Advertisement

Problematic Groups of Multidrug-Resistant Bacteria and Their Resistance Mechanisms

  • Verena Kohler
  • Ankita Vaishampayan
  • Elisabeth GrohmannEmail author
Chapter

Abstract

The occurrence of multidrug-resistant pathogenic bacteria is steadily increasing, not only in medical centers but also in food, animals and the environment, which is of primordial concern for health authorities worldwide. The World Health Organization (WHO) published a global pathogen priority list to encourage international interdisciplinary research initiatives on the occurrence, dissemination, and epidemiology of the most dangerous multiresistant pathogens with the aim to develop effective prevention strategies against the spread of these bugs and new therapeutic approaches to treat infections in agreement with the One Health concept. According to the WHO global pathogen priority list, the most critical resistant pathogens include carbapenem-resistant Acinetobacter baumannii and Pseudomonas aeruginosa and carbapenem-resistant as well as third-generation cephalosporin-resistant Enterobacteriaceae. This critical group is followed by pathogens of high priority including vancomycin-resistant Enterococcus faecium, methicillin- and vancomycin-resistant Staphylococcus aureus, and clarithromycin-resistant Helicobacter pylori. Here, we summarize recent data on the occurrence and spread of these and other harmful resistant pathogens, on their resistance mechanisms as well as on the modes of resistance spread, as far as is known. We finish the chapter with an outlook on promising innovative strategies to treat infectious diseases caused by multiresistant pathogens – in combination with antibiotic therapy – as well as on approaches to combat the antibiotic resistance spread.

Keywords

Antibiotic resistance Bacterial pathogen Biofilm Horizontal gene transfer Multidrug resistance WHO pathogen priority list 

Abbreviations

Agr

accessory gene regulator

BLNAR

ß-lactamase-negative ampicillin resistant

CDC

Centers for Disease Control and Prevention

COPD

chronic obstructive pulmonary disease

CRAb

carbapenem-resistant Acinetobacter baumannii

CRE

carbapenem-resistant Enterobacteriaceae

CRPa

carbapenem-resistant Pseudomonas aeruginosa

ESBL

extended spectrum ß-lactamase

EU

European Union

FDA

Food and Drug Administration

G-

Gram-negative

HGT

horizontal gene transfer

ICU

intensive care unit

IMP

active on imipenem

IS

insertion sequence

KPC

Klebsiella pneumoniae carbapenemase

MBL

metallo-ß-lactamase

MDR

multidrug resistant

MRSA

methicillin-resistant Staphylococcus aureus

MSSA

methicillin-sensitive S. aureus

NDM

New Delhi MBL

OMP

outer membrane protein

OXA

oxacillinase

PBP

penicillin-binding protein

PMQR

plasmid-mediated quinolone resistance

PNSP

penicillin-non-susceptible Streptococcus pneumoniae

RND

resistance-nodulation-cell division

SCCmec

staphylococcal chromosome cassette mec

VIM

Verona integron-encoded MBL

VRE

vancomycin-resistant Enterococci

VREfm

vancomycin-resistant E. faecium

VRSA

vancomycin-resistant S. aureus

WHO

World Health Organization

XDR

extremely multidrug resistant

References

  1. Abd-elfarag, G. O. E. (2015). Quinolone resistance in Salmonella enterica serovar Typhi: Mechanisms, factors driving the spread of resistance, current epidemiological trends and clinical significance. South Sudan Medical Journal, 8, 64–66.Google Scholar
  2. Abrutyn, E., Goodhart, G. L., Roos, K., et al. (1978). Acinetobacter calcoaceticus outbreak associated with peritoneal dialysis. American Journal of Epidemiology, 107, 328–335.  https://doi.org/10.1093/oxfordjournals.aje.a112548.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Adhikari, A., Sapkota, S., Bhattarai, U., & Raghubanshi, B. R. (2017). Antimicrobial resistance trend of Salmonella typhi and paratyphi from 2011–2013: A descriptive study from tertiary care hospital of Nepal. Journal of Kathmandu Medical College, 6, 9.  https://doi.org/10.3126/jkmc.v6i1.18580.CrossRefGoogle Scholar
  4. Aggarwal, P., Uppal, B., Ghosh, R., et al. (2016). Multi drug resistance and Extended Spectrum Beta Lactamases in clinical isolates of Shigella: A study from New Delhi, India. Travel Medicine and Infectious Disease, 14, 407–413.  https://doi.org/10.1016/j.tmaid.2016.05.006.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Ahmadi, A., Esghaei, M., Irajian, G., & Talebi, M. (2015). Differentiation of penicillin susceptible and nonsusceptible Streptococcus pneumoniae. jmb.tums.ac.ir. Journal of Medical Bacteriology, 4, 15–20.Google Scholar
  6. Ahmed, M. O., & Baptiste, K. E. (2017). Vancomycin-resistant enterococci: A review of antimicrobial resistance mechanisms and perspectives of human and animal health. Microbial Drug Resistance.  https://doi.org/10.1089/mdr.2017.0147.PubMedCrossRefPubMedCentralGoogle Scholar
  7. Akpaka, P. E., Kissoon, S., Jayaratne, P., et al. (2017). Genetic characteristics and molecular epidemiology of vancomycin-resistant Enterococci isolates from Caribbean countries. PLoS One, 12, e0185920.  https://doi.org/10.1371/journal.pone.0185920.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Alba, C., Blanco, A., & Alarcón, T. (2017). Antibiotic resistance in Helicobacter pylori. Current Opinion in Infectious Diseases, 30, 489–497.PubMedCrossRefPubMedCentralGoogle Scholar
  9. Alhashem, F., Tiren-Verbeet, N. L., Alp, E., & Doganay, M. (2017). Treatment of sepsis: What is the antibiotic choice in bacteremia due to carbapenem resistant Enterobacteriaceae? World J Clin Cases, 5.  https://doi.org/10.12998/wjcc.v5.i8.324.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Alirol, E., Wi, T. E., Bala, M., et al. (2017). Multidrug-resistant gonorrhea: A research and development roadmap to discover new medicines. PLOS Medicine, 14, e1002366.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Aloush, V., Navon-Venezia, S., Seigman-Igra, Y., et al. (2006). Multidrug-resistant Pseudomonas aeruginosa: Risk factors and clinical impact. Antimicrobial Agents and Chemotherapy, 50, 43–48.  https://doi.org/10.1128/AAC.50.1.43-48.2006.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Appelbaum, P. C. (2006). The emergence of vancomycin-intermediate and vancomycin-resistant Staphylococcus aureus. Clinical Microbiology and Infection, 12, 16–23.PubMedCrossRefPubMedCentralGoogle Scholar
  13. Arias, C. A., & Murray, B. E. (2012). The rise of the Enterococcus: Beyond vancomycin resistance. Nature Reviews Microbiology, 10, 266–278.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Arias, C. A., Contreras, G. A., & Murray, B. E. (2010). Management of multidrug-resistant enterococcal infections. Clinical Microbiology and Infection, 16, 555–562.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Arthur, M., & Courvalin, P. (1993). Genetics and mechanisms of glycopeptide resistance in enterococci. Antimicrobial Agents and Chemotherapy, 37, 1563–1571.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Attaran, B., Falsafi, T., & Ghorbanmehr, N. (2017). Effect of biofilm formation by clinical isolates of Helicobacter pylori on the efflux-mediated resistance to commonly used antibiotics. World Journal of Gastroenterology, 23, 1163–1170.  https://doi.org/10.3748/wjg.v23.i7.1163.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Baba, H., Kakuta, R., Tomita, H., et al. (2017). The first case report of septic abortion resulting from β-lactamase-negative ampicillin-resistant non-typeable Haemophilus influenzae infection. JMM Case Reports, 4.  https://doi.org/10.1099/jmmcr.0.005123.
  18. Bae, J., & Jeon, B. (2013). Increased emergence of fluoroquinolone-resistant Campylobacter jejuni in biofilm. Antimicrobial Agents and Chemotherapy, 57, 5195–5196.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Bae, J., Oh, E., & Jeon, B. (2014). Enhanced transmission of antibiotic resistance in Campylobacter jejuni biofilms by natural transformation. Antimicrobial Agents and Chemotherapy, 58, 7573–7575.  https://doi.org/10.1128/AAC.04066-14.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Baker, S., Duy, P. T., Nga, T. V. T., et al. (2013). Fitness benefits in fluoroquinolone-resistant Salmonella typhi in the absence of antimicrobial pressure. Elife, 2013, e01229.  https://doi.org/10.7554/eLife.01229.001.CrossRefGoogle Scholar
  21. Banach, D. B., Francois, J., Blash, S., et al. (2014). Active surveillance for carbapenem-resistant Enterobacteriaceae using stool specimens submitted for testing for Clostridium difficile. Infection Control & Hospital Epidemiology, 35, 82–84.  https://doi.org/10.1086/674391.CrossRefGoogle Scholar
  22. Banin, E., Hughes, D., & Kuipers, O. P. (2017). Editorial: Bacterial pathogens, antibiotics and antibiotic resistance. FEMS Microbiology Reviews, 450–452.  https://doi.org/10.1093/femsre/fux016.PubMedCrossRefPubMedCentralGoogle Scholar
  23. Barriere, S. L. (2015). Clinical, economic and societal impact of antibiotic resistance. Expert Opinion on Pharmacotherapy, 16, 151–153.  https://doi.org/10.1517/14656566.2015.983077.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Baumgart, A. M., Molinari, M. A., & de Oliveira Silveira, A. C. (2010). Prevalence of carbapenem resistant Pseudomonas aeruginosa and Acinetobacter baumannii in high complexity hospital. Brazilian Journal of Infectious Diseases, 14, 433–436.  https://doi.org/10.1016/S1413-8670(10)70089-1.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Bayer, A. S., Mishra, N. N., Chen, L., et al. (2015). Frequency and distribution of single-nucleotide polymorphisms within mprF in methicillin-resistant Staphylococcus aureus clinical isolates and their role in cross-resistance to daptomycin and host defense antimicrobial peptides. Antimicrobial Agents and Chemotherapy, 59, 4930–4937.  https://doi.org/10.1128/AAC.00970-15.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Beall, B., McEllistrem, M. C., Gertz, R. E., Jr., et al. (2002). Emergence of a novel penicillin-nonsusceptible, invasive serotype 35B clone of Streptococcus pneumoniae within the United States. Journal of Infectious Diseases, 186, 118–122.  https://doi.org/10.1086/341072.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Berger-Bächi, B., & Rohrer, S. (2002). Factors influencing methicillin resistance in staphylococci. Archives of Microbiology, 178, 165–171.  https://doi.org/10.1007/s00203-002-0436-0.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Bhargava, A., Hayakawa, K., Silverman, E., et al. (2014). Risk factors for colonization due to carbapenem-resistant Enterobacteriaceae among patients: Exposed to long-term acute care and acute care facilities. Infection Control & Hospital Epidemiology, 35, 398–405.  https://doi.org/10.1086/675614.CrossRefGoogle Scholar
  29. Bhattacharya, S. K., Sinha, A. K., Sen, D., et al. (1988). Extraintestinal manifestations of Shigellosis during an epidemic of bacillary dysentery in Port Blair, Andaman & Amp; Nicobar Island (India). Journal of the Association of Physicians of India, 36, 319–320.PubMedPubMedCentralGoogle Scholar
  30. Blair, J. M. A., Webber, M. A., Baylay, A. J., et al. (2015). Molecular mechanisms of antibiotic resistance. Nature Reviews Microbiology, 13, 42–51.  https://doi.org/10.1038/nrmicro3380.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Boehm, A. B., & Sassoubre, L. M. (2014). Enterococci as indicators of environmental fecal contamination. In Enterococci: From commensals to leading causes of drug resistant infection (pp. 1–19). Boston: Massachusetts Eye and Ear Infirmary.Google Scholar
  32. Bogaert, D., Syrogiannopoulos, G. A., Grivea, I. N., et al. (2000). Molecular epidemiology of penicillin-nonsusceptible Streptococcus pneumoniae among children in Greece. Journal of Clinical Microbiology, 38, 4361–4366.PubMedPubMedCentralGoogle Scholar
  33. Boltin, D., Ben-Zvi, H., Perets, T. T., et al. (2015). Trends in secondary antibiotic resistance of Helicobacter pylori from 2007 to 2014: Has the tide turned? Journal of Clinical Microbiology, 53, 522–527.  https://doi.org/10.1128/JCM.03001-14.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Bonofiglio, L., Regueira, M., Pace, J., et al. (2011). Dissemination of an erythromycin-resistant penicillin-nonsusceptible Streptococcus pneumoniae Poland 6B -20 clone in Argentina. Microbial Drug Resistance, 17, 75–81.  https://doi.org/10.1089/mdr.2010.0027.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Boore, A. L., Hoekstra, R. M., Iwamoto, M., et al. (2015). Salmonella enterica infections in the United States and assessment of coefficients of variation: A Novel approach to identify epidemiologic characteristics of individual serotypes, 1996–2011. PLoS One, 10, e0145416.  https://doi.org/10.1371/journal.pone.0145416.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Bradford, P. A. (2001). Extended-spectrum β-lactamases in the 21st century: Characterization, epidemiology, and detection of this important resistance threat. Clinical Microbiology Reviews, 14, 933–951.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Bragg, R. R., Meyburgh, C. M., Lee, J. Y., et al. (2018). Potential treatment options in a post-antibiotic Era. Advances in Experimental Medicine and Biology, 1052, 51–61.  https://doi.org/10.1007/978-981-10-7572-8_5.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Bratu, S., Mooty, M., Nichani, S., et al. (2005). Emergence of KPC-possessing Klebsiella pneumoniae in Brooklyn, New York: Epidemiology and recommendations for detection. Antimicrobial Agents and Chemotherapy, 49, 3018–3020.  https://doi.org/10.1128/AAC.49.7.3018-3020.2005.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Breidenstein, E. B. M., de la Fuente-Núñez, C., & Hancock, R. E. W. (2011). Pseudomonas aeruginosa: All roads lead to resistance. Trends in Microbiology, 19, 419–426.PubMedCrossRefPubMedCentralGoogle Scholar
  40. Buehrle, D. J., Shields, R. K., Clarke, L. G., et al. (2017). Carbapenem-resistant Pseudomonas aeruginosa bacteremia: Risk factors for mortality and microbiologic treatment failure. Antimicrobial Agents and Chemotherapy, 61, e01243–e01216.  https://doi.org/10.1128/AAC.01243-16.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Buono, S. A., Watson, T. D., Borenstein, L. A., et al. (2015). Stemming the tide of drug-resistant Neisseria gonorrhoeae: The need for an individualized approach to treatment. Journal of Antimicrobial Chemotherapy, 70, 374–381.  https://doi.org/10.1093/jac/dku396.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Bush, K., & Fisher, J. F. (2011). Epidemiological expansion, structural studies, and clinical challenges of new β-lactamases from gram-negative bacteria. Annual Review of Microbiology, 65, 455–478.  https://doi.org/10.1146/annurev-micro-090110-102911.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Carlquist, J. F., Conti, M., & Burke, J. P. (1982). Progressive resistance in a single strain of Acinetobacter calcoaceticus recovered during a nonsocomial outbreak. AJIC American Journal of Infection Control, 10, 43–48.  https://doi.org/10.1016/0196-6553(82)90001-3.CrossRefGoogle Scholar
  44. Carrër, A., Poirel, L., Yilmaz, M., et al. (2010). Spread of OXA-48-encoding plasmid in Turkey and beyond. Antimicrobial Agents and Chemotherapy, 54, 1369–1373.  https://doi.org/10.1128/AAC.01312-09.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Centers for Disease Control and Prevention. (2013). Antibiotic resistance threats in the United States, 2013. https://www.cdc.gov/drugresistance/threat-report-2013/index.html. Accessed 22 May 2018.
  46. Centers for Disease Control and Prevention. (2014). 2014 sexually transmitted disease surveillance. https://www.cdc.gov/std/stats14/gonorrhea.htm. Accessed 23 May 2018.
  47. Centers for Disease Control and Prevention. (2015). Sexually transmitted diseases treatment guidelines, 2015. https://www.cdc.gov/mmwr/pdf/rr/rr6403.pdf. Accessed 23 May 2018.
  48. Chambers, H. F., & DeLeo, F. R. (2009). Waves of resistance: Staphylococcus aureus in the antibiotic era. Nature Reviews Microbiology, 7, 629–641.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Chang, L. W. K., Buising, K. L., Jeremiah, C. J., et al. (2015a). Managing a nosocomial outbreak of carbapenem-resistant Klebsiella pneumoniae: An early Australian hospital experience. Internal Medicine Journal, 45, 1037–1043.  https://doi.org/10.1111/imj.12863.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Chang, Q., Wang, W., Regev-Yochay, G., et al. (2015b). Antibiotics in agriculture and the risk to human health: How worried should we be? Evolutionary Applications, 8, 240–247.  https://doi.org/10.1111/eva.12185.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Chaudhary, A. S. (2016). A review of global initiatives to fight antibiotic resistance and recent antibiotics’ discovery. Acta Pharmaceutica Sinica B, 6, 552–556.  https://doi.org/10.1016/J.APSB.2016.06.004.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Chaudhuri, B. N., Rodrigues, C., Balaji, V., et al. (2011). Incidence of ESBL producers amongst Gram-negative bacilli isolated from intra-abdominal infections across India (based on SMART study, 2007 data). Journal of the Association of Physicians of India, 59, 287–292.PubMedPubMedCentralGoogle Scholar
  53. Chawla, R. (2008). Epidemiology, etiology, and diagnosis of hospital-acquired pneumonia and ventilator-associated pneumonia in Asian countries. American Journal of Infection Control, 36.  https://doi.org/10.1016/j.ajic.2007.05.011.PubMedCrossRefPubMedCentralGoogle Scholar
  54. Chey, W. D., & Wong, B. C. Y. (2007). American College of Gastroenterology Guideline on the Management of Helicobacter pylori Infection. American Journal of Gastroenterology, 102, 1808–1825.  https://doi.org/10.1111/j.1572-0241.2007.01393.x.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Choudhury, D., Das Talukdar, A., Choudhury, M. D., et al. (2015). Transcriptional analysis of MexAB-OprM efflux pumps system of Pseudomonas aeruginosa and its role in carbapenem resistance in a tertiary referral hospital in India. PLoS One, 10, e0133842.  https://doi.org/10.1371/journal.pone.0133842.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Chu, Y. W., Houang, E. T. S., & Cheng, A. F. B. (1998). Novel combination of mutations in the DNA gyrase and topoisomerase IV genes in laboratory-grown fluoroquinolone-resistant Shigella flexneri mutants. Antimicrobial Agents and Chemotherapy, 42, 3051–3052.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Cogliani, C., Goossens, H., & Greko, C. (2011). Restricting antimicrobial use in food animals: Lessons from Europe. Microbe, 6, 274–279.  https://doi.org/10.1128/microbe.6.274.1.CrossRefGoogle Scholar
  58. Correa, A., del Campo, R., Escandón-Vargas, K., et al. (2017). Distinct genetic diversity of carbapenem-resistant Acinetobacter baumannii from Colombian hospitals. Microbial Drug Resistance, 24.  https://doi.org/10.1089/mdr.2016.0190.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Corso, A. C., Gagetti, P. S., Rodríguez, M. M., et al. (2007). Molecular epidemiology of vancomycin-resistant Enterococcus faecium in Argentina. International Journal of Infectious Diseases, 11, 69–75.  https://doi.org/10.1016/j.ijid.2006.02.003.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Costa-Lourenço, A. P. R. d., Barros Dos Santos, K. T., Moreira, B. M., et al. (2017). Antimicrobial resistance in Neisseria gonorrhoeae: history, molecular mechanisms and epidemiological aspects of an emerging global threat. Brazilian Journal of Microbiology, 48, 617–628.  https://doi.org/10.1016/j.bjm.2017.06.001.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Costerton, J. W., Stewart, P. S., & Greenberg, E. P. (1999). Bacterial biofilms: A common cause of persistent infections. Science (80-.), 284, 1318–1322.CrossRefGoogle Scholar
  62. Cully, M. (2014). Public health: The politics of antibiotics. Nature, 509, S16–S17.  https://doi.org/10.1038/509S16a.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Cuzon, G., Naas, T., & Nordmann, P. (2011). Functional characterization of Tn4401, a Tn3-based transposon involved in blaKPC gene mobilization. Antimicrobial Agents and Chemotherapy, 55, 5370–5373.  https://doi.org/10.1128/AAC.05202-11.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Czekalski, N., Berthold, T., Caucci, S., et al. (2012). Increased levels of multiresistant bacteria and resistance genes after wastewater treatment and their dissemination into Lake Geneva, Switzerland. Frontiers in Microbiology, 3, 106.  https://doi.org/10.3389/fmicb.2012.00106.CrossRefPubMedPubMedCentralGoogle Scholar
  65. Dai, W., Sun, S., Yang, P., et al. (2013). Characterization of carbapenemases, extended spectrum β-lactamases and molecular epidemiology of carbapenem-non-susceptible Enterobacter cloacae in a Chinese hospital in Chongqing. Infection, Genetics and Evolution, 14, 1–7.  https://doi.org/10.1016/j.meegid.2012.10.010.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Davies, J., & Davies, D. (2010). Origins and evolution of antibiotic resistance. Microbiology and Molecular Biology Reviews, 74, 417–433.  https://doi.org/10.1128/MMBR.00016-10.CrossRefPubMedPubMedCentralGoogle Scholar
  67. de Breij, A., Dijkshoorn, L., Lagendijk, E., et al. (2010). Do biofilm formation and interactions with human cells explain the clinical success of Acinetobacter baumannii? PLoS One, 5, 10732.  https://doi.org/10.1371/journal.pone.0010732.CrossRefGoogle Scholar
  68. Debby, B. D., Ganor, O., Yasmin, M., et al. (2012). Epidemiology of carbapenem resistant Klebsiella pneumoniae colonization in an intensive care unit. European Journal of Clinical Microbiology & Infectious Diseases, 31, 1811–1817.  https://doi.org/10.1007/s10096-011-1506-5.CrossRefGoogle Scholar
  69. Defoirdt, T. (2018). Quorum-sensing systems as targets for antivirulence therapy. Trends in Microbiology, 26, 313–328.  https://doi.org/10.1016/j.tim.2017.10.005.CrossRefPubMedPubMedCentralGoogle Scholar
  70. Denisuik, A. J., Lagacé-Wiens, P. R. S., Pitout, J. D., et al. (2013). Molecular epidemiology of extended-spectrum β-lactamase-, AmpC β-lactamase- and carbapenemase-producing Escherichia coli and Klebsiella pneumoniae isolated from Canadian hospitals over a 5 year period: CANWARD 2007-11. Journal of Antimicrobial Chemotherapy, 68(Suppl 1), 57–65.  https://doi.org/10.1093/jac/dkt027.CrossRefGoogle Scholar
  71. Denkinger, C. M., Grant, A. D., Denkinger, M., et al. (2013). Increased multi-drug resistance among the elderly on admission to the hospital – A 12-year surveillance study. Archives of Gerontology and Geriatrics, 56, 227–230.  https://doi.org/10.1016/j.archger.2012.05.006.CrossRefPubMedPubMedCentralGoogle Scholar
  72. Diawara, I., Barguigua, A., Katfy, K., et al. (2017). Molecular characterization of penicillin non-susceptible Streptococcus pneumoniae isolated before and after pneumococcal conjugate vaccine implementation in Casablanca, Morocco. Annals of Clinical Microbiology and Antimicrobials, 16, 23.  https://doi.org/10.1186/s12941-017-0200-6.CrossRefPubMedPubMedCentralGoogle Scholar
  73. Dib, C., Trias, J., & Jarlier, V. (1995). Lack of additive effect between mechanisms of resistance to carbapenems and other beta-lactam agents in Pseudomonas aeruginosa. European Journal of Clinical Microbiology & Infectious Diseases, 14, 979–986.  https://doi.org/10.1007/BF01691380.CrossRefGoogle Scholar
  74. Dickstein, Y., Edelman, R., Dror, T., et al. (2016). Carbapenem-resistant Enterobacteriaceae colonization and infection in critically ill patients: A retrospective matched cohort comparison with non-carriers. Journal of Hospital Infection, 94, 54–59.  https://doi.org/10.1016/j.jhin.2016.05.018.CrossRefPubMedPubMedCentralGoogle Scholar
  75. Dijkshoorn, L., Nemec, A., & Seifert, H. (2007). An increasing threat in hospitals: Multidrug-resistant Acinetobacter baumannii. Nature Reviews Microbiology, 5, 939–951.PubMedCrossRefPubMedCentralGoogle Scholar
  76. Dillon, J.-A. R., Trecker, M. A., Thakur, S. D., & Gonococcal Antimicrobial Surveillance Program Network in Latin America and Caribbean 1990-2011 on behalf of the GASPN in LA and the C. (2013). Two decades of the gonococcal antimicrobial surveillance program in South America and the Caribbean: Challenges and opportunities. Sexually Transmitted Infections, 89(Suppl 4), iv36–iv41.  https://doi.org/10.1136/sextrans-2012-050905.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Doi, Y., Murray, G., & Peleg, A. (2015). Acinetobacter baumannii: Evolution of antimicrobial resistance—Treatment options. Seminars in Respiratory and Critical Care Medicine, 36, 085–098.  https://doi.org/10.1055/s-0034-1398388.CrossRefGoogle Scholar
  78. Dortet, L., Nordmann, P., & Poirel, L. (2012). Association of the emerging carbapenemase NDM-1 with a bleomycin resistance protein in Enterobacteriaceae and Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 56, 1693–1697.  https://doi.org/10.1128/AAC.05583-11.CrossRefPubMedPubMedCentralGoogle Scholar
  79. Dortet, L., Poirel, L., & Nordmann, P. (2014). Worldwide dissemination of the NDM-type carbapenemases in Gram-negative bacteria. BioMed Research International, 2014, 249856.  https://doi.org/10.1155/2014/249856.CrossRefPubMedPubMedCentralGoogle Scholar
  80. Duck, W. M., Sobel, J., Pruckler, J. M., et al. (2004). Antimicrobial resistance incidence and risk factors among Helicobacter pylori-infected persons, United States. Emerging Infectious Diseases, 10, 1088–1094.  https://doi.org/10.3201/eid1006.030744.CrossRefPubMedPubMedCentralGoogle Scholar
  81. Edelstein, M. V., Skleenova, E. N., Shevchenko, O. V., et al. (2013). Spread of extensively resistant VIM-2-positive ST235 Pseudomonas aeruginosa in Belarus, Kazakhstan, and Russia: A longitudinal epidemiological and clinical study. Lancet Infectious Diseases, 13, 867–876.  https://doi.org/10.1016/S1473-3099(13)70168-3.CrossRefPubMedPubMedCentralGoogle Scholar
  82. Emerging and other Communicable Diseases and Control S, Organization WH. (1994). Guidelines for the control of epidemics due to Shigella dysenteriae type 1. http://apps.who.int/iris/bitstream/handle/10665/43252/924159330X.pdf;jsessionid=07759B3077AA1B45CB7B9E1D804E6177?sequence=1. Accessed 22 May 2018.
  83. Engberg, J., Aarestrup, F. M., Taylor, D. E., et al. (2001). Quinolone and macrolide resistance in Campylobacter jejuni and C. coli: Resistance mechanisms and trends in human isolates. Emerging Infectious Diseases, 7, 24–34.PubMedPubMedCentralCrossRefGoogle Scholar
  84. Englen, M. D., Fedorka-Cray, P. J., Ladely, S. R., & Dargatz, D. A. (2005). Antimicrobial resistance patterns of Campylobacter from feedlot cattle. Journal of Applied Microbiology, 99, 285–291.  https://doi.org/10.1111/j.1365-2672.2005.02609.x.CrossRefPubMedPubMedCentralGoogle Scholar
  85. European Antimicrobial Resistance Surveillance System (EARSS). EARSS Annual Report 2006.Google Scholar
  86. European Centre for Disease Prevention and Control. (2015). Antimicrobial resistance surveillance in Europe 2015. Annual Report of the European Antimicrobial Resistance Surveillance Network (EARS-Net). https://ecdc.europa.eu/sites/portal/files/media/en/publications/Publications/antimicrobial-resistance-europe-2015.pdf. Accessed 22 May 2018.
  87. European Food Safety Authority. (2017). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2016. http://doi.wiley.com/10.2903/j.efsa.2017.5077. Accessed 25 May 2018.
  88. Evans, B. A., & Amyes, S. G. B. (2014). OXA β-lactamases. Clinical Microbiology Reviews, 27, 241–263.  https://doi.org/10.1128/CMR.00117-13.CrossRefPubMedPubMedCentralGoogle Scholar
  89. Falagas, M. E., Karveli, E. A., Kelesidis, I., & Kelesidis, T. (2007a). Community-acquired Acinetobacter infections. European Journal of Clinical Microbiology & Infectious Diseases, 26, 857–868.CrossRefGoogle Scholar
  90. Falagas, M. E., Rafailidis, P. I., Kofteridis, D., et al. (2007b). Risk factors of carbapenem-resistant Klebsiella pneumoniae infections: A matched case – Control study. Journal of Antimicrobial Chemotherapy, 60, 1124–1130.  https://doi.org/10.1093/jac/dkm356.CrossRefPubMedPubMedCentralGoogle Scholar
  91. Falagas, M. E., Tansarli, G. S., Karageorgopoulos, D. E., & Vardakas, K. Z. (2014). Deaths attributable to carbapenem-resistant Enterobacteriaceae infections. Emerging Infectious Diseases, 20, 1170–1175.  https://doi.org/10.3201/eid2007.121004.CrossRefPubMedPubMedCentralGoogle Scholar
  92. Faron, M. L., Ledeboer, N. A., & Buchan, B. W. (2016). Resistance mechanisms, epidemiology, and approaches to screening for vancomycin-resistant Enterococcus in the health care setting. Journal of Clinical Microbiology, 54, 2436–2447.PubMedPubMedCentralCrossRefGoogle Scholar
  93. Fernández, H., & Pérez-Pérez, G. (2016). Campylobacter: resistencia a fluoroquinolonas en países latinoamericanos. Archivos de Medicina Veterinaria, 48, 255–259.  https://doi.org/10.4067/S0301-732X2016000300002.CrossRefGoogle Scholar
  94. Finney, L. J., Ritchie, A., Pollard, E., et al. (2014). Lower airway colonization and inflammatory response in COPD: A focus on Haemophilus influenza. International Journal of COPD, 9, 1119–1132.  https://doi.org/10.2147/COPD.S54477.CrossRefPubMedPubMedCentralGoogle Scholar
  95. Fournier, D., Richardot, C., Müller, E., et al. (2013). Complexity of resistance mechanisms to imipenem in intensive care unit strains of Pseudomonas aeruginosa. Journal of Antimicrobial Chemotherapy, 68, 1772–1780.  https://doi.org/10.1093/jac/dkt098.CrossRefPubMedPubMedCentralGoogle Scholar
  96. Friedmann, R., Raveh, D., Zartzer, E., et al. (2009). Prospective evaluation of colonization with extended-spectrum β-lactamase (ESBL)–producing enterobacteriaceae among patients at hospital admission and of subsequent colonization with ESBL-producing Enterobacteriaceae among patients during hospitalization. Infection Control & Hospital Epidemiology, 30, 534–542.  https://doi.org/10.1086/597505.CrossRefGoogle Scholar
  97. Gardete, S., & Tomasz, A. (2014). Mechanisms of vancomycin resistance in Staphylococcus aureus. Journal of Clinical Investigation, 124, 2836–2840.  https://doi.org/10.1172/JCI68834.CrossRefPubMedPubMedCentralGoogle Scholar
  98. Garmendia, J., Viadas, C., Calatayud, L., et al. (2014). Characterization of nontypable Haemophilus influenzae isolates recovered from adult patients with underlying chronic lung disease reveals genotypic and phenotypic traits associated with persistent infection. PLoS One, 9, e97020.  https://doi.org/10.1371/journal.pone.0097020.CrossRefPubMedPubMedCentralGoogle Scholar
  99. Gellatly, S. L., & Hancock, R. E. W. (2013). Pseudomonas aeruginosa: New insights into pathogenesis and host defenses. Pathogens and Disease, 67, 159–173.  https://doi.org/10.1111/2049-632X.12033.CrossRefPubMedPubMedCentralGoogle Scholar
  100. Getachew, Y. M., Hassan, L., Zakaria, Z., et al. (2009). Characterization of vancomycin-resistant Enterococcus isolates from broilers in Selangor, Malaysia. Tropical Biomedicine, 26, 280–288.PubMedPubMedCentralGoogle Scholar
  101. Ghotaslou, R., Leylabadlo, H. E., & Asl, Y. M. (2015). Prevalence of antibiotic resistance in Helicobacter pylori : A recent literature review. World Journal of Methodology, 5, 164–174.  https://doi.org/10.5662/wjm.v5.i3.164.CrossRefPubMedPubMedCentralGoogle Scholar
  102. Glasner, C., Albiger, B., Buist, G., et al. (2013). Carbapenemase-producing Enterobacteriaceae in Europe: A survey among national experts from 39 countries, February 2013, G M Rossolini National Reference Laboratory for Antibiotic Resistance Monitoring in Gram-negative Bacteria. Euro Surveillance, 18, 1–7.  https://doi.org/10.2807/1560-7917.ES2013.18.28.20525.CrossRefGoogle Scholar
  103. Gold, B. D. (2001). Helicobacter pylori infection in children. Current Problems in Pediatric and Adolescent Health Care, 31, 247–266.PubMedCrossRefPubMedCentralGoogle Scholar
  104. Golparian, D., Shafer, W. M., Ohnishi, M., & Unemo, M. (2014). Importance of multidrug efflux pumps in the antimicrobial resistance property of clinical multidrug-resistant isolates of Neisseria gonorrhoeae. Antimicrobial Agents and Chemotherapy, 58, 3556–3559.  https://doi.org/10.1128/AAC.00038-14.CrossRefPubMedPubMedCentralGoogle Scholar
  105. Gomez-Simmonds, A., Hu, Y., Sullivan, S. B., et al. (2016). Evidence from a New York City hospital of rising incidence of genetically diverse carbapenem-resistant Enterobacter cloacae and dominance of ST171, 2007–14. Journal of Antimicrobial Chemotherapy, 71, 2351–2353.  https://doi.org/10.1093/jac/dkw132.CrossRefPubMedPubMedCentralGoogle Scholar
  106. González, J. F., Alberts, H., Lee, J., et al. (2018). Biofilm formation protects Salmonella from the antibiotic ciprofloxacin in vitro and in vivo in the mouse model of chronic carriage. Scientific Reports, 8, 222.  https://doi.org/10.1038/s41598-017-18516-2.CrossRefPubMedPubMedCentralGoogle Scholar
  107. Gonzalez-Villoria, A. M., & Valverde-Garduno, V. (2016). Antibiotic-resistant Acinetobacter baumannii increasing success remains a challenge as a nosocomial pathogen. Journal of Pathogens, 2016, 1–10.  https://doi.org/10.1155/2016/7318075.CrossRefGoogle Scholar
  108. Greenberg, D., Speert, D. P., Mahenthiralingam, E., et al. (2002). Emergence of penicillin-nonsusceptible Streptococcus pneumoniae invasive clones in Canada. Journal of Clinical Microbiology, 40, 68–74.  https://doi.org/10.1128/JCM.40.1.68-74.2002.CrossRefPubMedPubMedCentralGoogle Scholar
  109. Gu, B., Cao, Y., Pan, S., et al. (2012). Comparison of the prevalence and changing resistance to nalidixic acid and ciprofloxacin of Shigella between Europe–America and Asia–Africa from 1998 to 2009. International Journal of Antimicrobial Agents, 40, 9–17.  https://doi.org/10.1016/J.IJANTIMICAG.2012.02.005.CrossRefPubMedPubMedCentralGoogle Scholar
  110. Gupta, N., Limbago, B. M., Patel, J. B., & Kallen, A. J. (2011). Carbapenem-resistant Enterobacteriaceae: Epidemiology and prevention. Clinical Infectious Diseases, 53, 60–67.  https://doi.org/10.1093/cid/cir202.CrossRefPubMedPubMedCentralGoogle Scholar
  111. Hagras, M., Mohammad, H., Mandour, M. S., et al. (2017). Investigating the antibacterial activity of biphenylthiazoles against methicillin- and vancomycin-resistant Staphylococcus aureus (MRSA and VRSA). Journal of Medicinal Chemistry, 60, 4074–4085.  https://doi.org/10.1021/acs.jmedchem.7b00392.CrossRefPubMedPubMedCentralGoogle Scholar
  112. Hakanen, A., Jousimies-Somer, H., Siitonen, A., et al. (2003). Fluoroquinolone resistance in Campylobacter jejuni isolates in travelers returning to Finland: Association of ciprofloxacin resistance to travel destination. Emerging Infectious Diseases, 9, 267–270.  https://doi.org/10.3201/eid0902.020227.CrossRefPubMedPubMedCentralGoogle Scholar
  113. Hakenbeck, R., Brückner, R., Denapaite, D., & Maurer, P. (2012). Molecular mechanisms of β-lactam resistance in Streptococcus pneumoniae. Future Microbiology, 7, 395–410.  https://doi.org/10.2217/fmb.12.2.CrossRefPubMedPubMedCentralGoogle Scholar
  114. Hammerum, A. M. (2012). Enterococci of animal origin and their significance for public health. Clinical Microbiology and Infection, 18, 619–625.  https://doi.org/10.1111/j.1469-0691.2012.03829.x.PubMedCrossRefPubMedCentralGoogle Scholar
  115. Hampton, L. M., Farley, M. M., Schaffner, W., Thomas, A., Reingold, A., Harrison, L. H., & Moore, M. (2018). Prevention of antibiotic-nonsusceptible Streptococcus pneumoniaeWith conjugate vaccines. The Journal of Infectious Diseases, 205.  https://doi.org/10.1093/infdis/jir755.PubMedCrossRefPubMedCentralGoogle Scholar
  116. Hansman, D., & Bullen, M. M. (1967). A resistant Pneumococcus. Lancet, 290, 264–265.  https://doi.org/10.1016/S0140-6736(67)92346-X.CrossRefGoogle Scholar
  117. Harris, A. D., Perencevich, E. N., Johnson, J. K., et al. (2007). Patient-to-patient transmission is important in extended-spectrum -lactamase-producing Klebsiella pneumoniae acquisition. Clinical Infectious Diseases, 45, 1347–1350.  https://doi.org/10.1086/522657.CrossRefPubMedPubMedCentralGoogle Scholar
  118. Harvey, K., Esposito, D. H., Han, P., et al. (2013). Surveillance for travel-related disease--GeoSentinel Surveillance System, United States, 1997–2011. MMWR Surveillance Summary, 62, 1–23.Google Scholar
  119. Hasegawa, K., Yamamoto, K., Chiba, N., et al. (2003). Diversity of ampicillin-resistance genes in Haemophilus influenzae in Japan and the United States. Microbial Drug Resistance, 9, 39–46.  https://doi.org/10.1089/107662903764736337.CrossRefPubMedPubMedCentralGoogle Scholar
  120. Hashem, Y. A., Amin, H. M., Essam, T. M., et al. (2017). Biofilm formation in enterococci: Genotype-phenotype correlations and inhibition by vancomycin. Scientific Reports, 7, 5733.  https://doi.org/10.1038/s41598-017-05901-0.CrossRefPubMedPubMedCentralGoogle Scholar
  121. Hess, D., Wu, A., Golparian, D., et al. (2012). Genome sequencing of a Neisseria gonorrhoeae isolate of a successful international clone with decreased susceptibility and resistance to extended-spectrum cephalosporins. Antimicrobial Agents and Chemotherapy, 56, 5633–5641.  https://doi.org/10.1128/AAC.00636-12.CrossRefPubMedPubMedCentralGoogle Scholar
  122. Hilty, M., Betsch, B. Y., Bögli-Stuber, K., et al. (2012). Transmission dynamics of extended-spectrum β-lactamase–producing Enterobacteriaceae in the tertiary care hospital and the household setting. Clinical Infectious Diseases, 55, 967–975.  https://doi.org/10.1093/cid/cis581.CrossRefPubMedPubMedCentralGoogle Scholar
  123. Hoiby, N., Bjarnsholt, T., Givskov, M., et al. (2010). Antibiotic resistance of bacterial biofilms. International Journal of Antimicrobial Agents, 35, 322–332.  https://doi.org/10.1016/j.ijantimicag.2009.12.011.CrossRefPubMedPubMedCentralGoogle Scholar
  124. Høiby, N., Ciofu, O., Krogh Johansen, H., et al. (2011). The clinical impact of bacterial biofilms. International Journal of Oral Science, 3, 55–65.  https://doi.org/10.4248/IJOS11026.CrossRefPubMedPubMedCentralGoogle Scholar
  125. Hollenbeck, B. L., & Rice, L. B. (2012). Intrinsic and acquired resistance mechanisms in Enterococcus. Virulence, 3, 421–433.PubMedPubMedCentralCrossRefGoogle Scholar
  126. Hooper, D. C., & Jacoby, G. A. (2015). Mechanisms of drug resistance: Quinolone resistance. Annals of the New York Academy of Sciences, 1354, 12–31.  https://doi.org/10.1111/nyas.12830.CrossRefPubMedPubMedCentralGoogle Scholar
  127. Hsu, L.-Y., Apisarnthanarak, A., Khan, E., et al. (2017). Carbapenem-resistant Acinetobacter baumannii and Enterobacteriaceae in South and Southeast Asia. Clinical Microbiology Reviews, 30, 1–22.  https://doi.org/10.1128/CMR.00042-16.CrossRefPubMedPubMedCentralGoogle Scholar
  128. Huycke, M. M., Sahm, D. F., & Gilmore, M. S. (1998). Multiple-drug resistant enterococci: The nature of the problem and an agenda for the future. Emerging Infectious Diseases, 4, 239–249.PubMedPubMedCentralCrossRefGoogle Scholar
  129. Iovine, N. M. (2013). Resistance mechanisms in Campylobacter jejuni. Virulence, 4, 230–240.PubMedPubMedCentralCrossRefGoogle Scholar
  130. Ito, H., Arakawa, Y., Ohsuka, S., et al. (1995). Plasmid-mediated dissemination of the metallo-β-lactamase gene bla(IMP) among clinically isolated strains of Serratia marcescens. Antimicrobial Agents and Chemotherapy, 39, 824–829.  https://doi.org/10.1128/AAC.39.4.824.CrossRefPubMedPubMedCentralGoogle Scholar
  131. Ito, T., Katayama, Y., & Hiramatsu, K. (1999). Cloning and nucleotide sequence determination of the entire mec DNA of pre-methicillin-resistant Staphylococcus aureus N315. Antimicrobial Agents and Chemotherapy, 43, 1449–1458.PubMedPubMedCentralCrossRefGoogle Scholar
  132. Jamal, M. A., Rosenblatt, J., Jiang, Y., et al. (2014). Prevention of transmission of multidrug-resistant organisms during catheter exchange using antimicrobial catheters. Antimicrobial Agents and Chemotherapy, 58, 5291–5296.  https://doi.org/10.1128/AAC.02886-14.CrossRefPubMedPubMedCentralGoogle Scholar
  133. Jansen, W. T. M., Verel, A., Beitsma, M., et al. (2006). Longitudinal European surveillance study of antibiotic resistance of Haemophilus influenzae. Journal of Antimicrobial Chemotherapy, 58, 873–877.  https://doi.org/10.1093/jac/dkl310.CrossRefPubMedPubMedCentralGoogle Scholar
  134. Jensen, U. S., Muller, A., Brandt, C. T., et al. (2010). Effect of generics on price and consumption of ciprofloxacin in primary healthcare: The relationship to increasing resistance. Journal of Antimicrobial Chemotherapy, 65, 1286–1291.  https://doi.org/10.1093/jac/dkq093.CrossRefPubMedPubMedCentralGoogle Scholar
  135. Jayaweera, J. A. A. S., & Kumbukgolla, W. W. (2017). Antibiotic resistance patterns of methicillin-resistant Staphylococcus aureus (MRSA) isolated from livestock and associated farmers in Anuradhapura, Sri Lanka. Germs, 7, 132–139.  https://doi.org/10.18683/germs.2017.1118.PubMedPubMedCentralCrossRefGoogle Scholar
  136. Kaczmarek, F. S., Gootz, T. D., Dib-Hajj, F., et al. (2004). Genetic and molecular characterization of beta-lactamase-negative ampicillin-resistant Haemophilus influenzae with unusually high resistance to ampicillin. Antimicrobial Agents and Chemotherapy, 48, 1630–1639.  https://doi.org/10.1128/AAC.48.5.1630-1639.2004.CrossRefPubMedPubMedCentralGoogle Scholar
  137. Kang, C., Kim, S., Kim, H., et al. (2003). Pseudomonas aeruginosa bacteremia: Risk factors for mortality and influence of delayed receipt of effective antimicrobial therapy on clinical outcome. Clinical Infectious Diseases, 37, 745–751.  https://doi.org/10.1086/377200.CrossRefPubMedPubMedCentralGoogle Scholar
  138. Kawada-Matsuo, M., & Komatsuzawan, H. (2012). Factors affecting susceptibility of Staphylococcus aureus to antibacterial agents. Journal of Oral Biosciences, 54, 86–91.CrossRefGoogle Scholar
  139. Khaghani, S., Shamsizadeh, A., Nikfar, R., & Hesami, A. (2014). Shigella flexneri: A three-year antimicrobial resistance monitoring of isolates in a Children Hospital, Ahvaz, Iran. Iranian Journal of Microbiology, 6, 225–229.PubMedPubMedCentralGoogle Scholar
  140. Khan, M. I., Ochiai, R. L., Von Seidlein, L., et al. (2010). Non-typhoidal Salmonella rates in febrile children at sites in five Asian countries. Tropical Medicine & International Health, 15, 960–963.  https://doi.org/10.1111/j.1365-3156.2010.02553.x.CrossRefGoogle Scholar
  141. Kiedrowska, M., Kuch, A., Żabicka, D., et al. (2017). β-Lactam resistance among Haemophilus influenzae isolates in Poland. Journal of Global Antimicrobial Resistance, 11, 161–166.  https://doi.org/10.1016/j.jgar.2017.08.005.CrossRefPubMedPubMedCentralGoogle Scholar
  142. Kiffer, C., Hsiung, A., Oplustil, C., et al. (2005). Antimicrobial susceptibility of Gram-negative bacteria in Brazilian hospitals: The MYSTIC Program Brazil 2003. Brazilian Journal of Infectious Diseases, 9, 216–224.  https://doi.org/10.1590/S1413-86702005000300004.CrossRefPubMedPubMedCentralGoogle Scholar
  143. Kim, J., Lee, J. Y., Kim, S., et al. (2014). Rates of fecal transmission of extended-spectrum ß-lactamase- producing and carbapenem-resistant Enterobacteriaceae among patients in intensive care units in Korea. Annals of Laboratory Medicine, 34, 20–25.  https://doi.org/10.3343/alm.2014.34.1.20.CrossRefPubMedPubMedCentralGoogle Scholar
  144. Kim, D., Song, J., Kang, Y., et al. (2016). Fis1 depletion in osteoarthritis impairs chondrocyte survival and peroxisomal and lysosomal function. Journal of Molecular Medicine, 94, 1373–1384.  https://doi.org/10.1007/s00109-016-1445-9.CrossRefPubMedPubMedCentralGoogle Scholar
  145. Kim, D., Ahn, J. Y., Lee, C. H., et al. (2017). Increasing resistance to extended-spectrum cephalosporins, fluoroquinolone, and carbapenem in Gram-negative bacilli and the emergence of carbapenem non-susceptibility in Klebsiella pneumoniae: Analysis of Korean Antimicrobial Resistance Monitoring System. Annals of Laboratory Medicine, 37, 231–239.PubMedPubMedCentralCrossRefGoogle Scholar
  146. Kitchel, B., Rasheed, J. K., Patel, J. B., et al. (2009). Molecular epidemiology of KPC-producing Klebsiella pneumoniae isolates in the United States: Clonal expansion of multilocus sequence type 258. Antimicrobial Agents and Chemotherapy, 53, 3365–3370.  https://doi.org/10.1128/AAC.00126-09.CrossRefPubMedPubMedCentralGoogle Scholar
  147. Kitchel, B., Rasheed, J. K., Endimiani, A., et al. (2010). Genetic factors associated with elevated carbapenem resistance in KPC-producing Klebsiella pneumoniae. Antimicrobial Agents and Chemotherapy, 54, 4201–4207.  https://doi.org/10.1128/AAC.00008-10.CrossRefPubMedPubMedCentralGoogle Scholar
  148. Korona-Glowniak, I., Maj, M., Siwiec, R., et al. (2016). Molecular epidemiology of Streptococcus pneumoniae isolates from children with recurrent upper respiratory tract infections. PLoS One, 11, e0158909.  https://doi.org/10.1371/journal.pone.0158909.CrossRefPubMedPubMedCentralGoogle Scholar
  149. Kotloff, K. L., Nataro, J. P., Blackwelder, W. C., et al. (2013). Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): A prospective, case-control study. Lancet (London, England), 382, 209–222.  https://doi.org/10.1016/S0140-6736(13)60844-2.CrossRefGoogle Scholar
  150. Kristich, C. J., Rice, L. B., & Arias, C. A. (2014). Enterococcal infection—Treatment and antibiotic resistance. In Enterococci: From commensals to leading causes of drug resistant infection (pp. 87–134). Boston: Massachusetts Eye and Ear Infirmary.Google Scholar
  151. Kuah, B. G., Kumarasinghe, G., Doran, J., & Chang, H. R. (1994). Antimicrobial susceptibilities of clinical isolates of Acinetobacter baumannii from Singapore. Antimicrobial Agents and Chemotherapy, 38, 2502–2503.PubMedPubMedCentralCrossRefGoogle Scholar
  152. Kubanov, A., Vorobyev, D., Chestkov, A., et al. (2016). Molecular epidemiology of drug-resistant Neisseria gonorrhoeae in Russia (Current Status, 2015). BMC Infectious Diseases, 16, 389.  https://doi.org/10.1186/s12879-016-1688-7.CrossRefPubMedPubMedCentralGoogle Scholar
  153. Lai, C.-C., Lee, K., Xiao, Y., et al. (2014). High burden of antimicrobial drug resistance in Asia. Journal of Global Antimicrobial Resistance, 2, 141–147.  https://doi.org/10.1016/J.JGAR.2014.02.007.CrossRefPubMedPubMedCentralGoogle Scholar
  154. Landman, D., Bratu, S., Kochar, S., et al. (2007). Evolution of antimicrobial resistance among Pseudomonas aeruginosa, Acinetobacter baumannii and Klebsiella pneumoniae in Brooklyn, NY. Journal of Antimicrobial Chemotherapy, 60, 78–82.  https://doi.org/10.1093/jac/dkm129.CrossRefPubMedPubMedCentralGoogle Scholar
  155. Lascols, C., Hackel, M., Marshall, S. H., et al. (2011). Increasing prevalence and dissemination of NDM-1 metallo-beta-lactamase in India: data from the SMART study (2009). Journal of Antimicrobial Chemotherapy, 66, 1992–1997.  https://doi.org/10.1093/jac/dkr240.CrossRefPubMedPubMedCentralGoogle Scholar
  156. Laverde, D., Probst, I., Romero-Saavedra, F., et al. (2017). Targeting type IV secretion system proteins to combat multiresistant Gram-Positive pathogens. Journal of Infectious Diseases, 215, 1836–1845.  https://doi.org/10.1093/infdis/jix227.CrossRefPubMedPubMedCentralGoogle Scholar
  157. Laxminarayan, R., Duse, A., Wattal, C., et al. (2013). Antibiotic resistance – The need for global solutions. Lancet Infectious Diseases, 13, 1057–1098.PubMedCrossRefPubMedCentralGoogle Scholar
  158. Lecocq, E., & Linz, R. (1975). A hospital epidemic due to Achromobacter calcoaceticus. Pathologie Biologie (Paris), 23, 277–282.Google Scholar
  159. Levin, A. S., Sessegolo, J. F., Teixeira, L. M., & Barone, A. A. (2003). Factors associated with penicillin-nonsusceptible pneumococcal infections in Brazil. Brazilian Journal of Medical and Biological Research, 36, 807–813.  https://doi.org/10.1590/S0100-879X2003000600017.CrossRefPubMedPubMedCentralGoogle Scholar
  160. Lin, M. Y., Lyles-Banks, R. D., Lolans, K., et al. (2013). The importance of long-term acute care hospitals in the regional epidemiology of Klebsiella pneumoniae carbapenemase–producing Enterobacteriaceae. Clinical Infectious Diseases, 57, 1246–1252.  https://doi.org/10.1093/cid/cit500.CrossRefPubMedPubMedCentralGoogle Scholar
  161. Lin, D., Chen, K., Wai-Chi Chan, E., & Chen, S. (2015). Increasing prevalence of ciprofloxacin-resistant food-borne Salmonella strains harboring multiple PMQR elements but not target gene mutations. Scientific Reports, 5, 1–8.  https://doi.org/10.1038/srep14754.
  162. Lin, L.-C., Chang, S.-C., Ge, M.-C., et al. (2018a). Novel single-nucleotide variations associated with vancomycin resistance in vancomycin-intermediate Staphylococcus aureus. Infection and Drug Resistance, 11, 113–123.  https://doi.org/10.2147/IDR.S148335.CrossRefPubMedPubMedCentralGoogle Scholar
  163. Lin, Q., Deslouches, B., Montelaro, R. C., et al. (2018b). Prevention of ESKAPE pathogen biofilm formation by antimicrobial peptides WLBU2 and LL37. International Journal of Antimicrobial Agents, pii: S0924-8579(18), 30128–30126.  https://doi.org/10.1016/j.ijantimicag.2018.04.019.CrossRefGoogle Scholar
  164. Liñares, J., Ardanuy, C., Pallares, R., & Fenoll, A. (2010). Changes in antimicrobial resistance, serotypes and genotypes in Streptococcus pneumoniae over a 30-year period. Clinical Microbiology and Infection, 16, 402–410.PubMedCrossRefPubMedCentralGoogle Scholar
  165. Liu, J., Chen, D., Peters, B. M., et al. (2016). Staphylococcal chromosomal cassettes mec (SCCmec): A mobile genetic element in methicillin-resistant Staphylococcus aureus. Microbial Pathogenesis, 101, 56–67.PubMedCrossRefGoogle Scholar
  166. Livermore, D. M. (2012). Fourteen years in resistance. International Journal of Antimicrobial Agents, 39, 283–294.  https://doi.org/10.1016/j.ijantimicag.2011.12.012.CrossRefPubMedGoogle Scholar
  167. Logan, L. K., & Weinstein, R. A. (2017). The epidemiology of Carbapenem-resistant Enterobacteriaceae: The impact and evolution of a global menace. Journal of Infectious Diseases, 215, S28–S36.  https://doi.org/10.1093/infdis/jiw282.CrossRefPubMedPubMedCentralGoogle Scholar
  168. Longo, F., Vuotto, C., & Donelli, G. (2014). Biofilm formation in Acinetobacter baumannii. New Microbiologica, 37, 119–127.PubMedPubMedCentralGoogle Scholar
  169. López-Hernández, S., Alarcón, T., & López-Brea, M. (1998). Carbapenem resistance mediated by Beta-lactamases in clinical isolates of Acinetobacter baumannii in Spain. European Journal of Clinical Microbiology & Infectious Diseases, 17, 282–285.  https://doi.org/10.1007/BF01699988.CrossRefGoogle Scholar
  170. Luangtongkum, T., Jeon, B., Han, J., et al. (2009). Antibiotic resistance in Campylobacter: Emergence, transmission and persistence. Future Microbiology, 4, 189–200.  https://doi.org/10.2217/17460913.4.2.189.CrossRefPubMedPubMedCentralGoogle Scholar
  171. Luepke, K. H., Suda, K. J., Boucher, H., et al. (2017). Past, present, and future of antibacterial economics: Increasing bacterial resistance, limited antibiotic pipeline, and societal implications. Pharmacotherapy, 37, 71–84.  https://doi.org/10.1002/phar.1868.CrossRefPubMedPubMedCentralGoogle Scholar
  172. Lutz, J. K., & Lee, J. (2011). Prevalence and antimicrobial-resistance of Pseudomonas aeruginosa in swimming pools and hot tubs. International Journal of Environmental Research and Public Health, 8, 554–564.  https://doi.org/10.3390/ijerph8020554.CrossRefPubMedPubMedCentralGoogle Scholar
  173. Ma, Q., Huang, Y., Wang, J., et al. (2018). Multidrug-resistant Shigella sonnei carrying plasmid-mediated mcr-1 gene in China. International Journal of Antimicrobial Agents.  https://doi.org/10.1016/j.ijantimicag.2018.02.019.PubMedCrossRefPubMedCentralGoogle Scholar
  174. Maron, D., Smith, T. J., & Nachman, K. E. (2013). Restrictions on antimicrobial use in food animal production: An international regulatory and economic survey. Global Health, 9, 48.  https://doi.org/10.1186/1744-8603-9-48.CrossRefPubMedPubMedCentralGoogle Scholar
  175. Marothi, Y. A., Agnihotri, H., & Dubey, D. (2005). Enterococcal resistance-an overview. Indian Journal of Medical Microbiology, 23, 214–219.PubMedPubMedCentralGoogle Scholar
  176. Martens, E., & Demain, A. L. (2017). The antibiotic resistance crisis, with a focus on the United States. Journal of Antibiotics (Tokyo), 70, 520–526.  https://doi.org/10.1038/ja.2017.30.CrossRefGoogle Scholar
  177. Martínez-Martínez, L., Pascual, A., & Jacoby, G. A. (1998). Quinolone resistance from a transferable plasmid. Lancet (London, England), 351, 797–799.  https://doi.org/10.1016/S0140-6736(97)07322-4.CrossRefGoogle Scholar
  178. Martins, W. M. B. S., Narciso, A. C., Cayô, R., et al. (2018). SPM-1-producing Pseudomonas aeruginosa ST277 clone recovered from microbiota of migratory birds. Diagnostic Microbiology and Infectious Disease, 90, 221–227.  https://doi.org/10.1016/j.diagmicrobio.2017.11.003.CrossRefPubMedPubMedCentralGoogle Scholar
  179. McConville, T. H., Sullivan, S. B., Gomez-Simmonds, A., et al. (2017). Carbapenem-resistant Enterobacteriaceae colonization (CRE) and subsequent risk of infection and 90-day mortality in critically ill patients, an observational study. PLoS One, 12, e0186195.  https://doi.org/10.1371/journal.pone.0186195.CrossRefPubMedPubMedCentralGoogle Scholar
  180. Megraud, F. (1998). Epidemiology and mechanism of antibiotic resistance in Helicobacter pylori. Gastroenterology, 115, 1278–1282.PubMedCrossRefPubMedCentralGoogle Scholar
  181. Megraud, F., Coenen, S., Versporten, A., et al. (2013). Helicobacter pylori resistance to antibiotics in Europe and its relationship to antibiotic consumption. Gut, 62, 34–42.  https://doi.org/10.1136/gutjnl-2012-302254.CrossRefPubMedPubMedCentralGoogle Scholar
  182. Mehta, D. K., & Das, R. (2018). Microbial biofilm and quorum sensing inhibition: Endowment of medicinal plants to combat multidrug- resistant bacteria. Current Drug Targets.  https://doi.org/10.2174/1389450119666180406111143.PubMedCrossRefPubMedCentralGoogle Scholar
  183. Mehta, S. D., Maclean, I., Ndinya-Achola, J. O., et al. (2011). Emergence of quinolone resistance and cephalosporin MIC creep in Neisseria gonorrhoeae isolates from a cohort of young men in Kisumu, Kenya, 2002 to 2009. Antimicrobial Agents and Chemotherapy, 55, 3882–3888.  https://doi.org/10.1128/AAC.00155-11.CrossRefPubMedPubMedCentralGoogle Scholar
  184. Mendelman, P. M., Chaffin, D. O., Stull, T. L., et al. (1984). Characterization of non-beta-lactamase-mediated ampicillin resistance in Haemophilus influenzae. Antimicrobial Agents and Chemotherapy, 26, 235–244.  https://doi.org/10.1128/AAC.26.2.235.CrossRefPubMedPubMedCentralGoogle Scholar
  185. Menezes, G. A., Khan, M. A., Harish, B. N., et al. (2010). Molecular characterization of antimicrobial resistance in non-typhoidal Salmonellae associated with systemic manifestations from India. Journal of Medical Microbiology, 59, 1477–1483.  https://doi.org/10.1099/jmm.0.022319-0.CrossRefPubMedPubMedCentralGoogle Scholar
  186. Malfertheiner, P., Megraud, F., O’Morain, C. A., Atherton, J., Axon, A. T., Bazzoli, F., Gensini, G. F., Gisbert, J. P., Graham, D. Y., Rokkas, T., El-Omar, E. M., & Kuipers, E. J. (2012). Management of Helicobacter pylori infection–the Maastricht IV/ Florence consensus report. Gut, 61, 646–664. https://doi.org/10.1136/gutjnl-2012-302084.PubMedCrossRefPubMedCentralGoogle Scholar
  187. Miller, W. R., Munita, J. M., & Arias, C. A. (2014). Mechanisms of antibiotic resistance in enterococci. Expert Review of Anti-infective Therapy, 12, 1221–1236.PubMedPubMedCentralCrossRefGoogle Scholar
  188. Molton, J. S., Tambyah, P. A., Ang, B. S. P., et al. (2013). The global spread of healthcare-associated multidrug-resistant bacteria: A perspective from Asia. Clinical Infectious Diseases, 56, 1310–1318.  https://doi.org/10.1093/cid/cit020.CrossRefPubMedPubMedCentralGoogle Scholar
  189. Miu, D. K. Y., Ling, S. M., & Tse, C. (2016). Epidemiology of vancomycin-resistant enterococci in postacute care facility and predictors of clearance: A 5-year retrospective cohort study. J Clin Gerontol Geriatr., 7, 153–157.  https://doi.org/10.1016/j.jcgg.2015.11.002.CrossRefGoogle Scholar
  190. Mugnier, P. D., Poirel, L., Naas, T., & Nordmann, P. (2009). Worldwide dissemination of the bla OXA-23 carbapenemase gene of Acinetobacter baumannii 1. Emerging Infectious Diseases, 16, 35–40.  https://doi.org/10.3201/eid1601.090852.CrossRefGoogle Scholar
  191. Mundy, L. M., Sahm, D. F., & Gilmore, M. (2000). Relationships between Enterococcal virulence and antimicrobial resistance. Clinical Microbiology Reviews, 13, 513–522.  https://doi.org/10.1128/CMR.13.4.513-522.2000.CrossRefPubMedPubMedCentralGoogle Scholar
  192. Munoz-Price, L. S., Zembower, T., Penugonda, S., et al. (2010). Clinical outcomes of carbapenem-resistant Acinetobacter baumannii bloodstream infections: Study of a 2-state monoclonal outbreak. Infection Control & Hospital Epidemiology, 31, 1057–1062.  https://doi.org/10.1086/656247.CrossRefGoogle Scholar
  193. Munoz-Price, L. S., Poirel, L., Bonomo, R. A., et al. (2013). Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infectious Diseases, 13, 785–796.PubMedCrossRefPubMedCentralGoogle Scholar
  194. Muthuirulandi Sethuvel, D. P., Devanga Ragupathi, N. K., Anandan, S., & Veeraraghavan, B. (2017). Update on: Shigella new serogroups/serotypes and their antimicrobial resistance. Letters in Applied Microbiology, 64, 8–18.PubMedCrossRefPubMedCentralGoogle Scholar
  195. Nabi, A. Q. (2017). Molecular study on some antibiotic resistant genes in Salmonella spp. isolates. In AIP Conference Proceedings. AIP Publishing LLC, p. 020037Google Scholar
  196. Natan, M., & Banin, E. (2017). From nano to micro: Using nanotechnology to combat microorganisms and their multidrug resistance. FEMS Microbiology Reviews, 41, 302–322.  https://doi.org/10.1093/femsre/fux003.CrossRefPubMedPubMedCentralGoogle Scholar
  197. New, C. Y., Amalia, A. R., Ramzi, O. S. B., & Son, R. (2016). Antibiotic resistance evolution of methicillin resistant Staphylococcus aureus (MRSA) and colloidal silver as the nanoweapon. International Food Research Journal, 23, 1248–1254.Google Scholar
  198. Nüesch-Inderbinen, M., Heini, N., Zurfluh, K., et al. (2016). Shigella antimicrobial drug resistance mechanisms, 2004–2014. Emerging Infectious Diseases, 22, 1083–1085.  https://doi.org/10.3201/eid2206.152088.CrossRefPubMedPubMedCentralGoogle Scholar
  199. O’Driscoll, T., & Crank, C. W. (2015). Vancomycin-resistant enterococcal infections: Epidemiology, clinical manifestations, and optimal management. Infection and Drug Resistance, 8, 217–230.  https://doi.org/10.2147/IDR.S54125.CrossRefPubMedPubMedCentralGoogle Scholar
  200. Ohlsen, K. (2009). Novel antibiotics for the treatment of Staphylococcus aureus. Expert Review of Clinical Pharmacology, 2, 661–672.PubMedCrossRefPubMedCentralGoogle Scholar
  201. Olesky, M., Johannes, R., Ye, G., et al. (2017). Trends in resistant Enterobacteriaceae (ENT), Acinetobacter baumannii (ACB) and extended spectrum Β-lactamase (ESBL) organisms in hospitalized patients in the USA: 2011–2016. Open Forum Infectious Diseases, 4, S153–S154.  https://doi.org/10.1093/ofid/ofx163.253.CrossRefGoogle Scholar
  202. Opoku-Temeng, C., & Sintim, H. O. (2017). Targeting c-di-GMP signaling, biofilm formation, and bacterial motility with small molecules. Methods in Molecular Biology, 1657, 419–430.  https://doi.org/10.1007/978-1-4939-7240-1_31.CrossRefPubMedPubMedCentralGoogle Scholar
  203. Pachón-Ibáñez, M. E., Smani, Y., Pachón, J., & Sánchez-Céspedes, J. (2017). Perspectives for clinical use of engineered human host defense antimicrobial peptides. FEMS Microbiology Reviews, 41, 323–342.  https://doi.org/10.1093/femsre/fux012.CrossRefPubMedPubMedCentralGoogle Scholar
  204. Paganelli, F. L., Willems, R. J. L. W., Jansen, P., et al. (2013). Enterococcus faecium biofilm formation: Identification of major autolysin AtlAefm, associated acm surface localization, and AtlAefm-independent extracellular DNA release. MBio, 4, e00154-13–e00154-13.  https://doi.org/10.1128/mBio.00154-13.CrossRefPubMedPubMedCentralGoogle Scholar
  205. Palzkill, T. (2013). Metallo-beta-lactamase structure and function. Annals of the New York Academy of Sciences, 1277, 91–104.  https://doi.org/10.1111/j.1749-6632.2012.06796.x.CrossRefPubMedPubMedCentralGoogle Scholar
  206. Pan American Health Organization/World Health Organization. (2018). Epidemiological alert: Extended-spectrum cephalosporin resistance in Neisseria gonorrhoeae. https://www.google.com/search?client=safari&rls=en&q=Pan+American+Health+Organization+/+World+Health+Organization.+Epidemiological+Alert:+Extended-Spectrum+Cephalosporin+Resistance+in+Neisseria+gonorrhoeae.+2+February+2018,+Washington,+D.C.:+PAHO/WHO;+201. Accessed 25 May 2018.
  207. Pan, Y. P., Xu, Y. H., Wang, Z. X., et al. (2016). Overexpression of MexAB-OprM efflux pump in carbapenem-resistant Pseudomonas aeruginosa. Archives of Microbiology, 198, 565–571.  https://doi.org/10.1007/s00203-016-1215-7.CrossRefPubMedPubMedCentralGoogle Scholar
  208. Pandey, S. (2017). Evolution and epidemiology of antimicrobial resistance: Staphylococcus aureus. Biomedical Journal of Scientific & Technical Research, 1.  https://doi.org/10.26717/BJSTR.2017.01.000446.
  209. Papadimitriou-Olivgeris, M., Marangos, M., Fligou, F., et al. (2012). Risk factors for KPC-producing Klebsiella pneumoniae enteric colonization upon ICU admission. Journal of Antimicrobial Chemotherapy, 67, 2976–2981.  https://doi.org/10.1093/jac/dks316.CrossRefPubMedPubMedCentralGoogle Scholar
  210. Papadimitriou-Olivgeris, M., Fligou, F., Spiliopoulou, A., et al. (2017). Risk factors and predictors of carbapenem-resistant Pseudomonas aeruginosa and Acinetobacter baumannii mortality in critically ill bacteraemic patients over a 6-year period (2010–15): Antibiotics do matter. Journal of Medical Microbiology, 66, 1092–1101.CrossRefGoogle Scholar
  211. Pappa, O., Vantarakis, A., Galanis, A., et al. (2016). Erratum to antibiotic resistance profiles of Pseudomonas aeruginosa isolated from various Greek aquatic environments. FEMS Microbiology Ecology, 92(5).  https://doi.org/10.1093/femsec/iw042. FEMS Microbiol. Ecol. 92:1.
  212. Papp-Wallace, K. M., Endimiani, A., Taracila, M. A., & Bonomo, R. A. (2011). Carbapenems: Past, present, and future. Antimicrobial Agents and Chemotherapy, 55, 4943–4960.PubMedPubMedCentralCrossRefGoogle Scholar
  213. Patel, G., & Bonomo, R. A. (2013). “Stormy waters ahead”: Global emergence of carbapenemases. Frontiers in Microbiology, 4, 48.PubMedPubMedCentralCrossRefGoogle Scholar
  214. Patel, G., Huprikar, S., Factor, S. H., et al. (2008). Outcomes of carbapenem-resistant Klebsiella pneumoniae infection and the impact of antimicrobial and adjunctive therapies. Infection Control & Hospital Epidemiology, 29, 1099–1106.  https://doi.org/10.1086/592412.CrossRefGoogle Scholar
  215. Patel, A. L., Chaudhry, U., Sachdev, D., et al. (2011). An insight into the drug resistance profile & mechanism of drug resistance in Neisseria gonorrhoeae. Indian Journal of Medical Research, 134, 419–431.PubMedPubMedCentralGoogle Scholar
  216. Paterson, D. L., & Bonomo, R. A. (2005). Extended-spectrum beta-lactamases: A clinical update. Clinical Microbiology Reviews, 18, 657–686.PubMedPubMedCentralCrossRefGoogle Scholar
  217. Paton, R., Miles, R. S., Hood, J., et al. (1993). ARI 1: β-lactamase-mediated imipenem resistance in Acinetobacter baumannii. International Journal of Antimicrobial Agents, 2, 81–87.  https://doi.org/10.1016/0924-8579(93)90045-7.CrossRefPubMedPubMedCentralGoogle Scholar
  218. Peleg, A. Y., Seifert, H., & Paterson, D. L. (2008). Acinetobacter baumannii: Emergence of a successful pathogen. Clinical Microbiology Reviews, 21, 538–582.PubMedPubMedCentralCrossRefGoogle Scholar
  219. Perez, F., & Bonomo, R. A. (2018). Evidence to improve the treatment of infections caused by carbapenem-resistant Gram-negative bacteria. Lancet Infectious Diseases, 18, 358–360.  https://doi.org/10.1016/S1473-3099(18)30112-9.CrossRefPubMedPubMedCentralGoogle Scholar
  220. Périchon, B., & Courvalin, P. (2009). VanA-type vancomycin-resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 53, 4580–4587.PubMedPubMedCentralCrossRefGoogle Scholar
  221. Pirnay, J. P., Bilocq, F., Pot, B., et al. (2009). Pseudomonas aeruginosa population structure revisited. PLoS One, 4, e7740.  https://doi.org/10.1371/journal.pone.0007740.CrossRefPubMedPubMedCentralGoogle Scholar
  222. Poirel, L., Naas, T., & Nordmann, P. (2010). Diversity, epidemiology, and genetics of class D β-lactamases. Antimicrobial Agents and Chemotherap, 54, 24–38.CrossRefGoogle Scholar
  223. Poirel, L., Bonnin, R. A., & Nordmann, P. (2011). Genetic basis of antibiotic resistance in pathogenic Acinetobacter species. IUBMB Life, 63, 1061–1067.PubMedCrossRefPubMedCentralGoogle Scholar
  224. Poirel, L., Bonnin, R. A., & Nordmann, P. (2012a). Genetic features of the widespread plasmid coding for the carbapenemase OXA-48. Antimicrobial Agents and Chemotherapy, 56, 559–562.  https://doi.org/10.1128/AAC.05289-11.CrossRefPubMedPubMedCentralGoogle Scholar
  225. Poirel, L., Potron, A., & Nordmann, P. (2012b). OXA-48-like carbapenemases: The phantom menace. Journal of Antimicrobial Chemotherapy, 67, 1597–1606.  https://doi.org/10.1093/jac/dks121.CrossRefPubMedPubMedCentralGoogle Scholar
  226. Poole, K. (2011). Pseudomonas aeruginosa: Resistance to the max. Frontiers in Microbiology, 2, 65.  https://doi.org/10.3389/fmicb.2011.00065.CrossRefPubMedPubMedCentralGoogle Scholar
  227. Potter, R. F., D’Souza, A. W., & Dantas, G. (2016). The rapid spread of carbapenem-resistant Enterobacteriaceae. Drug Resistance Updates, 29, 30–46.PubMedPubMedCentralCrossRefGoogle Scholar
  228. Pribul, B. R., Festivo, M. L., Rodrigues, M. S., et al. (2017). Characteristics of quinolone resistance in Salmonella spp. isolates from the food chain in Brazil. Frontiers in Microbiology, 8, 299.  https://doi.org/10.3389/fmicb.2017.00299.CrossRefPubMedPubMedCentralGoogle Scholar
  229. Qin, N., Tan, X., Jiao, Y., et al. (2014). RNA-Seq-based transcriptome analysis of methicillin-resistant Staphylococcus aureus biofilm inhibition by ursolic acid and resveratrol. Scientific Reports, 4, 5467.  https://doi.org/10.1038/srep05467.CrossRefPubMedPubMedCentralGoogle Scholar
  230. Queenan, A. M., & Bush, K. (2007). Carbapenemases: The versatile β-lactamases. Clinical Microbiology Reviews, 20, 440–458.PubMedPubMedCentralCrossRefGoogle Scholar
  231. Redgrave, L. S., Sutton, S. B., Webber, M. A., & Piddock, L. J. V. (2014). Fluoroquinolone resistance: mechanisms, impact on bacteria, and role in evolutionary success. Trends in Microbiology, 22, 438–445.  https://doi.org/10.1016/j.tim.2014.04.007.CrossRefPubMedPubMedCentralGoogle Scholar
  232. Reinert, R. R. (2009). The antimicrobial resistance profile of Streptococcus pneumoniae. Clinical Microbiology and Infection, 15, 7–11.PubMedCrossRefPubMedCentralGoogle Scholar
  233. Reuter, M., Mallett, A., Pearson, B. M., & Van Vliet, A. H. M. (2010). Biofilm formation by Campylobacter jejuni is increased under aerobic conditions. Applied and Environmental Microbiology, 76, 2122–2128.  https://doi.org/10.1128/AEM.01878-09.CrossRefPubMedPubMedCentralGoogle Scholar
  234. Robinson, T. P., Bu, D. P., Carrique-Mas, J., et al. (2016). Antibiotic resistance is the quintessential One Health issue. Transactions of the Royal Society of Tropical Medicine and Hygiene, 110, 377–380.  https://doi.org/10.1093/trstmh/trw048.CrossRefPubMedPubMedCentralGoogle Scholar
  235. Rodrigues Moreira, M., Paula Guimarães, M., Rodrigues, A. A., & Gontijo Filho, P. P. (2013). Antimicrobial use, incidence, etiology and resistance patterns in bacteria causing ventilator-associated pneumonia in a clinical-surgical intensive care unit. Revista da Sociedade Brasileira de Medicina Tropical, 46, 39–44.  https://doi.org/10.1590/0037-868216722013.CrossRefGoogle Scholar
  236. Rodríguez-Martínez, J. M., Poirel, L., & Nordmann, P. (2009). Molecular epidemiology and mechanisms of carbapenem resistance in Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 53, 4783–4788.  https://doi.org/10.1128/AAC.00574-09.CrossRefPubMedPubMedCentralGoogle Scholar
  237. Rodríguez-Zulueta, P., Silva-Sánchez, J., Barrios, H., et al. (2013). First outbreak of KPC-3-producing Klebsiella pneumoniae (ST258) clinical isolates in a Mexican Medical Center. Antimicrobial Agents and Chemotherapy, 57, 4086–4088.  https://doi.org/10.1128/AAC.02530-12.CrossRefPubMedPubMedCentralGoogle Scholar
  238. Rojo-Bezares, B., Estepa, V., Cebollada, R., et al. (2014). Carbapenem-resistant Pseudomonas aeruginosa strains from a Spanish hospital: Characterization of metallo-beta-lactamases, porin OprD and integrons. International Journal of Medical Microbiology, 304, 405–414.  https://doi.org/10.1016/j.ijmm.2014.01.001.CrossRefPubMedPubMedCentralGoogle Scholar
  239. Ross, J. D. C., & Lewis, D. A. (2012). Cephalosporin resistant Neisseria gonorrhoeae: Time to consider gentamicin? Sexually Transmitted Infections, 88, 6–8.PubMedCrossRefPubMedCentralGoogle Scholar
  240. Rossi Gonçalves, I., Dantas, R. C. C., Ferreira, M. L., et al. (2017). Carbapenem-resistant Pseudomonas aeruginosa: Association with virulence genes and biofilm formation. Brazilian Journal of Microbiology, 48, 211–217.  https://doi.org/10.1016/j.bjm.2016.11.004.CrossRefPubMedPubMedCentralGoogle Scholar
  241. Ruiz, J. (2003). Mechanisms of resistance to quinolones: Target alterations, decreased accumulation and DNA gyrase protection. Journal of Antimicrobial Chemotherapy, 51, 1109–1117.  https://doi.org/10.1093/jac/dkg222.CrossRefPubMedPubMedCentralGoogle Scholar
  242. Runnegar, N., Sidjabat, H., Goh, H. M. S., et al. (2010). Molecular epidemiology of multidrug-resistant Acinetobacter baumannii in a single institution over a 10-year period. Journal of Clinical Microbiology, 48, 4051–4056.  https://doi.org/10.1128/JCM.01208-10.CrossRefPubMedPubMedCentralGoogle Scholar
  243. Rushdy, A. A., Mabrouk, M. I., Abu-Sef, F. A. H., et al. (2013). Contribution of different mechanisms to the resistance to fluoroquinolones in clinical isolates of Salmonella enterica. Brazilian Journal of Infectious Diseases, 17, 431–437.  https://doi.org/10.1016/j.bjid.2012.11.012.CrossRefPubMedPubMedCentralGoogle Scholar
  244. Saito, R., Takahashi, R., Sawabe, E., et al. (2014). First report of KPC-2 Carbapenemase-producing Klebsiella pneumoniae in Japan. Antimicrobial Agents and Chemotherapy, 58, 2961–2963.  https://doi.org/10.1128/AAC.02072-13.CrossRefPubMedPubMedCentralGoogle Scholar
  245. Sampaio, J. L. M., & Gales, A. C. (2016). Antimicrobial resistance in Enterobacteriaceae in Brazil: focus on β-lactams and polymyxins. Brazilian Journal of Microbiology, 47, 31–37.PubMedPubMedCentralCrossRefGoogle Scholar
  246. San Millan, A., Toll-Riera, M., Escudero, J. A., et al. (2015). Sequencing of plasmids pAMBL1 and pAMBL2 from Pseudomonas aeruginosa reveals a blaVIM-1 amplification causing high-level carbapenem resistance. Journal of Antimicrobial Chemotherapy, 70, 3000–3003.  https://doi.org/10.1093/jac/dkv222.CrossRefPubMedPubMedCentralGoogle Scholar
  247. Sanbongi, Y., Suzuki, T., Osaki, Y., et al. (2006). Molecular evolution of β-lactam-resistant Haemophilus influenzae: 9-Year surveillance of penicillin-binding protein 3 mutations in isolates from Japan. Antimicrobial Agents and Chemotherapy, 50, 2487–2492.  https://doi.org/10.1128/AAC.01316-05.CrossRefPubMedPubMedCentralGoogle Scholar
  248. Schellack, N., Bronkhorst, E., Maluleka, C., et al. (2018). Fluoroquinolone-resistant Salmonella typhi infection: A report of two cases in South Africa. Southern African Journal of Infectious Diseases, 33, 54–56.  https://doi.org/10.1080/23120053.2017.1382089.CrossRefGoogle Scholar
  249. Schito, G. C. (2006). The importance of the development of antibiotic resistance in Staphylococcus aureus. Clinical Microbiology and Infection, 12, 3–8.PubMedCrossRefPubMedCentralGoogle Scholar
  250. Schouten, M. A., Hoogkamp-Korstanje, J. A., Meis, J. F., & Voss, A. (2000). Prevalence of vancomycin-resistant enterococci in Europe. European Journal of Clinical Microbiology & Infectious Diseases, 19, 816–822.  https://doi.org/10.1007/s100960000390.CrossRefGoogle Scholar
  251. Schwartz, T., Armant, O., Bretschneider, N., et al. (2015). Whole genome and transcriptome analyses of environmental antibiotic sensitive and multi-resistant Pseudomonas aeruginosa isolates exposed to waste water and tap water. Microbial Biotechnology, 8, 116–130.  https://doi.org/10.1111/1751-7915.12156.CrossRefPubMedPubMedCentralGoogle Scholar
  252. Schweizer, I., Blättner, S., Maurer, P., et al. (2017). New aspects of the interplay between penicillin binding proteins, murM, and the two-component system CiaRH of penicillin-resistant Streptococcus pneumoniae serotype 19A isolates from Hungary. Antimicrobial Agents and Chemotherapy, 61, e00414–e00417.  https://doi.org/10.1128/AAC.00414-17.CrossRefPubMedPubMedCentralGoogle Scholar
  253. Sciarretta, K., Røttingen, J.-A., Opalska, A., et al. (2016). Economic incentives for antibacterial drug development: Literature review and considerations from the transatlantic task force on antimicrobial resistance: Table 1. Clinical Infectious Diseases, 63, 1470–1474.  https://doi.org/10.1093/cid/ciw593.CrossRefPubMedPubMedCentralGoogle Scholar
  254. Selgrad, M., Meile, J., Bornschein, J., et al. (2013). Antibiotic susceptibility of Helicobacter pylori in central Germany and its relationship with the number of eradication therapies. European Journal of Gastroenterology & Hepatology, 25, 1257–1260.  https://doi.org/10.1097/MEG.0b013e3283643491.CrossRefGoogle Scholar
  255. Shallcross, L. J. (2014). Editorials: Antibiotic overuse: A key driver of antimicrobial resistance. British Journal of General Practice, 64, 604–605.PubMedCrossRefPubMedCentralGoogle Scholar
  256. Sheng, W. H., Liao, C. H., Lauderdale, T. L., et al. (2010). A multicenter study of risk factors and outcome of hospitalized patients with infections due to carbapenem-resistant Acinetobacter baumannii. International Journal of Infectious Diseases, 14, e764–e769.  https://doi.org/10.1016/j.ijid.2010.02.2254.CrossRefPubMedPubMedCentralGoogle Scholar
  257. Shmuely, H., Domniz, N., & Yahav, J. (2016). Regional antibiotic resistance of Helicobacter pylori. JSM Gastroenterology & Hepatology, 4, 817–823.Google Scholar
  258. Siau, H., Yuen, K. Y., Wong, S. S. Y., et al. (1996). The epidemiology of Acinetobacter infections in Hong Kong. Journal of Medical Microbiology, 44, 340–347.  https://doi.org/10.1099/00222615-44-5-340.CrossRefPubMedPubMedCentralGoogle Scholar
  259. Sievert, D. M., Ricks, P., Edwards, J. R., et al. (2013). Antimicrobial-resistant pathogens associated with healthcare-associated infections summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2009–2010. Infection Control & Hospital Epidemiology, 34, 1–14.  https://doi.org/10.1086/668770.CrossRefGoogle Scholar
  260. Simner, P. J., Adam, H., Baxter, M., et al. (2015). Epidemiology of vancomycin-resistant enterococci in Canadian hospitals (CANWARD study, 2007 to 2013). Antimicrobial Agents and Chemotherapy, 59, 4315–4317.  https://doi.org/10.1128/AAC.00384-15.CrossRefPubMedPubMedCentralGoogle Scholar
  261. Sjölund-Karlsson, M., Howie, R. L., Crump, J. A., & Whichard, J. M. (2014). Fluoroquinolone susceptibility testing of Salmonella enterica: Detection of acquired resistance and selection of zone diameter breakpoints for levofloxacin and ofloxacin. Journal of Clinical Microbiology, 52, 877–884.  https://doi.org/10.1128/JCM.02679-13.CrossRefPubMedPubMedCentralGoogle Scholar
  262. Sjostrom, K., Blomberg, C., Fernebro, J., et al. (2007). Clonal success of piliated penicillin nonsusceptible Pneumococci. Proceedings of the National Academy of Sciences, 104, 12907–12912.  https://doi.org/10.1073/pnas.0705589104.CrossRefGoogle Scholar
  263. Skaare, D., Anthonisen, I., Caugant, D. A., et al. (2014). Multilocus sequence typing and ftsI sequencing: A powerful tool for surveillance of penicillin-binding protein 3-mediated beta-lactam resistance in nontypeable Haemophilus influenzae. BMC Microbiology, 14, 131.  https://doi.org/10.1186/1471-2180-14-131.CrossRefPubMedPubMedCentralGoogle Scholar
  264. Slekovec, C., Plantin, J., Cholley, P., et al. (2012). Tracking down antibiotic-resistant Pseudomonas aeruginosa isolates in a wastewater network. PLoS One, 7, e49300.  https://doi.org/10.1371/journal.pone.0049300.CrossRefPubMedPubMedCentralGoogle Scholar
  265. Smith, R. A., M’ikanatha, N. M., & Read, A. F. (2015). Antibiotic resistance: A primer and call to action. Health Communication, 30, 309–314.  https://doi.org/10.1080/10410236.2014.943634.CrossRefPubMedPubMedCentralGoogle Scholar
  266. Spellberg, B., Powers, J. H., Brass, E. P., et al. (2004). Trends in antimicrobial drug development: Implications for the future. Clinical Infectious Diseases, 38, 1279–1286.  https://doi.org/10.1086/420937.CrossRefPubMedPubMedCentralGoogle Scholar
  267. Spiteri, G., Amato-Gauci, A. J., Unemo, M., & Jacobsson, S. (2014). Gonococcal antimicrobial susceptibility surveillance in Europe. www.ecdc.europa.eu. Accessed 23 May 2018.
  268. Srinivas, S. C., Sharma, S., Govender, K., et al. (2017). Antimicrobial resistance: Identifying the major conflicts of interest and way forward. Indian Journal of Pharmacy Practice, 10, 69–77.  https://doi.org/10.5530/ijopp.10.2.16.CrossRefGoogle Scholar
  269. Stirland, R. M., Hillier, V. F., & Steyger, M. G. (1969). Analysis of hospital bacteriological data. Journal of Clinical Pathology. Supplement (Royal College of Pathologists), 3, 82–86.CrossRefGoogle Scholar
  270. Suárez, C., Peña, C., Gavaldà, L., et al. (2010). Influence of carbapenem resistance on mortality and the dynamics of mortality in Pseudomonas aeruginosa bloodstream infection. International Journal of Infectious Diseases, 14, e73–e78.  https://doi.org/10.1016/j.ijid.2009.11.019.CrossRefPubMedPubMedCentralGoogle Scholar
  271. Swaminathan, M., Sharma, S., Blash, S. P., et al. (2013). Prevalence and risk factors for acquisition of carbapenem-resistant Enterobacteriaceae in the setting of endemicity. Infection Control & Hospital Epidemiology, 34, 809–817.  https://doi.org/10.1086/671270.CrossRefGoogle Scholar
  272. Tacconelli, E., Carrara, E., Savoldi, A., et al. (2017). Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infectious Diseases, 18, 318–327.PubMedCrossRefPubMedCentralGoogle Scholar
  273. Talekar, S. J., Chochua, S., Nelson, K., et al. (2014). 220D-F2 from Rubus ulmifolius Kills Streptococcus pneumoniae planktonic cells and Pneumococcal biofilms. PLoS One, 9, e97314.  https://doi.org/10.1371/journal.pone.0097314.CrossRefPubMedPubMedCentralGoogle Scholar
  274. Taneja, N., & Mewara, A. (2016). Shigellosis: Epidemiology in India. Indian Journal of Medical Research, 143, 565–576.  https://doi.org/10.4103/0971-5916.187104.CrossRefPubMedPubMedCentralGoogle Scholar
  275. Tang, S. S., Apisarnthanarak, A., & Hsu, L. Y. (2014). Mechanisms of beta-lactam antimicrobial resistance and epidemiology of major community- and healthcare-associated multidrug-resistant bacteria. Advanced Drug Delivery Reviews, 78, 3–13.  https://doi.org/10.1016/j.addr.2014.08.003.CrossRefPubMedPubMedCentralGoogle Scholar
  276. Tang, Y., Sahin, O., Pavlovic, N., et al. (2017). Rising fluoroquinolone resistance in Campylobacter isolated from feedlot cattle in the United States. Scientific Reports, 7, 494.  https://doi.org/10.1038/s41598-017-00584-z.CrossRefPubMedPubMedCentralGoogle Scholar
  277. Tängdén, T., & Giske, C. G. (2015). Global dissemination of extensively drug-resistant carbapenemase-producing Enterobacteriaceae: Clinical perspectives on detection, treatment and infection control. Journal of Internal Medicine, 277, 501–512.PubMedCrossRefPubMedCentralGoogle Scholar
  278. Temkin, E., Adler, A., Lerner, A., & Carmeli, Y. (2014). Carbapenem-resistant Enterobacteriaceae: Biology, epidemiology, and management. Annals of the New York Academy of Sciences, 1323, 22–42.  https://doi.org/10.1111/nyas.12537.CrossRefPubMedPubMedCentralGoogle Scholar
  279. Ter Kuile, B. H., Kraupner, N., & Brul, S. (2016). The risk of low concentrations of antibiotics in agriculture for resistance in human health care. FEMS Microbiology Letters, 363, fnw210.PubMedCrossRefPubMedCentralGoogle Scholar
  280. Thornsberry, C., & Kirven, L. A. (1974). Ampicillin resistance in Haemophilus influenzae as determined by a rapid test for beta-lactamase production. Antimicrobial Agents and Chemotherapy, 6, 653–654.  https://doi.org/10.1128/AAC.6.5.653.CrossRefPubMedPubMedCentralGoogle Scholar
  281. Tischendorf, J., De Avila, R. A., & Safdar, N. (2016). Risk of infection following colonization with carbapenem-resistant Enterobacteriaceae: A systematic review. American Journal of Infection Control, 44, 539–543.  https://doi.org/10.1016/j.ajic.2015.12.005.CrossRefPubMedPubMedCentralGoogle Scholar
  282. Tracanna, V., de Jong, A., Medema, M. H., & Kuipers, O. P. (2017). Mining prokaryotes for antimicrobial compounds: From diversity to function. FEMS Microbiology Reviews, 41, 417–429.  https://doi.org/10.1093/femsre/fux014.CrossRefPubMedPubMedCentralGoogle Scholar
  283. Tran, J. H., & Jacoby, G. A. (2002). Mechanism of plasmid-mediated quinolone resistance. Proceedings of the National Academy of Sciences of the United States of America, 99, 5638–5642.  https://doi.org/10.1073/pnas.082092899.CrossRefPubMedPubMedCentralGoogle Scholar
  284. Tran, J. H., Jacoby, G. A., & Hooper, D. C. (2005a). Interaction of the plasmid-encoded quinolone resistance protein Qnr with Escherichia coli DNA gyrase. Antimicrobial Agents and Chemotherapy, 49, 118–125.  https://doi.org/10.1128/AAC.49.1.118-125.2005.CrossRefPubMedPubMedCentralGoogle Scholar
  285. Tran, J. H., Jacoby, G. A., & Hooper, D. C. (2005b). Interaction of the plasmid-encoded quinolone resistance protein QnrA with Escherichia coli topoisomerase IV. Antimicrobial Agents and Chemotherapy, 49, 3050–3052.  https://doi.org/10.1128/AAC.49.7.3050-3052.2005.CrossRefPubMedPubMedCentralGoogle Scholar
  286. Tristram, S., Jacobs, M. R., & Appelbaum, P. C. (2007). Antimicrobial resistance in Haemophilus influenzae. Clinical Microbiology Reviews, 20, 368–389.  https://doi.org/10.1128/CMR.00040-06.CrossRefPubMedPubMedCentralGoogle Scholar
  287. Tsao, L. H., Hsin, C. Y., Liu, H. Y., et al. (2017). Risk factors for healthcare-associated infection caused by carbapenem-resistant Pseudomonas aeruginosa. Journal of Microbiology, Immunology, and Infection, pii: S1684-1182(17), 30198–30196.  https://doi.org/10.1016/j.jmii.2017.08.015.CrossRefGoogle Scholar
  288. Tzouvelekis, L. S., Markogiannakis, A., Psichogiou, M., et al. (2012). Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: An evolving crisis of global dimensions. Clinical Microbiology Reviews, 25, 682–707.  https://doi.org/10.1128/CMR.05035-11.CrossRefPubMedPubMedCentralGoogle Scholar
  289. Ubukata, K., Shibasaki, Y., Yamamoto, K., et al. (2001). Association of amino acid substitutions in penicillin-binding protein 3 with beta-lactam resistance in beta-lactamase-negative ampicillin-resistant Haemophilus influenzae. Antimicrobial Agents and Chemotherapy, 45, 1693–1699.  https://doi.org/10.1128/AAC.45.6.1693-1699.2001.CrossRefPubMedPubMedCentralGoogle Scholar
  290. Ugboko, H., & De, N. (2014). Review article. Mechanisms of antibiotic resistance in Salmonella Typhi. Int J Curr Microbiol Appl Sci, 3, 461–476.Google Scholar
  291. Unemo, M., & Shafer, W. M. (2014). Antimicrobial resistance in Neisseria gonorrhoeae in the 21st Century: Past, evolution, and future. Clinical Microbiology Reviews, 27, 587–613.  https://doi.org/10.1128/CMR.00010-14.CrossRefPubMedPubMedCentralGoogle Scholar
  292. Uttley, A. H. C., Collins, C. H., Naidoo, J., & George, R. C. (1988). Vancomycin-resistant Enterococci. Lancet, 331, 57–58.CrossRefGoogle Scholar
  293. Vaishampayan, A., de Jong, A., Wight, D. J., et al. (2018). A novel antimicrobial coating represses biofilm and virulence-related genes in methicillin-resistant Staphylococcus aureus. Frontiers in Microbiology, 9, 221.  https://doi.org/10.3389/fmicb.2018.00221.CrossRefPubMedPubMedCentralGoogle Scholar
  294. van der Meij, A., Worsley, S. F., Hutchings, M. I., & van Wezel, G. P. (2017). Chemical ecology of antibiotic production by actinomycetes. FEMS Microbiology Reviews, 41, 392–416.  https://doi.org/10.1093/femsre/fux005.CrossRefPubMedPubMedCentralGoogle Scholar
  295. Vatopoulos, A. (2008). High rates of metallo-beta-lactamase-producing Klebsiella pneumoniae in Greece--A review of the current evidence. Euro Surveillance, 13, 1854–1861.Google Scholar
  296. Vianna, J. S., Ramis, I. B., Ramos, D. F., et al. (2016). Drug resistance in Helicobacter pylori. Arquivos de Gastroenterologia, 53, 215–223.  https://doi.org/10.1590/S0004-28032016000400002.CrossRefPubMedPubMedCentralGoogle Scholar
  297. Vidal-Navarro, L., Pfeiffer, C., Bouziges, N., et al. (2010). Faecal carriage of multidrug-resistant Gram-negative bacilli during a non-outbreak situation in a French university hospital. Journal of Antimicrobial Chemotherapy, 65, 2455–2458.  https://doi.org/10.1093/jac/dkq333.CrossRefPubMedPubMedCentralGoogle Scholar
  298. Vila, J., Martí, S., & Sánchez-Céspedes, J. (2007). Porins, efflux pumps and multidrug resistance in Acinetobacter baumannii. Journal of Antimicrobial Chemotherapy, 59, 1210–1215.PubMedCrossRefPubMedCentralGoogle Scholar
  299. Vinothkumar, K., Bhalara, S. R., Shah, A., et al. (2017). Involvement of topoisomerase mutations, qnr and aac(6′)Ib-cr genes in conferring quinolone resistance to the clinical isolates of Vibrio and Shigella spp. (1998 to 2009) from Kolkata, India. Journal of Global Antimicrobial Resistance.  https://doi.org/10.1016/j.jgar.2017.10.013.PubMedCrossRefPubMedCentralGoogle Scholar
  300. Walsh, T. R., Toleman, M. A., Poirel, L., & Nordmann, P. (2005). Metallo-β-lactamases: The quiet before the storm? Clinical Microbiology Reviews, 18, 306–325.PubMedPubMedCentralCrossRefGoogle Scholar
  301. Walsh, T. R., Weeks, J., Livermore, D. M., & Toleman, M. A. (2011). Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: An environmental point prevalence study. Lancet Infectious Diseases, 11, 355–362.  https://doi.org/10.1016/S1473-3099(11)70059-7.CrossRefPubMedPubMedCentralGoogle Scholar
  302. Wang, X., Tao, F., Xiao, D., et al. (2006). Trend and disease burden of bacillary dysentery in China (1991–2000). Bulletin of the World Health Organization, 84, 561–568.  https://doi.org/10.1590/S0042-96862006000700018.CrossRefPubMedPubMedCentralGoogle Scholar
  303. Wang, H., Edwards, M., Falkinham, J. O., & Pruden, A. (2012). Molecular survey of the occurrence of Legionella spp., Mycobacterium spp., Pseudomonas aeruginosa, and amoeba hosts in two chloraminated drinking water distribution systems. Applied and Environmental Microbiology, 78, 6285–6294.  https://doi.org/10.1128/AEM.01492-12.CrossRefPubMedPubMedCentralGoogle Scholar
  304. Weiner, L. M., Fridkin, S. K., Aponte-Torres, Z., et al. (2016). Vital signs: Preventing antibiotic-resistant infections in hospitals — United States, 2014. American Journal of Transplantation, 16, 2224–2230.PubMedCrossRefPubMedCentralGoogle Scholar
  305. Wi, T., Lahra, M. M., Ndowa, F., et al. (2017). Antimicrobial resistance in Neisseria gonorrhoeae: Global surveillance and a call for international collaborative action. PLOS Medicine, 14, e1002344.  https://doi.org/10.1371/journal.pmed.1002344.CrossRefPubMedPubMedCentralGoogle Scholar
  306. Wiener-Well, Y., Rudensky, B., Yinnon, A. M., et al. (2010). Carriage rate of carbapenem-resistant Klebsiella pneumoniae in hospitalised patients during a national outbreak. Journal of Hospital Infection, 74, 344–349.  https://doi.org/10.1016/j.jhin.2009.07.022.CrossRefPubMedPubMedCentralGoogle Scholar
  307. Wienholtz, N. H., Barut, A., & Nørskov-Lauritsen, N. (2017). Substitutions in PBP3 confer resistance to both ampicillin and extended-spectrum cephalosporins in Haemophilus parainfluenzae as revealed by site-directed mutagenesis and gene recombinants. Journal of Antimicrobial Chemotherapy, 72, 10–13.  https://doi.org/10.1093/jac/dkx157.CrossRefGoogle Scholar
  308. Willyard, C. (2017). The drug-resistant bacteria that pose the greatest health threats. Nature, 543, 15–15.  https://doi.org/10.1038/nature.2017.21550.CrossRefPubMedPubMedCentralGoogle Scholar
  309. Wilson, J., Elgohari, S., Livermore, D. M., et al. (2011). Trends among pathogens reported as causing bacteraemia in England, 2004–2008. Clinical Microbiology and Infection, 17, 451–458.  https://doi.org/10.1111/j.1469-0691.2010.03262.x.CrossRefPubMedPubMedCentralGoogle Scholar
  310. Wisplinghoff, H., Bischoff, T., Tallent, S. M., et al. (2004). Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases form a prospective nationwide surveillance study. Clinical Infectious Diseases, 39, 309–317.  https://doi.org/10.1086/421946.CrossRefPubMedPubMedCentralGoogle Scholar
  311. Witherden, E. A., Bajanca-Lavado, M. P., Tristram, S. G., & Nunes, A. (2014). Role of inter-species recombination of the ftsI gene in the dissemination of altered penicillin-binding-protein-3-mediated resistance in Haemophilus influenzae and Haemophilus haemolyticus. Journal of Antimicrobial Chemotherapy, 69, 1501–1509.  https://doi.org/10.1093/jac/dku022.CrossRefPubMedPubMedCentralGoogle Scholar
  312. World Health Organization. (2001). WHO global strategy for containment of antimicrobial strategy for containment of antimicrobial resistance. http://apps.who.int/iris/bitstream/handle/10665/66860/WHO_CDS_CSR_DRS_2001.2.pdf;jsessionid=AD206178CD4315A7685B51E73FAA2B0B?sequence=1. Accessed 22 May 2018.
  313. World Health Organization. (2017). WHO|Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. In WHO. http://www.who.int/medicines/publications/global-priority-list-antibiotic-resistant-bacteria/en/. Accessed 22 May 2018.
  314. Wright, L. L., Turton, J. F., Hopkins, K. L., et al. (2015). Genetic environment of metallo-β-lactamase genes in Pseudomonas aeruginosa isolates from the UK. Journal of Antimicrobial Chemotherapy, 70, 3250–3258.  https://doi.org/10.1093/jac/dkv263.CrossRefPubMedPubMedCentralGoogle Scholar
  315. Xavier, D. E., Pico, R. C., Girardello, R., et al. (2010). Efflux pumps expression and its association with porin down-regulation and beta-lactamase production among Pseudomonas aeruginosa causing bloodstream infections in Brazil. BMC Microbiology, 10, 217.  https://doi.org/10.1186/1471-2180-10-217.CrossRefPubMedPubMedCentralGoogle Scholar
  316. Xiong, J., Alexander, D. C., Jennifer, H. M., et al. (2013). Complete sequence of pOZ176, a 500-kilobase incp-2 plasmid encoding imp-9-mediated carbapenem resistance, from outbreak isolate Pseudomonas aeruginosa 96. Antimicrobial Agents and Chemotherapy, 57, 3775–3782.  https://doi.org/10.1128/AAC.00423-13.CrossRefPubMedPubMedCentralGoogle Scholar
  317. Yahia, H. B., Chairat, S., Hamdi, N., et al. (2018). Antimicrobial resistance and genetic lineages of faecal enterococci of wild birds: Emergence of vanA and vanB2 harboring Enterococcus faecalis. International Journal of Antimicrobial Agents, pii: S0924-8579, 30136–30135.  https://doi.org/10.1016/j.ijantimicag.2018.05.005.CrossRefGoogle Scholar
  318. Yamamoto, M., & Pop-Vicas, A. E. (2014). Treatment for infections with carbapenem-resistant Enterobacteriaceae: What options do we still have? Crit. Care, 18, 229.Google Scholar
  319. Yang, Y., Chen, J., Lin, D., et al. (2017). Prevalence and drug resistance characteristics of carbapenem-resistant Enterobacteriaceae in Hangzhou, China. Frontiers of Medicine, 1–7.  https://doi.org/10.1007/s11684-017-0529-4.PubMedCrossRefPubMedCentralGoogle Scholar
  320. Yigit, H., Queenan, A. M., Anderson, G. J., et al. (2001). Novel carbapenem-hydrolyzing beta-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrobial Agents and Chemotherapy, 45, 1151–1161.  https://doi.org/10.1128/AAC.45.4.1151-1161.2001.CrossRefPubMedPubMedCentralGoogle Scholar
  321. Yonezawa, H., Osaki, T., Hanawa, T., et al. (2013). Impact of Helicobacter pylori biofilm formation on clarithromycin susceptibility and generation of resistance mutations. PLoS One, 8, e73301.  https://doi.org/10.1371/journal.pone.0073301.CrossRefPubMedPubMedCentralGoogle Scholar
  322. Yonezawa, H., Osaki, T., & Kamiya, S. (2015). Biofilm formation by Helicobacter pylori and its involvement for antibiotic resistance. BioMed Research International, 2015, 1–9.  https://doi.org/10.1155/2015/914791.CrossRefGoogle Scholar
  323. Yoon, E. J., Chabane, Y. N., Goussard, S., et al. (2015). Contribution of resistance-nodulation-cell division efflux systems to antibiotic resistance and biofilm formation in Acinetobacter baumannii. MBio, 6, 309–315.  https://doi.org/10.1128/mBio.00309-15.CrossRefGoogle Scholar
  324. Zaidi, M. B., McDermott, P. F., Campos, F. D., et al. (2012). Antimicrobial-Resistant Campylobacter in the Food Chain in Mexico. Foodborne Pathogens and Disease, 9, 841–847.  https://doi.org/10.1089/fpd.2012.1127.CrossRefPubMedPubMedCentralGoogle Scholar
  325. Zavascki, A. P., Gaspareto, P. B., Martins, A. F., et al. (2005). Outbreak of carbapenem-resistant Pseudomonas aeruginosa producing SPM-1 metallo-β-lactamase in a teaching hospital in southern Brazil. Journal of Antimicrobial Chemotherapy, 56, 1148–1151.  https://doi.org/10.1093/jac/dki390.CrossRefPubMedPubMedCentralGoogle Scholar
  326. Zhao, Z., Xu, X., Liu, M., et al. (2014). Fecal carriage of carbapenem-resistant Enterobacteriaceae in a Chinese university hospital. American Journal of Infection Control, 42, e61–e64.  https://doi.org/10.1016/j.ajic.2014.01.024.CrossRefPubMedPubMedCentralGoogle Scholar
  327. Zhou, X., Liu, J., Zhang, Z., Liu, Y., Wang, Y., & Liu, Y. (2016). Molecular characteristics of penicillin-binding protein 2b, 2x and 1a sequences in Streptococcus pneumoniae isolates causing invasive diseases among children in Northeast China. European Journal of Clinical Microbiology & Infectious Diseases, 35, 633–645.  https://doi.org/10.1007/s10096-016-2582-3.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Verena Kohler
    • 1
  • Ankita Vaishampayan
    • 2
  • Elisabeth Grohmann
    • 2
    Email author
  1. 1.Department of Molecular Biosciences, The Wenner-Gren InstituteStockholm UniversityStockholmSweden
  2. 2.Life Sciences and TechnologyBeuth University of Applied Sciences BerlinBerlinGermany

Personalised recommendations