Advertisement

Essential Oils: Potential Application in Disease Management

  • Swapnil Pandey
  • Sankalp Misra
  • Vijay Kant Dixit
  • Shashank Kumar Mishra
  • Ritu Dixit
  • Puneet Singh ChauhanEmail author
Chapter

Abstract

Natural essential oils extracted from dietary plants and their constituents which include monoterpenes, sesquiterpenes, and phenolics play crucial role in different disease management. Several mechanisms such as antioxidant, enhancement of immune function, enzyme induction, and enhancing detoxification are responsible for different disease management. Essential oils are representing a promising source of active elements and an array of pharmacological properties, including antibacterial, antifungal, antiaging, etc. This study presents the overview of different action exerted by essential oils and discusses active constituents and their effect on disease control.

Keywords

Essential oils Disease management Ayurveda Phytomolecules Antibacterial 

Notes

Acknowledgments

The authors acknowledge the Director, CSIR-National Botanical Research Institute, for providing facilities and support during the study. The authors acknowledge the financial assistance from CSIR-Network project (MLP022; OLP 0105). The authors have no conflict of interest.

References

  1. Alviano, D., & Alviano, C. (2009). Plant extracts: Search for new alternatives to treat microbial diseases. Current Pharmaceutical Biotechnology, 10, 106–121.  https://doi.org/10.2174/138920109787048607.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Arruda, M., Viana, H., Rainha, N., Neng, N. R., Rosa, J. S., Nogueira, J. M. F., & Do Carmo Barreto, M. (2012). Anti-acetylcholinesterase and antioxidant activity of essential oils from Hedychium gardnerianum sheppard ex ker-gawl. Molecules, 17, 3082–3092.  https://doi.org/10.3390/molecules17033082.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Astani, A., Reichling, J., & Schnitzler, P. (2010). Comparative study on the antiviral activity of selected monoterpenes derived from essential oils. Phytotherapy Research, 24, 673–679.  https://doi.org/10.1002/ptr.2955.CrossRefPubMedGoogle Scholar
  4. Bardaweel, S. K., Tawaha, K. A., & Hudaib, M. M. (2014). Antioxidant, antimicrobial and antiproliferative activities of Anthemis palestina essential oil. BMC Complementary and Alternative Medicine, 14, 297.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Belletti, N., Lanciotti, R., Patrignani, F., & Gardini, F. (2008). Antimicrobial efficacy of citron essential oil on spoilage and pathogenic microorganisms in fruit-based salads. Journal of Food Science, 73, M331–M338.  https://doi.org/10.1111/j.1750-3841.2008.00866.x.CrossRefPubMedGoogle Scholar
  6. Bishop, C. D. (1995). Antiviral activity of the essential oil of melaleuca alternifolia (Maiden amp; Betche) cheel (tea tree) against tobacco mosaic virus. Journal of Essential Oil Research, 7, 641–644.  https://doi.org/10.1080/10412905.1995.9700519.CrossRefGoogle Scholar
  7. Boskabady, M. H., Kiani, S., & Rakhshandah, H. (2006). Relaxant effects of Rosa damascena on guinea pig tracheal chains and its possible mechanism(s). Journal of Ethnopharmacology, 106, 377–382.PubMedCrossRefGoogle Scholar
  8. Bulgari, M., Sangiovanni, E., Colombo, E., Maschi, O., Caruso, D., Bosisio, E., & Dell’Agli, M. (2012). Inhibition of neutrophil elastase and metalloprotease-9 of human adenocarcinoma gastric cells by chamomile (matricaria recutita L.) infusion. Phytotherapy Research, 26, 1817–1822.PubMedCrossRefGoogle Scholar
  9. Cai, Y., Luo, Q., Sun, M., & Corke, H. (2004). Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sciences, 74, 2157–2184.  https://doi.org/10.1016/j.lfs.2003.09.047.CrossRefPubMedGoogle Scholar
  10. Carson, C. F., & Riley, T. V. (1993). Antimicrobial activity of the essential oil of Melaleuca alternifolia. Letters in Applied Microbiology, 16, 49–55. https://doi.org/10.1111/j.1472-765X.1994.tb00894.x.CrossRefGoogle Scholar
  11. Carson, C. F., Hammer, K. A., & Riley, T. V. (2006). Melaleuca alternifolia (tea tree) oil: A review of antimicrobial and other medicinal properties. Clinical Microbiology Reviews. https://doi.org/10.1128/CMR.19.1.50-62.2006.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Cavanagh, H. M. A., & Wilkinson, J. M. (2005). Lavender essential oil: A review. Australian Infection Control, 10, 35–37.CrossRefGoogle Scholar
  13. Chandrashekhar, V. M., Halagali, K. S., Nidavani, R. B., Shalavadi, M. H., Biradar, B. S., Biswas, D., & Muchchandi, I. S. (2011). Anti-allergic activity of German chamomile (Matricaria recutita L.) in mast cell mediated allergy model. Journal of Ethnopharmacology, 137, 336–340.PubMedCrossRefGoogle Scholar
  14. Chatterjee, S., Goswami, N., & Kothari, N. (2013). Evaluation of antioxidant activity of essential oil from Ajwain (Trachyspermum ammi) seeds. International Journal of Green Pharmacy, 7, 140.CrossRefGoogle Scholar
  15. Chou, S. T., Chang, W. L., Chang, C. T., Hsu, S. L., Lin, Y. C., & Shih, Y. (2013). Cinnamomum cassia essential oil inhibits α-MSH-induced melanin production and oxidative stress in murine B16 melanoma cells. International Journal of Molecular Sciences, 14, 19186–19201.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Cox, S. D., Mann, C. M., Markham, J. L., Bell, H. C., Gustafson, J. E., Warmington, J. R., & Wyllie, S. G. (2000). The mode of antimicrobial action of the essential oil of Melaleuca alternifolia (tea tree oil). Journal of Applied Microbiology, 88, 170–175.  https://doi.org/10.1046/j.1365-2672.2000.00943.x.CrossRefPubMedGoogle Scholar
  17. Delaquis, P. J., Stanich, K., Girard, B., & Mazza, G. (2002). Antimicrobial activity of individual and mixed fractions of dill, cilantro, coriander and eucalyptus essential oils. International Journal of Food Microbiology, 74, 101–109.PubMedCrossRefGoogle Scholar
  18. Dorman, H. J., & Deans, S. G. (2000). Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. Journal of Applied Microbiology, 88, 308–316.PubMedCrossRefGoogle Scholar
  19. Duarte, A., Ferreira, S., Silva, F., & Domingues, F. C. (2012). Synergistic activity of coriander oil and conventional antibiotics against Acinetobacter baumannii. Phytomedicine, 19, 236–238.PubMedCrossRefGoogle Scholar
  20. Emami, S. a., Javadi, B., & Hassanzadeh, M. K. (2007). Antioxidant activity of the essential oils of different parts of Juniperus communis subsp. hemisphaerica and Juniperus oblonga. Pharmaceutical Biology, 45, 769–776.CrossRefGoogle Scholar
  21. Fiori, A. C. G., Schwan-Estrada, K. R. F., Stangarlin, J. R., Vida, J. B., Scapim, C. A., Cruz, M. E. S., & Pascholati, S. F. (2000). Antifungal activity of leaf extracts and essential oils of some medicinal plants against Didymella bryoniae. Journal of Pharmacy Research, 148, 483–487.Google Scholar
  22. Ghalem, B. R. (2016). Essential oils as antimicrobial agents against some important plant pathogenic bacteria and fungi. In D. K. Choudari, A. Varma, & N. Tuteja (Eds.), Plant-microbe interaction: An approach to sustainable agriculture. Singapore: Springer Nature Singapore Pte Ltd..Google Scholar
  23. Gibbons, S., Oluwatuyi, M., Veitch, N. C., & Gray, A. I. (2003). Bacterial resistance modifying agents from Lycopus europaeus. Phytochemistry, 62, 83–87.PubMedCrossRefGoogle Scholar
  24. Greay, S. J., Ireland, D. J., Kissick, H. T., Heenan, P. J., Carson, C. F., Riley, T. V., & Beilharz, M. W. (2010). Inhibition of established subcutaneous murine tumour growth with topical Melaleuca alternifolia (tea tree) oil. Cancer Chemotherapy and Pharmacology, 66, 1095–1102.PubMedCrossRefGoogle Scholar
  25. Guerra, F. Q. S., Mendes, J. M., De Sousa, J. P., Morais-Braga, M. F. B., Santos, B. H. C., Melo Coutinho, H. D., & Lima, E. D. O. (2012). Increasing antibiotic activity against a multidrug-resistant Acinetobacter spp by essential oils of Citrus limon and Cinnamomum zeylanicum. Natural Product Research, 26, 2235–2238.PubMedCrossRefGoogle Scholar
  26. Hammer, K. A., Carson, C. F., & Riley, T. V. (1999). Antimicrobial activity of essential oils and other plant extracts. Journal of Applied Microbiology, 86, 985–990.PubMedCrossRefGoogle Scholar
  27. Hammer, K. A., Carson, C. F., & Rileya, T. V. (2012). Effects of Melaleuca alternifolia (tea tree) essential oil and the major monoterpene component terpinen-4-ol on the development of single- and multistep antibiotic resistance and antimicrobial susceptibility. Antimicrobial Agents and Chemotherapy, 56, 909–915.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Hemaiswarya, S., & Doble, M. (2009). Synergistic interaction of eugenol with antibiotics against Gram negative bacteria. Phytomedicine, 16, 997–1005.PubMedCrossRefGoogle Scholar
  29. Hili, P., Evans, C. S., & Veness, R. G. (1997). Antimicrobial action of essential oils: The effect of dimethylsulphoxide on the activity of cinnamon oil. Letters in Applied Microbiology, 24(4), 269–275.Google Scholar
  30. Hyldgaard, M., Mygind, T., & Meyer, R. L. (2012). Essential oils in food preservation: Mode of action, synergies, and interactions with food matrix components. Frontiers in Microbiology, 3, 12.Google Scholar
  31. Ibrahim, S. K., Traboulsi, A. F., & El-Haj, S. (2006). Effect of essential oils and plant extracts on hatching, migration and mortality of Meloidogyne incognita. Phytopathologia Mediterranea, 45, 238–246.  https://doi.org/10.14601/Phytopathol_Mediterr-1828.CrossRefGoogle Scholar
  32. Jana, A., Modi, K. K., Roy, A., Anderson, J. A., Van Breemen, R. B., & Pahan, K. (2013). Up-regulation of neurotrophic factors by cinnamon and its metabolite sodium benzoate: Therapeutic implications for neurodegenerative disorders. Journal of Neuroimmune Pharmacology, 8, 739–755.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Jirovetz, L., Buchbauer, G., Denkova, Z., Slavchev, A., Stoyanova, A., & Schmidt, E. (2006). Chemical composition, antimicrobial activities and odor descriptions of various Salvia sp. and Thuja sp. essential oils. Ernahrung/Nutrition, 30, 152–159.Google Scholar
  34. Juglal, S., Govinden, R., & Odhav, B. (2002). Spice oils for the control of co-occurring mycotoxin-producing fungi. Journal of Food Protection, 65, 683–687.  https://doi.org/10.4315/0362-028X-65.4.683.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kalemba, D., & Kunicka, A. (2003). Antibacterial and antifungal properties of essential oils. Current Medicinal Chemistry, 10, 813–829.  https://doi.org/10.2174/0929867033457719.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Karpanen, T. J., Worthington, T., Hendry, E. R., Conway, B. R., & Lambert, P. A. (2008). Antimicrobial efficacy of chlorhexidine digluconate alone and in combination with eucalyptus oil, tea tree oil and thymol against planktonic and biofilm cultures of Staphylococcus epidermidis. The Journal of Antimicrobial Chemotherapy, 62, 1031–1036.PubMedCrossRefPubMedCentralGoogle Scholar
  37. Kenyon, C. J. (2010). The genetics of ageing. Nature, 464, 504–512.  https://doi.org/10.1038/nature08980.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Kheirabadi, M., Moghimi, A., Rakhshande, H., & Rassouli, M. B. (2008). Evaluation of the anticonvulsant activities of rosa damascena on the PTZ induced seizures in Wistar rats. Journal of Biological Sciences, 8, 426–430.CrossRefGoogle Scholar
  39. Konstantopoulou, I., Vassilopoulou, L., Mavragani-Tsipidou, P., & Scouras, Z. G. (1992). Insecticidal effects of essential oils. A study of the effects of essential oils extracted from eleven Greek aromatic plants on Drosophila auraria. Experientia, 48, 616–619.PubMedCrossRefPubMedCentralGoogle Scholar
  40. Lang, G., & Buchbauer, G. (2012). A review on recent research results (2008–2010) on essential oils as antimicrobials and antifungals. A review. Flavour and Fragrance Journal, 27, 13–39.  https://doi.org/10.1002/ffj.2082.CrossRefGoogle Scholar
  41. Lithgow, G. J. (2006). Why aging isn’t regulated: A lamentation on the use of language in aging literature. Experimental Gerontology, 41, 890–893.  https://doi.org/10.1016/j.exger.2006.06.051.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Macwan, S. R., Dabhi, B. K., Aparnathi, K. D., & Prajapati, J. B. (2016). Essential oils of herbs and spices: Their antimicrobial activity and application in preservation of foods. International Journal of Current Microbiology and Applied Sciences, 5, 885–901.CrossRefGoogle Scholar
  43. Mahboubi, M., & Ghazian Bidgoli, F. (2010). Antistaphylococcal activity of Zataria multiflora essential oil and its synergy with vancomycin. Phytomedicine, 17, 548–550.PubMedCrossRefPubMedCentralGoogle Scholar
  44. Manabe, A., Nakayama, S., & Sakamoto, K. (1987). Effects of essential oils on erythrocytes and hepatocytes from rats and dipalmitoyl phosphatidylcholine-liposomes. Japanese Journal of Pharmacology, 44, 77–84.  https://doi.org/10.1254/jjp.44.77.CrossRefPubMedGoogle Scholar
  45. Mancini-Filho, J., Van-Koiij, A., Mancini, D. A., Cozzolino, F. F., & Torres, R. P. (1998). Antioxidant activity of cinnamon (Cinnamomum Zeylanicum, Breyne) extracts. Bollettino Chimico Farmaceutico, 137, 443–447.PubMedGoogle Scholar
  46. Mantle, D., Gok, M. A., & Lennard, T. W. (2001). Adverse and beneficial effects of plant extracts on skin and skin disorders. Adverse Drug Reactions and Toxicological Reviews, 20, 89–103.PubMedGoogle Scholar
  47. Marom, F., Levin, A., Levin, A., Farfara, D., Benromano, T., Scherzer-Attali, R., Peled, S., Vassar, R., Segal, D., Gazit, E., Frenkel, D., & Ovadia, M. (2011). Orally administrated cinnamon extract reduces β-amyloid oligomerization and corrects cognitive impairment in Alzheimer’s disease animal models. PLoS One, 6. https://doi.org/10.1371/journal.pone.0016564.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Masango, P. (2005). Cleaner production of essential oils by steam distillation. Journal of Cleaner Production, 13, 833–839.CrossRefGoogle Scholar
  49. Matić, I. Z., Juranić, Z., Šavikin, K., Zdunić, G., Nadvinski, N., & Goddevac, D. (2013). Chamomile and marigold tea: Chemical characterization and evaluation of anticancer activity. Phytotherapy Research, 27, 852–858.PubMedCrossRefGoogle Scholar
  50. Medeiros, J. R., Campos, L. B., Mendonça, S. C., Davin, L. B., & Lewis, N. G. (2003). Composition and antimicrobial activity of the essential oils from invasive species of the Azores, Hedychium gardnerianum and Pittosporum undulatum. Phytochemistry, 64, 561–565.PubMedCrossRefGoogle Scholar
  51. Mondello, F., Bernardis, F., & Girolamo, A. (2006). In vivo activity of terpinen-4-ol, the main bioactive component of Melaleuca alternifolia Cheel (tea tree) oil against azole-susceptible and -resistant human pathogenic Candida species. BMC Infectious Diseases, 6, 158.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Novy, P., Davidova, H., Serrano-Rojero, C. S., Rondevaldova, J., Pulkrabek, J., & Kokoska, L. (2015). Composition and antimicrobial activity of Euphrasia rostkoviana Hayne essential oil. Evidence-based Complementary and Alternative Medicine, 2015, 1–5.CrossRefGoogle Scholar
  53. Pandey, R., Kalra, A., Tandon, S., Mehrotra, N., Singh, H. N., & Kumar, S. (2000). Essential oils as potent sources of nematicidal compounds. Journal of Phytopathology, 148, 501–502.  https://doi.org/10.1046/j.1439-0434.2000.00493.x.CrossRefGoogle Scholar
  54. Pandey, S., Tiwari, S., Kumar, A., Niranjan, A., Chand, J., Lehr, A., & Chauhan, P. S. (2018). Antioxidant and anti-aging potential of Juniper berry (Juniperus communis L.) essential oil in Caenorhabditis elegans model system. Industrial Crops and Products, 120, 113–122.  https://doi.org/10.1016/j.indcrop.2018.04.066.CrossRefGoogle Scholar
  55. Park, I. K., Park, J. Y., Kim, K. H., Choi, K. S., Choi, I. H., Kim, C. S., & Shin, S. C. (2005). Nematicidal activity of plant essential oils and components from garlic (Allium sativum) and cinnamon (Cinnamomum verum) oils against the pine wood nematode (Bursaphelenchus xylophilus). Nematology, 7, 767–774.CrossRefGoogle Scholar
  56. Peñalver, P., Huerta, B., Borge, C., Astorga, R., Romero, R., & Perea, A. (2005). Antimicrobial activity of five essential oils against origin strains of the Enterobacteriaceae family. APMIS, 113, 1–6.PubMedCrossRefGoogle Scholar
  57. Prakash, B., Singh, P., Kedia, A., & Dubey, N. K. (2012). Assessment of some essential oils as food preservatives based on antifungal, antiaflatoxin, antioxidant activities and in vivo efficacy in food system. Food Research International, 49, 201–208.  https://doi.org/10.1016/j.foodres.2012.08.020.CrossRefGoogle Scholar
  58. Rakhshandah, H., & Hosseini, M. (2006). Potentiation of pentobarbital hypnosis by Rosa damascena in mice. Indian Journal of Experimental Biology, 44, 910–912.PubMedGoogle Scholar
  59. Ranpariya, V. L., Parmar, S. K., Sheth, N. R., & Chandrashekhar, V. M. (2011). Neuroprotective activity of Matricaria recutita against fluoride-induced stress in rats. Pharmaceutical Biology, 49, 696–701.PubMedCrossRefGoogle Scholar
  60. Rathor, L., Pant, A., Nagar, A., Tandon, S., Trivedi, S., & Pandey, R. (2017). Trachyspermum ammi L. (Carom) oil induces alterations in SOD-3, GST-4 expression and prolongs lifespan in caenorhabditis elegans. Proceedings of the National Academy of Sciences India Section B – Biological Sciences, 87, 1355–1362.  https://doi.org/10.1007/s40011-016-0710-6.CrossRefGoogle Scholar
  61. Rosato, A., Vitali, C., De Laurentis, N., Armenise, D., & Antonietta Milillo, M. (2007). Antibacterial effect of some essential oils administered alone or in combination with Norfloxacin. Phytomedicine, 14, 727–732.PubMedCrossRefGoogle Scholar
  62. Rota, M. C., Herrera, A., Martínez, R. M., Sotomayor, J. A., & Jordán, M. J. (2008). Antimicrobial activity and chemical composition of Thymus vulgaris, Thymus zygis and Thymus hyemalis essential oils. Food Control, 19, 681–687.CrossRefGoogle Scholar
  63. Safaei-Ghomi, J., & Ahd, A. (2010). Antimicrobial and antifungal properties of the essential oil and methanol extracts of Eucalyptus largiflorens and Eucalyptus intertexta. Pharmacognosy Magazine, 6, 172.  https://doi.org/10.4103/0973-1296.66930.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Sammi, S. R., Trivedi, S., Rath, S. K., Nagar, A., Tandon, S., Kalra, A., & Pandey, R. (2017). 1-Methyl-4-propan-2-ylbenzene from Thymus vulgaris attenuates cholinergic dysfunction. Molecular Neurobiology, 54, 5468–5481.  https://doi.org/10.1007/s12035-016-0083-0.CrossRefPubMedGoogle Scholar
  65. Si, H., Hu, J., Liu, Z., & Zeng, Z. L. (2008). Antibacterial effect of oregano essential oil alone and in combination with antibiotics against extended-spectrum β-lactamase-producing Escherichia coli. FEMS Immunology and Medical Microbiology, 53, 190–194.PubMedCrossRefGoogle Scholar
  66. Silva, N. C. C., Barbosa, L., Seito, L. N., & Fernandes Junior, A. (2012). Antimicrobial activity and phytochemical analysis of crude extracts and essential oils from medicinal plants. Natural Product Research, 26, 1510–1514.PubMedCrossRefGoogle Scholar
  67. Teixeira, D. (2004). Mining the essential oils of the anthemideae. African Journal of Biotechnology, 3, 706–720.Google Scholar
  68. Tung, Y. T., Yen, P. L., Lin, C. Y., & Chang, S. T. (2010). Anti-inflammatory activities of essential oils and their constituents from different provenances of indigenous cinnamon (Cinnamomum osmophloeum) leaves. Pharmaceutical Biology, 48, 1130–1136.PubMedCrossRefGoogle Scholar
  69. Van de Braak, S. A. A. J., & Leijten, G. C. J. J. (1999). Essential oils and oleoresins: A survey in the Netherlands and other major markets in the European Union (p. 116). Rotterdam: CBI, Centre for the Promotion of Imports from Developing Countries.Google Scholar
  70. Van Vuuren, S. F., Suliman, S., & Viljoen, A. M. (2009). The antimicrobial activity of four commercial essential oils in combination with conventional antimicrobials. Letters in Applied Microbiology, 48, 440–446.PubMedCrossRefGoogle Scholar
  71. Van Welie, R. T. H. (1997). Alle cosmetica ingrediënten en hun functies (p. 126). Nieuwegein: Nederlandse Cosmetica Vereniging.Google Scholar
  72. Zheng, W., & Wang, S. Y. (2001). Antioxidant activity and phenolic compounds in selected herbs. Journal of Agricultural and Food Chemistry, 49, 5165–5170.  https://doi.org/10.1021/jf010697n.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Swapnil Pandey
    • 1
    • 2
  • Sankalp Misra
    • 1
    • 2
  • Vijay Kant Dixit
    • 1
  • Shashank Kumar Mishra
    • 1
    • 2
  • Ritu Dixit
    • 1
  • Puneet Singh Chauhan
    • 1
    • 2
    Email author
  1. 1.Microbial Technologies DivisionCSIR-National Botanical Research Institute (CSIR-NBRI)LucknowIndia
  2. 2.Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia

Personalised recommendations