Kim, H., Henke, B. R., Smith, C. D., & Bassler, B. L. (2017 Mar 10). Flavonoids suppress Pseudomonas aeruginosa virulence through allosteric inhibition of quorum-sensing receptors. Journal of Biological Chemistry, 292(10), 4064–4076.PubMedCrossRefPubMedCentralGoogle Scholar
  88. Parise, A., Thakor, H., & Zhang, X. (2014). Activity inhibition on municipal activated sludge by single-walled carbon nanotubes. Journal of Nanoparticle Research, 16, 2159.CrossRefGoogle Scholar
  89. Parsek, M. R., Val, D. L., Hanzelka, B. L., Cronan, J. E., & Jr Greenberg, E. P. (1999). Acyl homoserine-lactone quorum-sensing signal generation. Proceedings of the National Academy of Sciences of the United States of America, 96, 4360–4365.PubMedPubMedCentralCrossRefGoogle Scholar
  90. Payne, D. J. (2008). Microbiology: Desperately seeking new antibiotics. Science, 321, 1644–1645.CrossRefPubMedGoogle Scholar
  91. Pearson, J. P., Gray, K. M., Passador, L., Tucker, K. D., Eberhard, A., Iglewski, B. H., & Greenberg, E. P. (1994). Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proceedings of the National Academy of Sciences of the United States of America, 91, 197–201.PubMedPubMedCentralCrossRefGoogle Scholar
  92. Pearson, J., Pesci, E., & Iglewski, B. (1997). Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. Journal of Bacteriology, 179, 5756–5767.PubMedPubMedCentralCrossRefGoogle Scholar
  93. Pesci, E. C., Milbank, J. B., Pearson, J. P., et al. (1999). Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences of the United States of America, 96(20), 11229–11234.CrossRefGoogle Scholar
  94. Qi, X., Gunawan, P., Xu, R., & Chang, M. W. (2015). Cefalexin-immobilized multi-walled carbon nanotubes show strong antimicrobial and anti-adhesion properties. Chemical Engineering Science, 84, 552–556.CrossRefGoogle Scholar
  95. Qin, H., Cao, H., Zhao, Y., Zhu, C., Cheng, T., Wang, Q., Peng, X., Cheng, M., Wang, J., Jin, G., Jiang, Y., Zhang, X., Liu, X., & Chu, P. K. (2014). In vitro and in vivo anti-biofilm effects of silver nanoparticles immobilized on titanium. Biomaterials, 35(33), 9114–9125.PubMedCrossRefPubMedCentralGoogle Scholar
  96. Radzig, M. A., Nadtochenko, V. A., Koksharova, O. A., et al. (2013). Antibacterial effects of silver nanoparticles on gramnegative bacteria: influence on the growth and biofilms formation, mechanisms of action. Colloids and Surfaces. B, Biointerfaces, 102, 300–306.PubMedCrossRefPubMedCentralGoogle Scholar
  97. Rasheed, J. K., Jay, C., Metchock, B., et al. (1997). Evolution of extended-spectrum b-lactam resistance (SHV-8) in a strain of Escherichia coli during multiple episodes of bacteremia. Antimicrobial Agents and Chemotherapy, 41(3), 647–653.PubMedPubMedCentralCrossRefGoogle Scholar
  98. Rasko, D. A., Moreira, C. G., Li, R., Reading, N. C., Ritchie, J. M., Waldor, M. K., Williams, N., Taussig, R., Wei, S., Roth, M., Hughes, D., Huntley, J. F., Fina, M. W., Falck, J. R., & Sperandio, V. (2008). Targeting QseC signaling and virulence for antibiotic development. Science, 321, 1078–1080.PubMedPubMedCentralCrossRefGoogle Scholar
  99. Rasmussen, T. B., & Givskov, M. (2006). Quorum sensing inhibitors: a bargain of effects. Microbiology, 152, 895–904.PubMedCrossRefPubMedCentralGoogle Scholar
  100. Rickard, A. H., Palmer, R. J., Jr., Blehert, D. S., et al. (2006). Autoinducer 2: a concentration-dependent signal for mutualistic bacterial biofilm growth. Molecular Microbiology, 60(6), 1446–1456.PubMedCrossRefPubMedCentralGoogle Scholar
  101. Roman, S., Ines, J., Stefanie, W., & Alexander, T. (2013). New approaches to control infections: Anti–biofilm strategies against gram–negative bacteria. Chimia International Journal for Chemistry, 67, 286–290.CrossRefGoogle Scholar
  102. Samanta, S., Singh, B. R., & Adholeya, A. (2017). Intracellular synthesis of gold nanoparticles using an ectomycorrhizal strain em-1083 of Laccaria fraterna and its nanoanti-quorum sensing potential against Pseudomonas aeruginosa. Indian Journal of Microbiology, 57(4), 448–460.PubMedPubMedCentralCrossRefGoogle Scholar
  103. Schaefer, A. L., Val, D. L., Hanzelka, B. L., Cronan, J. E., & Greenberg, E. P. (1996). Generation of cell-to-cell signals in quorum sensing: Acyl homoserine lactone synthase activity of a purified Vibrio fischeri LuxI protein. Proc Natl.Acad. Sci .USA, 93, 9505–9509.PubMedCrossRefPubMedCentralGoogle Scholar
  104. Seil, J. T., & Webster, T. J. (2011). Reduced Staphylococcus aureus proliferation and biofilm formation on zinc oxide nanoparticle PVC composite surfaces. Acta Biomaterialia, 7, 2579–2584.PubMedCrossRefPubMedCentralGoogle Scholar
  105. Shaw, K. J., Rather, P. N., Hare, R. S., & Miller, G. H. (1993). Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiology and Molecular Biology Reviews, 57(1), 138–163.Google Scholar
  106. Shin, N. R., Lee, D. Y., Shin, S. J., Kim, K. S., & Yoo, H. S. (2004). Regulation of proinflammatory mediator production in RAW264.7 macrophage by Vibrio vulnificus LuxS and SmcR. FEMS Immunology and Medical Microbiology, 41, 169–176.PubMedCrossRefPubMedCentralGoogle Scholar
  107. Silva, L. N., Zimmer, K. R., Macedo, A. J., & Trentin, D. S. (2016 Jul 20). Plant natural products targeting bacterial virulence factors. Chemical Reviews, 116(16), 9162–9236.PubMedCrossRefPubMedCentralGoogle Scholar
  108. Singh, P. K., Schaefer, A. L., Parsek, M. R., Moninger, T. O., Welsh, M. J., & Greenberg, E. P. (2000). Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature, 407(6805), 762–764.PubMedCrossRefPubMedCentralGoogle Scholar
  109. Singh, B. N., Prateeksha, P. G., et al. (2015). Development and characterization of a novel Swarna-based herbometallic colloidal nano-formulation – inhibitor of Streptococcus mutans quorum sensing. RSC Advances, 5, 5809–5822.CrossRefGoogle Scholar
  110. Singh, B. R., Singh, B. N., Singh, A., Khan, W., Naqvi, A. H., & Singh, H. B. (2016). Mycofabricated biosilver nanoparticles interrupt Pseudomonas aeruginosa quorum sensing systems. Scientific Reports, 5, 13719.CrossRefGoogle Scholar
  111. Smith, R. S., & Iglewski, B. H. (2003). P. aeruginosa quorum-sensing systems and virulence. Current Opinion in Microbiology, 6(1), 56–60.PubMedCrossRefPubMedCentralGoogle Scholar
  112. Soukarieh, F., Paul, W., Michael, J. S., & Miguel, C. (2018). Pseudomonas aeruginosa quorum sensing systems as drug discovery targets: current position and future perspectives. Journal of Medicinal Chemistry, 61, 10385.  https://doi.org/10.1021/acs.jmedchem.8b00540.CrossRefPubMedPubMedCentralGoogle Scholar
  113. Spellberg, B. (2012). New antibiotic development: Barrier and opportunities in 2012. APUA Newsletter. Vol. 30.Google Scholar
  114. Spellberg, B., Miller, L. G., Kuo, M. N., Bradley, J., Scheld, W. M., & Edwards, J. E., Jr. (2007). Societal costs versus savings from wild–card patent extension legislation to spur critically needed antibiotic development. Infection, 35, 167–174.PubMedCrossRefPubMedCentralGoogle Scholar
  115. Srinivasan, R., Vigneshwari, L., Rajavel, T., Durgadevi, R., Kannappan, A., Balamurugan, K., Devi, K. P., & Ravi, A. V. (2018). Biogenic synthesis of silver nanoparticles using Piper betle aqueous extract and evaluation of its anti-quorum sensing and antibiofilm potential against uropathogens with cytotoxic effects: an in vitro and in vivo approach. Environmental Science and Pollution Research International, 25(11), 10538–10554.PubMedCrossRefPubMedCentralGoogle Scholar
  116. Subbiah, R., Veerapandian, M., Sadhasivam, S., & Yun, K. (2011). Triad CNT-NPs/Polymer nanocomposites: fabrication, characterization, and preliminary antimicrobial study. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 41, 345–355.CrossRefGoogle Scholar
  117. Subhaswaraj, P., Barik, S., Macha, C., Chiranjeevi, P. V., & Siddhardha, B. (2018). Anti quorum sensing and anti biofilm efficacy of cinnamaldehyde encapsulated chitosan nanoparticles against Pseudomonas aeruginosa PAO1. LWT, 97, 752–759.CrossRefGoogle Scholar
  118. Subramoni, S., & Venturi, V. (2009). LuxR-family ‘solos’: Bachelor sensors/regulators of signalling molecules. Microbiology, 155, 1377–1385.PubMedCrossRefPubMedCentralGoogle Scholar
  119. Sunitha, A., Rimal, I. R. S., Sweetly, G., Sornalekshmi, S., Arsula, R., & Praseetha, P. K. (2013). Evaluation of antimicrobial activity of biosynthesized iron and silver Nanoparticles using the fungi Fusarium oxysporum and Actinomycetes sp. On human pathogens. Nano Biomedicine and Engineering, 5(1), 39–45.Google Scholar
  120. Tally, F. P., & DeBruin, M. F. (2000). Development of daptomycin for gram-positive infections. The Journal of Antimicrobial Chemotherapy, 46(4), 523–526.PubMedCrossRefPubMedCentralGoogle Scholar
  121. Tan, S. Y., Chua, S. L., Chen, Y., Rice, S. A., Kjelleberg, S., Nielsen, T. E., Yang, L., & Givskov, M. (2013 Nov 1). Identification of five structurally unrelated quorum-sensing inhibitors of Pseudomonas aeruginosa from a natural-derivative database. Antimicrobial Agents and Chemotherapy, 57(11), 5629–5641.PubMedPubMedCentralCrossRefGoogle Scholar
  122. Tavender, T. J., Halliday, N. M., Hardie, K. R., & Winzer, K. (2008). LuxS-independent formation of AI-2 from ribulose-5-phosphate. BMC Microbiology, 8(98), 2188–2198.Google Scholar
  123. Thukkaram, M., Sitaram, S., Kannaiyan, S. K., et al. (2014). Antibacterial efficacy of iron-oxide nanoparticles against biofilms on different biomaterial surfaces. International Journal of Biomaterials, 2014, 716080.PubMedPubMedCentralCrossRefGoogle Scholar
  124. Varga, Z. G., Armada, A., Cerca, P., Amaral, L., Subki, M. A., Savka, M. A., Szegedi, E., Kawase, M., Motohashi, N., & Molnár, J. (2012 Mar 1). Inhibition of quorum sensing and efflux pump system by trifluoromethyl ketone proton pump inhibitors. In Vivo, 26(2), 277–285.PubMedPubMedCentralGoogle Scholar
  125. Vattem, D. A., Mihali, K. K., Crixell, S. H., & Mclean, R. J. C. (2007). Dietary phytochemicals as quorum sensing inhibitors. Fitoterapia, 78, 302–310.PubMedCrossRefPubMedCentralGoogle Scholar
  126. Vendeville, A., Winzer, K., Heurlier, K., Tang, C. M., & Hardie, K. R. (2005). Making ‘sense’ of metabolism: autoinducer-2, LuxS and pathogenic bacteria. Nature Reviews. Microbiology, 3(5), 383–396.CrossRefPubMedPubMedCentralGoogle Scholar
  127. Venkatesan, J., Jayakumar, R., Mohandas, A., Bhatnagar, I., & Kim, S. K. (2014). Antimicrobial activity of chitosan-carbon nanotube hydrogels. Materials, 7, 3946–3955.PubMedPubMedCentralCrossRefGoogle Scholar
  128. Vinoj, G., Pati, R., Sonawane, A., et al. (2015). In vitro cytotoxic effects of gold nanoparticles coated with functional acyl homoserine lactone lactonase protein from Bacillus licheniformis and their antibiofilm activity against Proteus species. Antimicrobial Agents and Chemotherapy, 59, 763–771.PubMedPubMedCentralCrossRefGoogle Scholar
  129. Vinothkannan, R. L. Z., Wang, H., Yu, G., Zhang, Y., & Li, A. (2018). Virtual screening and biomolecular interactions of CviR-based quorum sensing inhibitors against Chromobacterium violaceum. Frontiers in Cellular and Infection Microbiology, 8.Google Scholar
  130. Vyshnava, S. S., Kanderi, D. K., Panjala, S. P., Pandian, K., Bontha, R. R., Goukanapalle, P. K. R., & Banaganapalli, B. (2016). Effect of silver nanoparticles against the formation of biofilm by Pseudomonas aeruginosa an In silico approach. Applied Biochemistry and Biotechnology, 180, 426–437.PubMedCrossRefPubMedCentralGoogle Scholar
  131. Wagh, M. S., Patil, R. H., Thombre, D. K., Kulkarni, M. V., Gade, W. N., & Kale, B. B. (2013). Evaluation of anti-quorum sensing activity of silver nanowires. Applied Microbiology and Biotechnology, 97, 3593–3601.CrossRefGoogle Scholar
  132. Wagner, A., Whitaker, R. J., Krause, D. J., Heilers, J. H., van Wolferen, M., van der Does, C., & Albers, S. V. (2017). Mechanisms of gene flow in archaea. Nature Reviews. Microbiology, 15(8), 492.PubMedCrossRefPubMedCentralGoogle Scholar
  133. Walsh, C. (2000). Molecular mechanisms that confer antibacterial drug resistance. Nature, 406, 775–781.CrossRefGoogle Scholar
  134. Walters, M., Sircili, M. P., & Sperandio, V. (2006). AI-3 synthesis is not dependent on luxS in Escherichia coli. Journal of Bacteriology, 188(16), 5668–5681.PubMedPubMedCentralCrossRefGoogle Scholar
  135. Waters, C. M., & Bassler, B. L. (2005). Quorum sensing: cell-to-cell communication in bacteria. Annual Review of Cell and Developmental Biology, 21, 319–346.PubMedCrossRefPubMedCentralGoogle Scholar
  136. Whiteley, M., Lee, K. M., & Greenberg, E. P. (1999). Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences of the United States of America, 96(24), 13904–13909.PubMedPubMedCentralCrossRefGoogle Scholar
  137. Winzer, K., Hardie, K. R., Burgess, N., et al. (2002). LuxS: Its role in central metabolism and the in vitro synthesis of 4-hydroxy-5-methyl-3-(2H)- furanone. Microbiol, 148(Pt 4), 909–922.CrossRefGoogle Scholar
  138. Wright, J. S., 3rd, Jin, R., & Novick, R. P. (2005). Transient interference with staphylococcal quorum sensing blocks abscess formation. Proceedings of the National Academy of Sciences of the United States of America, 102(5), 1691–1696.PubMedPubMedCentralCrossRefGoogle Scholar
  139. Wu, H., Song, Z., Hentzer, M., Andersen, J. B., Molin, S., Givskov, M., & Hoiby, N. (2004). Synthetic furanones inhibit quorum-sensing and enhance bacterial clearance in Pseudomonas aeruginosa lung infection in mice. The Journal of Antimicrobial Chemotherapy, 53, 1054–1061.PubMedCrossRefPubMedCentralGoogle Scholar
  140. Xavier, K. B., Bassler, B. L., & Lux, S. (2003). quorum sensing: more than just a numbers game. Current Opinion in Microbiology, 6(2), 191–197.PubMedCrossRefPubMedCentralGoogle Scholar
  141. Xue, T., Zhao, L., Sun, H., Zhou, X., & Sun, B. (2009). LsrR-binding site recognition and regulatory characteristics in Escherichia coli AI-2 quorum sensing. Cell Research, 19(11), 1258–1268.PubMedCrossRefPubMedCentralGoogle Scholar
  142. Zucca, M., Scutera, S., & Savoia, D. (2011). New antimicrobial frontiers. Mini Reviews in Medicinal Chemistry, 11, 888–900.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Fohad Mabood Husain
    • 1
    Email author
  • Mohammad Shavez Khan
    • 2
  • Iqbal Ahmad
    • 2
  • Rais Ahmad Khan
    • 3
  • Nasser A. Al-Shabib
    • 1
  • Mohammad Oves
    • 4
  • Rodolfo García Contreras
    • 5
  • Mohd Shahnawaz Khan
    • 6
  • Mohammed Arshad
    • 7
  • Abdullah A. Alyousef
    • 7
  1. 1.Department of Food Science and Nutrition, College of Food and AgricultureKing Saud UniversityRiyadhKingdom of Saudi Arabia
  2. 2.Department of Agricultural Microbiology, Faculty of Agricultural SciencesAligarh Muslim UniversityAligarhIndia
  3. 3.Department of Chemistry, College of ScienceKing Saud UniversityRiyadhKingdom of Saudi Arabia
  4. 4.Center of Excellence in Environmental StudiesKing Abdulaziz UniversityJeddahKingdom of Saudi Arabia
  5. 5.Department of Microbiology and Parasitology, Faculty of MedicineNational Autonomous University of Mexico, Avenida Universidad 3000Mexico CityMexico
  6. 6.Protein Research Chair, Department of Biochemistry, College of ScienceKing Saud UniversityRiyadhKingdom of Saudi Arabia
  7. 7.Department of Clinical Laboratory Science, College of Applied Medical SciencesKing Saud UniversityRiyadhKingdom of Saudi Arabia

Personalised recommendations