Advertisement

Actinomycetes as Continued Source of New Antibacterial Leads

  • Iqbal Ahmad
  • Abdullah Safar AlthubianiEmail author
  • Muzammil Shareif Dar
  • Samreen
  • Faizan Abul Qais
  • Hussein Hasan Abulreesh
  • Majid Abdullah Bamaga
  • Saleh Bakheet Al-Ghamdi
  • Fatimah Alshehrei
Chapter

Abstract

Early antibiotic discovery program has witnessed significant role of mainly Streptomyces in antibiotic/drug discovery program. Due to various constraints, both academic and industry levels, the discovery of new antibiotics with novel mode of action is drastically slowed down in the last three decades. Rapid development and spread of multidrug-resistant bacteria globally have reduced the utility and effectiveness of old antibiotics. Therefore, the discovery of novel antibacterial compounds is urgently needed to combat antimicrobial resistance. However, natural product-based academic research could prove to be a sustained mine of novel antimicrobial leads. According to an estimate among the bioactive compounds that have been obtained so far from microbes, 45% are produced by actinomycetes, 38% by fungi, and 17% by unicellular eubacteria. This has become possible because of great diversity of actinomycetes in different habitat and their extraordinary capacity to synthesize new antibiotics. The development in the screening strategies and the use of modern biochemical and molecular approaches have made possible to detect new compounds. In this chapter, we have focused on general characteristics of soil and marine actinomycetes and improved screening strategies adapted by various workers. A recent update is also provided to highlight the role of actinomycetes as the continued source of novel antibacterial lead compound and their future prospects.

Keywords

Actinomycetes Antibacterial Antibiotics Screening strategy Antibiotic resistance 

References

  1. Abdelmohsen, U. R., Pimentel-Elardo, S. M., Hanora, A., Radwan, M., Abou-El-Ela, S. H., Ahmed, S., & Hentschel, U. (2010). Isolation, phylogenetic analysis and anti-infective activity screening of marine sponge-associated actinomycetes. Marine Drugs, 8(3), 399–412.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Abdelmohsen, U. R., Grkovic, T., Balasubramanian, S., Kamel, M. S., Quinn, R. J., & Hentschel, U. (2015). Elicitation of secondary metabolism in actinomycetes. Biotechnology Advances, 33(6), 798–811.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Ahmed, I. K., Eltahir, H. B., & Humodi, A. S. (2016). Streptomyces: Isolation, optimization of culture conditions and extraction of secondary metabolites. International Current Pharmaceutical Journal, 5, 27–32.CrossRefGoogle Scholar
  4. Alexander, M. (1986). Introduction to soil microbiology-2. Ithaca: Cornell University.Google Scholar
  5. Alharbi, S. A., Arunachalam, C., Murugan, A. M., & Wainwright, M. (2012). Antibacterial activity of actinomycetes isolated from terrestrial soil of Saudi Arabia. Journal of Food, Agriculture & Environment, 10(2), 1093–1097.Google Scholar
  6. Alhede, M., Jensen, P. Ø., Givskov, M., & Bjarnsholt, T. (2009). Biofilm of medical importance. Biotechnology-Volume XII: Fundamentals in Biotechnology, 11, 182.Google Scholar
  7. Aminov, R. I. (2010). A brief history of the antibiotic era: Lessons learned and challenges for the future. Frontiers in Microbiology, 1, 134.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Anderson, A. S., & Wellington, E. M. (2001). The taxonomy of Streptomyces and related genera. International Journal of Systematic and Evolutionary Microbiology, 51(3), 797–814.PubMedCrossRefPubMedCentralGoogle Scholar
  9. Ashokvardhan, T., Rajithasri, A. B., Prathyusha, P., & Satyaprasad, K. (2014). Actinomycetes from Capsicum annuum L. rhizosphere soil have the biocontrol potential against pathogenic fungi. International Journal of Current Microbiology and Applied Sciences, 3(4), 894–903.Google Scholar
  10. Atta, H. M., & Ahmad, M. S. (2009). Antimycin-A antibiotic biosynthesis produced by Streptomyces Sp. AZ-AR-262: Taxonomy, fermentation, purification and biological activities. Australian Journal of Basic and Applied Sciences, 3(1), 126–135.Google Scholar
  11. Baltz, R. H. (2008). Renaissance in antibacterial discovery from actinomycetes. Current Opinion in Pharmacology, 8(5), 557–563.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bentley, S. D., Chater, K. F., Cerdeño-Tárraga, A. M., Challis, G. L., Thomson, N. R., James, K. D., Harris, D. E., Quail, M. A., Kieser, H., Harper, D., & Bateman, A. (2002). Complete genome sequence of the model actinomycete Streptomyces coelicolor A3 (2). Nature, 417(6885), 141.PubMedCrossRefGoogle Scholar
  13. Bérdy, J. (2005). Bioactive microbial metabolites. The Journal of Antibiotics, 58(1), 1.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Betancur, L. A., Naranjo-Gaybor, S. J., Vinchira-Villarraga, D. M., Moreno-Sarmiento, N. C., Maldonado, L. A., Suarez-Moreno, Z. R., Acosta-González, A., Padilla-Gonzalez, G. F., Puyana, M., Castellanos, L., & Ramos, F. A. (2017). Marine Actinobacteria as a source of compounds for phytopathogen control: An integrative metabolic-profiling/bioactivity and taxonomical approach. PLoS One, 12(2), e0170148.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Böhringer, N., Fisch, K. M., Schillo, D., Bara, R., Hertzer, C., Grein, F., Eisenbarth, J. H., Kaligis, F., Schneider, T., Wägele, H., & König, G. M. (2017). Antimicrobial potential of bacteria associated with marine sea slugs from North Sulawesi, Indonesia. Frontiers in Microbiology, 8, 1092.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Brackman, G., Risseeuw, M., Celen, S., Cos, P., Maes, L., Nelis, H. J., Van Calenbergh, S., & Coenye, T. (2012). Synthesis and evaluation of the quorum sensing inhibitory effect of substituted triazolyldihydrofuranones. Bioorganic & Medicinal Chemistry, 20(15), 4737–4743.CrossRefGoogle Scholar
  17. Bredholdt, H., Galatenko, O. A., Engelhardt, K., Fjærvik, E., Terekhova, L. P., & Zotchev, S. B. (2007). Rare actinomycete bacteria from the shallow water sediments of the Trondheim fjord, Norway: Isolation, diversity and biological activity. Environmental Microbiology, 9(11), 2756–2764.PubMedCrossRefPubMedCentralGoogle Scholar
  18. Brown, E. D., & Wright, G. D. (2005). New targets and screening approaches in antimicrobial drug discovery. Chemical Reviews, 105(2), 759–774.PubMedCrossRefPubMedCentralGoogle Scholar
  19. Butler, M. S., Blaskovich, M. A., & Cooper, M. A. (2013). Antibiotics in the clinical pipeline in 2013. The Journal of Antibiotics, 66(10), 571.PubMedCrossRefPubMedCentralGoogle Scholar
  20. Chaudhary, H. S., Soni, B., Shrivastava, A. R., & Shrivastava, S. (2013). Diversity and versatility of actinomycetes and its role in antibiotic production. Journal of Applied Pharmaceutical Science, 3(8), S83–S94.Google Scholar
  21. Chu, H., Fierer, N., Lauber, C. L., Caporaso, J. G., Knight, R., & Grogan, P. (2010). Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes. Environmental Microbiology, 12(11), 2998–3006.PubMedCrossRefPubMedCentralGoogle Scholar
  22. D’Onofrio, A., Crawford, J. M., Stewart, E. J., Witt, K., Gavrish, E., Epstein, S., Clardy, J., & Lewis, K. (2010). Siderophores from neighboring organisms promote the growth of uncultured bacteria. Chemistry & Biology, 17(3), 254–264.CrossRefGoogle Scholar
  23. Das, S., Lyla, P. S., & Khan, S. A. (2006). Marine microbial diversity and ecology: Importance and future perspectives. Current Science, 25, 1325–1335.Google Scholar
  24. Dhakal, D., Chaudhary, A. K., Yi, J. S., Pokhrel, A. R., Shrestha, B., Parajuli, P., et al. (2016). Enhanced production of nargenicin A1 and creation of a novel derivative using a synthetic biology platform. Applied Microbiology and Biotechnology, 100, 9917–9931.  https://doi.org/10.1007/s00253-016-7705-3.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Dhakal, D., Pokhrel, A. R., Shrestha, B., & Sohng, J. K. (2017). Marine rare Actinobacteria: Isolation, characterization, and strategies for harnessing bioactive compounds. Frontiers in Microbiology, 8, 1106.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Duncan, K. R., Crüsemann, M., Lechner, A., Sarkar, A., Li, J., Ziemert, N., et al. (2015a). Molecular networking and pattern-based genome mining improves discovery of biosynthetic gene clusters and their products from Salinispora species. Chemistry & Biology, 22, 460–471.  https://doi.org/10.1016/j.chembiol.2015.03.010.CrossRefGoogle Scholar
  27. Duncan, K. R., Haltli, B., Gill, K. A., Correa, H., Berrué, F., & Kerr, R. G. (2015b). Exploring the diversity and metabolic potential of actinomycetes from temperate marine sediments from Newfoundland, Canada. Journal of Industrial Microbiology & Biotechnology, 42(1), 57–72.CrossRefGoogle Scholar
  28. Fedorenko, V., Genilloud, O., Horbal, L., Marcone, G. L., Marinelli, F., Paitan, Y., & Ron, E. Z. (2015). Antibacterial discovery and development: From gene to product and back. BioMed Research International, 2015, 1–16.CrossRefGoogle Scholar
  29. Fuqua, C., Parsek, M. R., & Greenberg, E. P. (2001). Regulation of gene expression by cell-to-cell communication: Acyl-homoserine lactone quorum sensing. Annual Review of Genetics, 35(1), 439–468.PubMedCrossRefPubMedCentralGoogle Scholar
  30. Gibbons, S. M., & Gilbert, J. A. (2015). Microbial diversity—Exploration of natural ecosystems and microbiomes. Current Opinion in Genetics & Development, 35, 66–72.CrossRefGoogle Scholar
  31. Gos, F. M., Savi, D. C., Shaaban, K. A., Thorson, J. S., Aluizio, R., Possiede, Y. M., Rohr, J., & Glienke, C. (2017). Antibacterial activity of endophytic actinomycetes isolated from the medicinal plant Vochysia divergens (Pantanal, Brazil). Frontiers in Microbiology, 8, 1642.Google Scholar
  32. Hentzer, M., & Givskov, M. (2003). Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections. The Journal of Clinical Investigation, 112(9), 1300–1307.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Hopwood, D. A. (2007). Streptomyces in nature and medicine: The antibiotic makers. Oxford: Oxford University Press.Google Scholar
  34. Hozzein, W. N., Rabie, W., & Ali, M. I. (2011). Screening the Egyptian desert actinomycetes as candidates for new antimicrobial compounds and identification of a new desert Streptomyces strain. African Journal of Biotechnology, 10(12), 2295–2301.Google Scholar
  35. Hughes, D., & Karlén, A. (2014). Discovery and preclinical development of new antibiotics. Upsala Journal of Medical Sciences, 119(2), 162–169.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Husain, F. M., Ahmad, I., Khan, M. S., Ahmad, E., Tahseen, Q., Khan, M. S., & Alshabib, N. A. (2015). Sub-MICs of Mentha piperita essential oil and menthol inhibits AHL mediated quorum sensing and biofilm of Gram-negative bacteria. Frontiers in Microbiology, 6, 420.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Janaki, T., Nayak, B. K., & Ganesan, T. (2014). Different pre-treatment methods in selective isolation of actinomycetes from mangrove sediments of Ariyankuppam Back Water Estuary, Puducherry. International Journal of Advanced Research in Biological Sciences, 1, 154–163.Google Scholar
  38. Jensen, P. R., Gontang, E., Mafnas, C., Mincer, T. J., & Fenical, W. (2005). Culturable marine actinomycete diversity from tropical Pacific Ocean sediments. Environmental Microbiology, 7(7), 1039–1048.PubMedCrossRefPubMedCentralGoogle Scholar
  39. Jiang, Y., Li, Q., Chen, X., & Jiang, C. (2016). Isolation and cultivation methods of Actinobacteria. In Actinobacteria-basics and biotechnological applications. London: InTech.Google Scholar
  40. Jones, J. G. (1977). The effect of environmental factors on estimated viable and total populations of planktonic bacteria in lakes and experimental enclosures. Freshwater Biology, 7(1), 67–91.CrossRefGoogle Scholar
  41. Kalia, V. C. (2015). Quorum sensing vs quorum quenching: A battle with no end in sight. New Delhi: Springer.Google Scholar
  42. Kekuda, T. P., Shobha, K. S., & Onkarappa, R. (2010). Fascinating diversity and potent biological activities of actinomycete metabolites. Journal of Pharmacy Research, 3(2), 250–256.Google Scholar
  43. Khan, S. T., Komaki, H., Motohashi, K., Kozone, I., Mukai, A., Takagi, M., & Shin-ya, K. (2011). Streptomyces associated with a marine sponge Haliclona sp.; biosynthetic genes for secondary metabolites and products. Environmental Microbiology, 13(2), 391–403.PubMedCrossRefPubMedCentralGoogle Scholar
  44. Kim, E., Moore, B. S., & Yoon, Y. J. (2015). Reinvigorating natural product combinatorial biosynthesis with synthetic biology. Nature Chemical Biology, 11(9), 649.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Kiran, G. S., Ramasamy, P., Sekar, S., Hassan, S., Ninawe, A. S., & Selvin, J. (2018). Synthetic biology approaches: Towards sustainable exploitation of marine bioactive molecules. International Journal of Biological Macromolecules, 112, 1278–1288.CrossRefGoogle Scholar
  46. Kjer, J., Debbab, A., Aly, A. H., & Proksch, P. (2010). Methods for isolation of marine-derived endophytic fungi and their bioactive secondary products. Nature Protocols, 5(3), 479.PubMedCrossRefPubMedCentralGoogle Scholar
  47. Krishnaraj, M., & Mathivanan, V. P. (2014). Actinomycetes: Diversity, distribution, economic importance and their role in plant protection. Annual Review of Plant Pathology, 1, 269.Google Scholar
  48. Lam, K. S. (2006). Discovery of novel metabolites from marine actinomycetes. Current Opinion in Microbiology, 9(3), 245–251.PubMedCrossRefPubMedCentralGoogle Scholar
  49. Lertcanawanichakul, M., Pondet, K., & Kwantep, J. (2015). In vitro antimicrobial and antioxidant activities of bioactive compounds (secondary metabolites) extracted from Streptomyces lydicus A2. Journal of Applied Pharmaceutical Science, 5(2), 17–21.Google Scholar
  50. Li, Y., Li, Y., Li, Q., Gao, J., Wang, J., Luo, Y., Fan, X., & Gu, P. (2018). Biosynthetic and antimicrobial potential of actinobacteria isolated from bulrush rhizospheres habitat in Zhalong Wetland, China. Archives of Microbiology, 200(5), 695–705.PubMedCrossRefPubMedCentralGoogle Scholar
  51. Liu, X., Ashforth, E., Ren, B., Song, F., Dai, H., Liu, M., Wang, J., Xie, Q., & Zhang, L. (2010). Bioprospecting microbial natural product libraries from the marine environment for drug discovery. The Journal of Antibiotics, 63(8), 415.PubMedCrossRefPubMedCentralGoogle Scholar
  52. Liu, R., Li, X., & Lam, K. S. (2017). Combinatorial chemistry in drug discovery. Current Opinion in Chemical Biology, 38, 117–126.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Ludwig, W., Euzéby, J., Schumann, P., Busse, H. J., Trujillo, M. E., Kämpfer, P., & Whitman, W. B. (2015). Road map of the phylum Actinobacteria. In Bergey’s manual of systematics of archaea and bacteria (pp. 1–37).  https://doi.org/10.1002/9781118960608.bm00029.CrossRefGoogle Scholar
  54. Macagnan, D., Romeiro, R. D., de Souza, J. T., & Pomella, A. W. (2006). Isolation of actinomycetes and endospore-forming bacteria from the cacao pod surface and their antagonistic activity against the witches’ broom and black pod pathogens. Phytoparasitica, 34(2), 122–132.CrossRefGoogle Scholar
  55. Malve, H. (2016). Exploring the ocean for new drug developments: Marine pharmacology. Journal of Pharmacy & Bioallied Sciences, 8(2), 83.CrossRefGoogle Scholar
  56. Marmann, A., Aly, A. H., Lin, W., Wang, B., & Proksch, P. (2014). Co-cultivation—A powerful emerging tool for enhancing the chemical diversity of microorganisms. Marine Drugs, 12(2), 1043–1065.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Mason, M. G., Ball, A. S., Reeder, B. J., Silkstone, G., Nicholls, P., & Wilson, M. T. (2001). Extracellular heme peroxidases in actinomycetes: A case of mistaken identity. Applied and Environmental Microbiology, 67(10), 4512–4519.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Miao, L., Xu, J., Yao, Z., Jiang, Y., Zhou, H., Jiang, W., & Dong, K. (2017). The anti-quorum sensing activity and bioactive substance of a marine derived Streptomyces. Biotechnology & Biotechnological Equipment, 31(5), 1007–1015.CrossRefGoogle Scholar
  59. Nacke, H., Thürmer, A., Wollherr, A., Will, C., Hodac, L., Herold, N., Schöning, I., Schrumpf, M., & Daniel, R. (2011). Pyrosequencing-based assessment of bacterial community structure along different management types in German forest and grassland soils. PLoS One, 6(2), e17000.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Naikpatil, S. V., & Rathod, J. L. (2011). Selective isolation and antimicrobial activity of rare actinomycetes from mangrove sediment of Karwar. Journal of Ecobiotechnology, 3(10), 48–53.Google Scholar
  61. Naine, J. S., Nasimunislam, N., Vaishnavi, B., Mohanasrinivasan, V., & Devi, S. C. (2012). Isolation of soil Actinomycetes inhabiting Amirthi forest for the potential source of bioactive compounds. Asian Journal of Pharmaceutical and Clinical Research, 5, 189–192.Google Scholar
  62. Naine, S. J., Devi, C. S., & Mohanasrinivasan, V. (2015). Antimicrobial, Antioxidant and Cytotoxic Activity of MarineStreptomyces parvulus VITJS11 Crude Extract. Brazilian Archives of Biology and Technology 58(2), 198–207.Google Scholar
  63. Nandhini, S. U., & Selvam, M. M. (2013). Bioactive compounds produced by Streptomyces strain. International Journal of Pharmacy and Pharmaceutical Sciences, 5(1), 176–178.Google Scholar
  64. Newman, D. J., & Cragg, G. M. (2007). Natural products as sources of new drugs over the last 25 years. Journal of Natural Products, 70(3), 461–477.PubMedCrossRefPubMedCentralGoogle Scholar
  65. Ogunmwonyi, I. H., Mazomba, N., Mabinya, L., Ngwenya, E., Green, E., Akinpelu, D. A., Olaniran, A. O., & Okoh, A. I. (2010). In vitro time-kill studies of antibacterial agents from putative marine Streptomyces species isolated from the Nahoon beach, South Africa. African Journal of Pharmacy and Pharmacology, 4(12), 908–916.Google Scholar
  66. Okami, Y., Hotta, K., Good, M., Williams, S. T., & Mordarski, M. (1988). In M. Goodfellow, S. T. Williams, & M. Mordarski (Eds.), Actinomycetes in biotechnology (pp. 33–68). London: Academic Press.CrossRefGoogle Scholar
  67. Paul, E. A. (2014). Soil microbiology, ecology and biochemistry. London: Academic Press.Google Scholar
  68. Pompilio, A., Piccolomini, R., Picciani, C., D’Antonio, D., Savini, V., & Di Bonaventura, G. (2008). Factors associated with adherence to and biofilm formation on polystyrene by Stenotrophomonas maltophilia: The role of cell surface hydrophobicity and motility. FEMS Microbiology Letters, 287(1), 41–47.PubMedCrossRefPubMedCentralGoogle Scholar
  69. Qasim, S. Z. (1999). The Indian Ocean: Images and realities. New Delhi: Oxford and IBH Publishing Company.Google Scholar
  70. Ramesh, S., & Mathivanan, N. (2009). Screening of marine actinomycetes isolated from the Bay of Bengal, India for antimicrobial activity and industrial enzymes. World Journal of Microbiology and Biotechnology, 25(12), 2103–2111.CrossRefGoogle Scholar
  71. Rao, K. V. (2012). In–vitro antimicrobial activity of marine actinobacteria against multidrug resistance Staphylococcus aureus. Asian Pacific Journal of Tropical Biomedicine, 2(3), S1802–S1807.CrossRefGoogle Scholar
  72. Riedlinger, J., Reicke, A., Zähner, H. A., Krismer, B., Bull, A. T., Maldonado, L. A., Ward, A. C., Goodfellow, M., Bister, B., Bischoff, D., & SüSSMUTH, R. D. (2004). Abyssomicins, inhibitors of the para-aminobenzoic acid pathway produced by the marine Verrucosispora strain AB-18-032. The Journal of Antibiotics, 57(4), 271–279.PubMedCrossRefPubMedCentralGoogle Scholar
  73. Rumbaugh, K. P., & Kaufmann, G. F. (2012). Exploitation of host signaling pathways by microbial quorum sensing signals. Current Opinion in Microbiology, 15(2), 162–168.PubMedCrossRefPubMedCentralGoogle Scholar
  74. Saini, A., Aggarwal, N. K., Sharma, A., & Yadav, A. (2015). Actinomycetes: A source of lignocellulolytic enzymes. Enzyme Research, 2015, 1.  https://doi.org/10.1155/2015/279381.CrossRefGoogle Scholar
  75. Schulz, D., Beese, P., Ohlendorf, B., Erhard, A., Zinecker, H., Dorador, C., & Imhoff, J. F. (2011). Abenquines A–D: Aminoquinone derivatives produced by Streptomyces sp. strain DB634. The Journal of Antibiotics, 64(12), 763.PubMedCrossRefPubMedCentralGoogle Scholar
  76. Shade, A., Hogan, C. S., Klimowicz, A. K., Linske, M., McManus, P. S., & Handelsman, J. (2012). Culturing captures members of the soil rare biosphere. Environmental Microbiology, 14(9), 2247–2252.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Shah, A. M., Hussain, A., Mushtaq, S., Rather, M. A., Shah, A., Ahmad, Z., Khan, I. A., Bhat, K. A., & Hassan, Q. P. (2017). Antimicrobial investigation of selected soil actinomycetes isolated from unexplored regions of Kashmir Himalayas, India. Microbial Pathogenesis, 110, 93–99.PubMedCrossRefPubMedCentralGoogle Scholar
  78. Stach, J. E., Maldonado, L. A., Ward, A. C., Goodfellow, M., & Bull, A. T. (2003). New primers for the class Actinobacteria: Application to marine and terrestrial environments. Environmental Microbiology, 5(10), 828–841.PubMedCrossRefPubMedCentralGoogle Scholar
  79. Su, H., Shao, H., Zhang, K., & Li, G. (2016). Antibacterial metabolites from the actinomycete Streptomyces sp. P294. Journal of Microbiology, 54(2), 131–135.CrossRefGoogle Scholar
  80. Subramani, R., & Aalbersberg, W. (2012). Marine actinomycetes: An ongoing source of novel bioactive metabolites. Microbiological Research, 167(10), 571–580.PubMedCrossRefPubMedCentralGoogle Scholar
  81. Sun, W., Dai, S., Jiang, S., Wang, G., Liu, G., Wu, H., & Li, X. (2010). Culture-dependent and culture-independent diversity of Actinobacteria associated with the marine sponge Hymeniacidon perleve from the South China Sea. Antonie Van Leeuwenhoek, 98(1), 65–75.PubMedCrossRefPubMedCentralGoogle Scholar
  82. Sun, H., Liu, Z., Zhao, H., & Ang, E. L. (2015). Recent advances in combinatorial biosynthesis for drug discovery. Drug Design, Development and Therapy, 9, 823.PubMedPubMedCentralGoogle Scholar
  83. Sunagawa, S., Woodley, C. M., & Medina, M. (2010). Threatened corals provide underexplored microbial habitats. PLoS One, 5(3), e9554.PubMedPubMedCentralCrossRefGoogle Scholar
  84. Takasaka, N., Kaweewan, I., Ohnishi-Kameyama, M., & Kodani, S. (2017). Isolation of a new antibacterial peptide actinokineosin from Actinokineospora spheciospongiae based on genome mining. Letters in Applied Microbiology, 64(2), 150–157.PubMedCrossRefPubMedCentralGoogle Scholar
  85. Thenmozhi, M., & Kannabiran, K. (2010). Studies on isolation, classification and phylogenetic characterization of novel antifungal Streptomyces sp. VITSTK7 in India. Current Research Journal of Biological Sciences, 2(5), 306–312.Google Scholar
  86. Thornburg, C. C., Zabriskie, T. M., & McPhail, K. L. (2010). Deep-sea hydrothermal vents: Potential hot spots for natural products discovery? Journal of Natural Products, 73(3), 489–499.PubMedCrossRefPubMedCentralGoogle Scholar
  87. Tiwari, K., & Gupta, R. K. (2012). Rare actinomycetes: A potential storehouse for novel antibiotics. Critical Reviews in Biotechnology, 32(2), 108–132.PubMedCrossRefPubMedCentralGoogle Scholar
  88. Tsueng, G., Teisan, S., & Lam, K. S. (2008). Defined salt formulations for the growth of Salinispora tropica strain NPS21184 and the production of salinosporamide A (NPI-0052) and related analogs. Applied Microbiology and Biotechnology, 78(5), 827–832.PubMedCrossRefPubMedCentralGoogle Scholar
  89. Uzair, B., Firdous, N., Khan, B. A., Khan, S., Fatima, S., Kausar, R., & Bano, A. (2017). Isolation and characterization of antibiotic producing bacterial strains from red soil of Himalayan region of Pakistan. Pakistan Journal of Pharmaceutical Sciences, 30, 2393–2397.PubMedPubMedCentralGoogle Scholar
  90. van Duin, D., & Paterson, D. L. (2016). Multidrug-resistant bacteria in the community: Trends and lessons learned. Infectious Disease Clinics, 30(2), 377–390.PubMedPubMedCentralGoogle Scholar
  91. van Keulen, G., & Dyson, P. J. (2014). Production of specialized metabolites by Streptomyces coelicolor A3 (2). In Advances in applied microbiology (Vol. 89, pp. 217–266). London: Academic Press.Google Scholar
  92. Vartoukian, S. R., Palmer, R. M., & Wade, W. G. (2010). Strategies for culture of ‘unculturable’bacteria. FEMS Microbiology Letters, 309(1), 1–7.PubMedPubMedCentralGoogle Scholar
  93. Wahaab, F., & Subramaniam, K. (2018). Bioprospecting marine actinomycetes for multidrug-resistant pathogen control from Rameswaram coastal area, Tamil Nadu, India. Archives of Microbiology, 200(1), 57–71.PubMedCrossRefPubMedCentralGoogle Scholar
  94. Weber, T., & Kim, H. U. (2016). The secondary metabolite bioinformatics portal: Computational tools to facilitate synthetic biology of secondary metabolite production. Synthetic and Systems Biotechnology, 1, 69–79.  https://doi.org/10.1016/j.synbio.2015.12.002.CrossRefPubMedPubMedCentralGoogle Scholar
  95. Wei, W., Zhou, Y., Chen, F., Yan, X., Lai, Y., Wei, C., Chen, X., Xu, J., & Wang, X. (2018). Isolation, diversity, and antimicrobial and immunomodulatory activities of endophytic Actinobacteria from tea cultivars Zijuan and Yunkang-10 (Camellia sinensis var. assamica). Frontiers in Microbiology, 9, 1304.PubMedPubMedCentralCrossRefGoogle Scholar
  96. Williams, P. G. (2009). Panning for chemical gold: Marine bacteria as a source of new therapeutics. Trends in Biotechnology, 27(1), 45–52.PubMedCrossRefPubMedCentralGoogle Scholar
  97. Williams, S. T., & Cross, T. (1971). Chapter XI actinomycetes. In Methods in microbiology (Vol. 4, pp. 295–334). London: Academic Press.Google Scholar
  98. Wink, J., & Mohammadipanah, F. (2015). Actinobacteria from arid and desert habitats: Diversity and biological activity. Frontiers in Microbiology, 6, 541–516.Google Scholar
  99. Wohlleben, W., Mast, Y., Stegmann, E., & Ziemert, N. (2016). Antibiotic drug discovery. Microbial Biotechnology, 9(5), 541–548.PubMedPubMedCentralCrossRefGoogle Scholar
  100. Wu, H., Chen, W., Wang, G., Dai, S., Zhou, D., Zhao, H., Guo, Y., Ouyang, Y., & Li, X. (2012). Culture-dependent diversity of Actinobacteria associated with seagrass (Thalassia hemprichii). African Journal of Microbiology Research, 6(1), 87–94.Google Scholar
  101. Xiong, Z. Q., Wang, J. F., Hao, Y. Y., & Wang, Y. (2013). Recent advances in the discovery and development of marine microbial natural products. Marine Drugs, 11(3), 700–717.PubMedPubMedCentralCrossRefGoogle Scholar
  102. Yamamura, H., Hayakawa, M., & Iimura, Y. (2003). Application of sucrose-gradient centrifugation for selective isolation of Nocardia spp. from soil. Journal of Applied Microbiology, 95(4), 677–685.PubMedCrossRefPubMedCentralGoogle Scholar
  103. Yuan, L. J., Zhang, Y. Q., Yu, L. Y., Sun, C. H., Wei, Y. Z., Liu, H. Y., Li, W. J., & Zhang, Y. Q. (2010). Actinopolymorpha cephalotaxi sp. nov., a novel actinomycete isolated from rhizosphere soil of the plant Cephalotaxus fortunei. International Journal of Systematic and Evolutionary Microbiology, 60(1), 51–54.PubMedCrossRefPubMedCentralGoogle Scholar
  104. Zarins-Tutt, J. S., Barberi, T. T., Gao, H., Mearns-Spragg, A., Zhang, L., Newman, D. J., & Goss, R. J. (2016). Prospecting for new bacterial metabolites: A glossary of approaches for inducing, activating and upregulating the biosynthesis of bacterial cryptic or silent natural products. Natural Product Reports, 33(1), 54–72.PubMedCrossRefPubMedCentralGoogle Scholar
  105. Zhang, L., Yan, K., Zhang, Y., Huang, R., Bian, J., Zheng, C., Sun, H., Chen, Z., Sun, N., An, R., & Min, F. (2007). High-throughput synergy screening identifies microbial metabolites as combination agents for the treatment of fungal infections. Proceedings of the National Academy of Sciences, 104(11), 4606–4611.CrossRefGoogle Scholar
  106. Zhang, Y., Adnani, N., Braun, D. R., Ellis, G. A., Barns, K. J., Parker-Nance, S., Guzei, I. A., & Bugni, T. S. (2016). Micromonohalimanes A and B: Antibacterial halimane-type diterpenoids from a marine Micromonospora species. Journal of Natural Products, 79(11), 2968–2972.PubMedPubMedCentralCrossRefGoogle Scholar
  107. Ziemert, N., Lechner, A., Wietz, M., Millán-Aguiñaga, N., Chavarria, K. L., & Jensen, P. R. (2014). Diversity and evolution of secondary metabolism in the marine actinomycete genus Salinispora. Proceedings of the National Academy of Sciences of the United States of America, 111, E1130–E1139.  https://doi.org/10.1073/pnas.1324161111.CrossRefPubMedPubMedCentralGoogle Scholar
  108. Zimmerman, W. (1980). Degradation of lignin by bacteria. Journal of Biotechnology, 13, 199–130.Google Scholar
  109. Zotchev, S. B. (2012). Marine actinomycetes as an emerging resource for the drug development pipelines. Journal of Biotechnology, 158(4), 168–175.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Iqbal Ahmad
    • 1
  • Abdullah Safar Althubiani
    • 2
    Email author
  • Muzammil Shareif Dar
    • 1
  • Samreen
    • 1
  • Faizan Abul Qais
    • 1
  • Hussein Hasan Abulreesh
    • 2
  • Majid Abdullah Bamaga
    • 3
  • Saleh Bakheet Al-Ghamdi
    • 4
  • Fatimah Alshehrei
    • 2
  1. 1.Department of Agricultural Microbiology, Faculty of Agricultural SciencesAligarh Muslim UniversityAligarhIndia
  2. 2.Department of Biology, Faculty of Applied ScienceUmm Al-Qura UniversityMakkahKingdom of Saudi Arabia
  3. 3.Department of Medical Laboratory SciencesFakeeh College for Medical SciencesJeddahSaudi Arabia
  4. 4.Department of Biology, Faculty of ScienceAl-Baha UniversityBahaSaudi Arabia

Personalised recommendations