Combination of Drugs: An Effective Approach for Enhancing the Efficacy of Antibiotics to Combat Drug Resistance

  • Mohd Sajjad Ahmad Khan


Currently available antibiotics have been effective in treating infectious diseases; however, the development of resistance to these drugs has led to the emergence of new and the re-emergence of old, infectious diseases. Therefore, newer antibiotic approaches with mechanistic differences are needed to combat antimicrobial resistance. Combining antibiotics is an encouraging strategy for increasing treatment efficacy and for controlling resistance evolution. This approach may include the combination of one antibiotic with another antibiotic and the development of adjuvants that either directly target resistance mechanisms, like inhibition of β-lactamase enzymes, or indirectly target resistance by interrupting the bacterial signaling pathways, such as two-component systems. Other natural products, like essential oils, plant extracts, and nanoparticles, can also be combined synergistically with antibiotics. The aim of this chapter is to highlight the strategy of treating infections with arrays of drugs rather than discrete drugs. We have addressed here three categories of approaches being used in combination therapy: the inhibition of targets in different pathways, the inhibition of distinct nodes in the same pathway, and the inhibition of the same target in different ways. Here, we have described the most recent developments toward combination therapies for the treatment of infectious diseases caused by multidrug-resistant bacteria.


Antibiotic Combination therapy Drug resistance Synergy 



We acknowledge the Department of Scientific Research, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia, for financial support in completing this work.


  1. Adikwu, M., Jackson, C., & Esimone, C. (2010). Evaluation of in vitro antimicrobial effect of combinations of erythromycin and Euphorbia hirta leaf extract against Staphylococcus aureus. Research in Pharmaceutical Biotechnology, 2, 22–24.Google Scholar
  2. Adwan, G., Abu-Shanab, B., & Adwan, K. (2010). Antibacterial activities of some plant extracts alone and in combination with different antimicrobials against multidrug-resistant Pseudomonas aeruginosa strains. Asian Pacific Journal of Tropical Medicine, 1, 266–269.CrossRefGoogle Scholar
  3. Aggarwal, V. K., Higuera, C., Deirmengian, G., et al. (2013). Swab cultures are not as effective as tissue cultures for diagnosis of periprosthetic joint infection. Clinical Orthopaedics, 471, 3196–3203.CrossRefGoogle Scholar
  4. Ahmed, Z., Khan, S. S., Khan, M., et al. (2009). Synergistic effect of Salvadora persica extracts, tetracycline and penicillin against Staphylococcus aureus. African Journal of Basic and Applied Sciences, 2, 25–29.Google Scholar
  5. Ahmed, Z., Khan, S. S., & Khan, M. (2013). In vitro trials of some antimicrobial combinations against Staphylococcus aureus and Pseudomonas aeruginosa. Saudi Journal of Biological Sciences, 20, 79–83.PubMedCrossRefPubMedCentralGoogle Scholar
  6. Allahverdiyev, A. M., Kon, K. V., Abamor, E. S., et al. (2011). Coping with antibiotic resistance: Combining nanoparticles with antibiotics and other antimicrobial agents. Expert Review of Anti-Infective Therapy, 9, 1035–1052.PubMedCrossRefPubMedCentralGoogle Scholar
  7. Ball, P. (2007). The clinical development and launch of amoxicillin/ clavulanate for the treatment of a range of community-acquired infections. International Journal of Antimicrobial Agents, 30(Suppl. 2), S113–S117.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Barekzi, N. A., Felts, A. G., Poelstra, K. A., et al. (2002). Locally delivered polyclonal antibodies potentiate intravenous antibiotic efficacy against gram negative infections. Pharmaceutical Research, 19, 1801–1807.PubMedCrossRefPubMedCentralGoogle Scholar
  9. Bollenbach, T. (2015). Antimicrobial interactions: Mechanisms and implications for drug discovery and resistance evolution. Current Opinion in Microbiology, 27, 1–9.PubMedCrossRefPubMedCentralGoogle Scholar
  10. Bollenbach, T., Quan, S., Chait, R., et al. (2009). Non-optimal microbial response to antibiotics underlies suppressive drug interactions. Cell, 139, 707–718.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Chaloupka, K., Malam, Y., & Seifalian, A. M. (2010). Nanosilver as a new generation of nanoproduct in biomedical applications. Trends in Biotechnology, 28, 580–588.PubMedCrossRefPubMedCentralGoogle Scholar
  12. Chamundeeswari, M., Sobhana, S. S., Jacob, J. P., et al. (2010). Preparation, characterization and evaluation of a biopolymeric gold nanocomposite with antimicrobial activity. Biotechnology and Applied Biochemistry, 55, 29–35.PubMedCrossRefPubMedCentralGoogle Scholar
  13. Chao, S., Young, G., Oberg, C., et al. (2008). Inhibition of methicillin-resistant Staphylococcus aureus (MRSA) by essential oils. Flavour and Fragrance Journal, 23, 444–449.CrossRefGoogle Scholar
  14. Chen, F., Shi, Z., Neoh, K. G., et al. (2009). Antioxidant and antibacterial activities of eugenol and carvacrol-grafted chitosan nanoparticles. Biotechnology and Bioengineering, 104, 30–39.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Drawz, S. M., Papp-Wallace, K. M., & Bonomo, R. A. (2014). New β-lactamase inhibitors: A therapeutic renaissance in an MDR world. Antimicrobial Agents and Chemotherapy, 58, 1835–1846.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Ejim, L., Farha, M. A., Falconer, S. B., et al. (2011). Combinations of antibiotics and nonantibiotic drugs enhance antimicrobial efficacy. Nature Chemical Biology, 7, 348–350.PubMedCrossRefPubMedCentralGoogle Scholar
  17. Fair, R. J., & Tor, Y. (2014). Antibiotics and bacterial resistance in the 21st century. Perspectives in Medicinal Chemistry, 6, 25–64.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Fayaz, A. M., Balaji, K., Girilal, M., et al. (2009). Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: A study against gram-positive and gram-negative bacteria. Nanomedicine, 6, 103–109.PubMedCrossRefPubMedCentralGoogle Scholar
  19. Fischbach, M. A. (2011). Combination therapies for combating antimicrobial resistance. Current Opinion in Microbiology, 14, 519–523.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Ghannad, M. S., & Mohammadi, A. (2012). Bacteriophage: Time to re-evaluate the potential of phage therapy as a promising agent to control multidrug-resistant bacteria. Iranian Journal of Basic Medical Sciences, 15, 693–701.Google Scholar
  21. Goldberg, D. E., Siliciano, R. F., & Jacobs, W. R., Jr. (2012). Outwitting evolution: Fighting drug resistant TB, malaria, and HIV. Cell, 148, 1271–1283.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Gu, H., Ho, P. L., Tong, E., et al. (2003). Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Letters, 3, 1261–1263.CrossRefGoogle Scholar
  23. Hagihara, M., Crandon, J. L., & Nicolau, D. P. (2012). The efficacy and safety of antibiotic combination therapy for infections caused by gram-positive and gram negative organisms. Expert Opinion on Drug Safety, 11, 221–233.PubMedCrossRefGoogle Scholar
  24. Hamoud, R., Zimmermann, S., Reichling, J., et al. (2014). Synergistic interactions in two drug and three-drug combinations (thymol, EDTA and vancomycin) against multi drug resistant bacteria including E. coli. Phytomedicine, 21, 443–447.PubMedCrossRefGoogle Scholar
  25. Hasper, H. E., Kramer, N. E., Smith, J. L., et al. (2006). An alternative bactericidal mechanism of action for l antibiotic peptides that target lipid II. Science, 313, 1636–1637.PubMedCrossRefPubMedCentralGoogle Scholar
  26. Hegreness, M., Shoresh, N., Damian, D., et al. (2008). Accelerated evolution of resistance in multidrug environments. Proceedings of the National Academy of Sciences of the United States of America, 105, 13977–13981.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Hemaiswarya, S., Kruthiventi, A. K., & Doble, M. (2008). Synergism between natural products and antibiotics against infectious diseases. Phytomedicine, 15, 639–652.PubMedCrossRefPubMedCentralGoogle Scholar
  28. Hoiby, N., Bjarnsholt, T., Givskov, M., et al. (2010). Antibiotic resistance of bacterial biofilms. International Journal of Antimicrobial Agents, 35, 322–332.PubMedCrossRefPubMedCentralGoogle Scholar
  29. Hu, Y., Du, Y., Wang, X., et al. (2009). Self-aggregation of water-soluble chitosan and solubilization of thymol as an antimicrobial agent. Journal of Biomedical Materials Research. Part A, 90, 874–881.PubMedCrossRefPubMedCentralGoogle Scholar
  30. Kalan, L., & Wright, G. D. (2011). Antibiotic adjuvants: Multicomponent anti-infective strategies. Expert Reviews in Molecular Medicine, 13, e5.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Kalle, A. M., & Rizvi, A. (2011). Inhibition of bacterial multidrug resistance by celecoxib, a cyclooxygenase-2 inhibitor. Antimicrobial Agents and Chemotherapy, 55, 439–442.PubMedCrossRefPubMedCentralGoogle Scholar
  32. Khameneh, B., Diab, R., Ghazvini, K., et al. (2016). Breakthroughs in bacterial resistance mechanisms and the potential ways to combat them. Microbial Pathogenesis, 95, 32–42.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Khan, M. S. A., & Ahmad, I. (2011). Antifungal activity of essential oils and their synergy with fluconazole against drug resistant strains of Aspergillus fumigatus and Trichophyton rubrum. Applied Microbiology and Biotechnology, 90, 1083–1094.PubMedCrossRefPubMedCentralGoogle Scholar
  34. Khan, M. S. A., & Ahmad, I. (2013). In vitro antifungal activity of oil of Cymbopogon citratus and citral alone and in combination with fluconazole against azole-resistant strains of Aspergillus fumigatus and Trichophyton rubrum. Pharmacognosy Communications, 3, 29–34.Google Scholar
  35. Khan, M. S. A., Malik, A., & Ahmad, I. (2012). Anti-candidal activity of essential oils alone and in combination with amphotericin B and fluconazole against multi-drug resistant isolates of Candida albicans. Medical Mycology, 50, 33–42.PubMedCrossRefPubMedCentralGoogle Scholar
  36. Lazar, V., Singh, G. P., Spohn, R., et al. (2013). Bacterial evolution of antibiotic hypersensitivity. Molecular Systems Biology, 9, 700. Scholar
  37. Lennox, J. L., DeJesus, E., Lazzarin, A., et al. (2009). Safety and efficacy of raltegravir-based versus efavirenz-based combination therapy in treatment-naive patients with HIV-1 infection: A multicentre, double-blind randomised controlled trial. Lancet, 374, 796–806.PubMedCrossRefPubMedCentralGoogle Scholar
  38. Lewis, K. (2005). Persister cells and the riddle of biofilm survival. Biochemistry Biokhim, 70, 267–274.CrossRefGoogle Scholar
  39. Li, P., Li, J., Wu, C., et al. (2005). Synergistic antibacterial effects of β-lactam antibiotic combined with silver nanoparticles. Nanotechnology, 16, 1912–1917.CrossRefGoogle Scholar
  40. Lomovskaya, O., Warren, M. S., Lee, A., et al. (2001). Identification and characterization of inhibitors of multidrug resistance efflux pumps in Pseudomonas aeruginosa: Novel agents for combination therapy. Antimicrobial Agents and Chemotherapy, 45, 105–116.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Marculescu, C. E., & Cantey, J. R. (2008). Polymicrobial prosthetic joint infections: Risk factors and outcome. Clinical Orthopaedics, 466, 1397–1404.CrossRefGoogle Scholar
  42. Markoishvili, K., Tsitlanadze, G., Katsarava, R., et al. (2002). A novel sustained-release matrix based on biodegradable poly(ester amide)s and impregnated with bacteriophages and an antibiotic shows promise in management of infected venous stasis ulcers and other poorly healing wounds. International Journal of Dermatology, 41, 453–458.PubMedCrossRefPubMedCentralGoogle Scholar
  43. McDonnell, G., & Russell, A. D. (1999). Antiseptics and disinfectants: Activity, action, and resistance. Clinical Microbiology Reviews, 12, 147–179.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Miguel, M. G. (2010). Antioxidant and anti-inflammatory activities of essential oils: A short review. Molecules, 15, 9252–9287.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Mitchison, D., & Davies, G. (2012). The chemotherapy of tuberculosis: Past, present and future. The International Journal of Tuberculosis and Lung Disease, 16, 724–732.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Moran, E., Masters, S., Berendt, A. R., et al. (2007). Guiding empirical antibiotic therapy in orthopaedics: The microbiology of prosthetic joint infection managed by debridement, irrigation and prosthesis retention. The Journal of Infection, 55, 1–7.PubMedCrossRefPubMedCentralGoogle Scholar
  47. Muller, G., & Kramer, A. (2008). Biocompatibility index of antiseptic agents by parallel assessment of antimicrobial activity and cellular cytotoxicity. The Journal of Antimicrobial Chemotherapy, 61, 1281–1287.PubMedCrossRefPubMedCentralGoogle Scholar
  48. Navare, K. J., & Prabhune, A. (2013). A biosurfactant-sophorolipid acts in synergy with antibiotics to enhance their efficiency. BioMed Research International, 2013, 1–8. Scholar
  49. Payne, D. J., Gwynn, M. N., Holmes, D. J., et al. (2007). Drugs for bad bugs: Confronting the challenges of antibacterial discovery. Nature Reviews. Drug Discovery, 6, 29–40.PubMedCrossRefPubMedCentralGoogle Scholar
  50. Pena-Miller, R., Laehnemann, D., Jansen, G., et al. (2013). When the most potent combination of antibiotics selects for the greatest bacterial load: The smile–frown transition. PLoS Biology, 11, e1001540.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Petty, N. K., Evans, T. J., Fineran, P. C., et al. (2007). Biotechnological exploitation of bacteriophage research. Trends in Biotechnology, 25, 7–15.PubMedCrossRefPubMedCentralGoogle Scholar
  52. Read, A. F., & Huijben, S. (2009). Evolutionary biology and the avoidance of antimicrobial resistance. Evolutionary Applications, 2, 40–51.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Richman, D. D. (2001). HIV chemotherapy. Nature, 410, 995–1001.PubMedCrossRefPubMedCentralGoogle Scholar
  54. Roemer, T., Schneider, T., & Pinho, M. G. (2013). Auxiliary factors: A chink in the armor of MRSA resistance to β-lactam antibiotics. Current Opinion in Microbiology, 16, 538–548.PubMedCrossRefPubMedCentralGoogle Scholar
  55. Roy, A. S., Parveen, A., Koppalkar, A. R., et al. (2010). Effect of nano-titanium dioxide with different antibiotics against methicillin-resistant Staphylococcus aureus. Journal of Biomaterials and Nanobiotechnology, 1, 37–41.CrossRefGoogle Scholar
  56. Sadlon, A. E., & Lamson, D. W. (2010). Immune-modifying and antimicrobial effects of eucalyptus oil and simple inhalation devices. Alternative Medicine Review, 15, 33–47.PubMedPubMedCentralGoogle Scholar
  57. Silva, N. C. C., & Fernandes, A., Jr. (2010). Biological properties of medicinal plants: A review of their antimicrobial activity. Journal of Venomous Animals and Toxins Including Tropical Diseases, 16, 402–413.CrossRefGoogle Scholar
  58. Smith, J. K., Moshref, A. R., Jennings, J. A., et al. (2013). Chitosan sponges for local synergistic infection therapy: A pilot study. Clinical Orthopaedics, 471, 3158–3164.CrossRefGoogle Scholar
  59. Souto de Oliveira, S. M., Falcao-Silva, V. S., Siqueira-Junior, J. P., et al. (2011). Modulation of drug resistance in Staphylococcus aureus by extract of mango (Mangifera indica) peel. Brazilian Journal of Pharmacognosy, 21, 190–193.CrossRefGoogle Scholar
  60. Tamma, P. D., Cosgrove, S. E., & Maragakis, L. L. (2012). Combination therapy for treatment of infections with gram-negative bacteria. Clinical Microbiology Reviews, 25, 450–470.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Thati, V., Roy, A. S., Prasad, A. M. V. N., Shivannavar, C. T., et al. (2010). Nanostructured zinc oxide enhances the activity of antibiotics against Staphylococcus aureus. Journal of Bioscience and Technology, 1, 64–69.Google Scholar
  62. Toroglu, S. (2011). In-vitro antimicrobial activity and synergistic/antagonistic effect of interactions between antibiotics and some spice essential oils. Journal of Environmental Biology, 32, 23–29.PubMedGoogle Scholar
  63. Walsh, C. (2000). Molecular mechanisms that confer antibacterial drug resistance. Nature, 406, 775–781.PubMedCrossRefGoogle Scholar
  64. Wood, K., Nishida, S., Ed, S., et al. (2012). Mechanism-independent method for predicting response to multidrug combinations in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 109, 12254–12259.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Worthington, R. J., & Melander, C. (2013a). Combination approaches to combat multi drug resistant bacteria. Trends in Biotechnology, 31, 177–184.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Worthington, R. J., & Melander, C. (2013b). Overcoming resistance to β-lactam antibiotics. The Journal of Organic Chemistry, 78, 4207–4213.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Wu, P., & Grainger, D. W. (2006). Drug/device combinations for local drug therapies and infection prophylaxis. Biomaterials, 27, 24500–22467.Google Scholar
  68. Yeh, P. J., Hegreness, M. J., Aiden, A. P., et al. (2009). Drug interactions and the evolution of antibiotic resistance. Nature Reviews. Microbiology, 7, 460–466.PubMedPubMedCentralCrossRefGoogle Scholar
  69. Zaman, S. B., Hussain, M. A., Nye, R., et al. (2017). A review on antibiotic resistance: Alarm bells are ringing. Cureus, 9, e1403.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Mohd Sajjad Ahmad Khan
    • 1
  1. 1.Department of Basic Sciences, Biology Unit, Health TrackImam Abdulrahman Bin Faisal UniversityDammamKingdom of Saudi Arabia

Personalised recommendations