Advertisement

Medicinal Plants as a Reservoir of New Structures for Anti-infective Compounds

  • Akram M. Salam
  • Cassandra L. QuaveEmail author
Chapter

Abstract

The continued emergence of antimicrobial resistance across a spectrum of infectious pathogens presents a clear and urgent threat to human health across the globe. This trend has been further complicated by a decline in the discovery of novel chemical classes for anti-infective development. Natural products – primarily microbial in origin – have historically served as a key resource for anti-infective drug discovery efforts. On the other hand, natural products from the plant kingdom have served as a source of traditional medicine for millennia, and yet they remain relatively unexplored. The aim of this chapter is to provide an overview of plant natural products and discuss their potential as a resource for ongoing and future drug discovery efforts to fill the anti-infective pipeline and combat antimicrobial-resistant infections.

Keywords

Antibiotic resistance Pharmacognosy Medicinal plants Ethnobotany Phytochemistry Secondary metabolites 

References

  1. Allard, P. M., et al. (2016). Integration of molecular networking and in-silico MS/MS fragmentation for natural products dereplication. Analytical Chemistry, 88, 3317–3323.  https://doi.org/10.1021/acs.analchem.5b04804.CrossRefPubMedGoogle Scholar
  2. Allard, P. M., Genta-Jouve, G., & Wolfender, J. L. (2017). Deep metabolome annotation in natural products research: Towards a virtuous cycle in metabolite identification. Current Opinion in Chemical Biology, 36, 40–49.  https://doi.org/10.1016/j.cbpa.2016.12.022.CrossRefPubMedGoogle Scholar
  3. Anantharajah, A., et al. (2016). Inhibition of the injectisome and flagellar type III secretion systems by INP1855 impairs Pseudomonas aeruginosa pathogenicity and inflammasome activation. Journal of Infectious Diseases, 214, 1105–1116.  https://doi.org/10.1093/infdis/jiw295.CrossRefPubMedGoogle Scholar
  4. Appendino, G., Tron, G. C., Jarevang, T., & Sterner, O. (2001). Unnatural natural products from the transannular cyclization of lathyrane diterpenes. Organic Letters, 3, 1609–1612.CrossRefGoogle Scholar
  5. Atanasov, A. G., et al. (2015). Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnology Advances, 33, 1582–1614.  https://doi.org/10.1016/j.biotechadv.2015.08.001.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Balthaser, B. R., Maloney, M. C., Beeler, A. B., Porco, J. A., Jr., & Snyder, J. K. (2011). Remodelling of the natural product fumagillol employing a reaction discovery approach. Nature Chemistry, 3, 969.  https://doi.org/10.1038/nchem.1178.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Barbehenn, R. V., & Peter Constabel, C. (2011). Tannins in plant-herbivore interactions. Phytochemistry, 72, 1551–1565.  https://doi.org/10.1016/j.phytochem.2011.01.040.CrossRefPubMedGoogle Scholar
  8. Baskar, B., Dakas, P. Y., & Kumar, K. (2011). Natural product biosynthesis inspired concise and stereoselective synthesis of benzopyrones and related scaffolds. Organic Letters, 13, 1988–1991.  https://doi.org/10.1021/ol200389p.CrossRefPubMedGoogle Scholar
  9. Beutler, J. A. (2009). Natural products as a foundation for drug discovery. Current Protocols in Pharmacology. Chapter 9:Unit 9.11.  https://doi.org/10.1002/0471141755.ph0911s46.
  10. Brackman, G., et al. (2016). Dressings loaded with cyclodextrin-hamamelitannin complexes increase Staphylococcus aureus susceptibility toward antibiotics both in single as well as in mixed biofilm communities. Macromolecular Bioscience, 16, 859–869.  https://doi.org/10.1002/mabi.201500437.CrossRefPubMedGoogle Scholar
  11. Breton, R. C., & Reynolds, W. F. (2013). Using NMR to identify and characterize natural products. Natural Product Reports, 30, 501–524.  https://doi.org/10.1039/c2np20104f.CrossRefPubMedGoogle Scholar
  12. Butler, M. S. (2004). The role of natural product chemistry in drug discovery. Journal of Natural Products, 67, 2141–2153.  https://doi.org/10.1021/np040106y.CrossRefPubMedGoogle Scholar
  13. Chumakov, M. I., Moiseeva, E. M., & Microbiology. (2012). Technologies of Agrobacterium plant transformation in planta. Journal of Applied Biochemistry, 48, 657–666.  https://doi.org/10.1134/s0003683812080017.CrossRefGoogle Scholar
  14. Ciardiello, J. J., Stewart, H. L., Sore, H. F., Galloway, W., & Spring, D. R. (2017). A novel complexity-to-diversity strategy for the diversity-oriented synthesis of structurally diverse and complex macrocycles from quinine. Bioorganic & Medicinal Chemistry, 25, 2825–2843.  https://doi.org/10.1016/j.bmc.2017.02.060.CrossRefGoogle Scholar
  15. Cox, P. A., & Balick, M. J. (1994). The ethnobotanical approach to drug discovery. Scientific American, 270, 82–87.CrossRefGoogle Scholar
  16. Cragg, G. M. (1998). Paclitaxel (Taxol): A success story with valuable lessons for natural product drug discovery and development. Medicinal Research Reviews, 18, 315–331.CrossRefGoogle Scholar
  17. Cragg, G. M., & Newman, D. J. (2013). Natural products: A continuing source of novel drug leads. Biochimica et Biophysica Acta, 1830, 3670–3695.  https://doi.org/10.1016/j.bbagen.2013.02.008.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Cragg, G. M., Schepartz, S. A., Suffness, M., & Grever, M. R. (1993). The taxol supply crisis. New NCI policies for handling the large-scale production of novel natural product anticancer and anti-HIV agents. Journal of Natural Products, 56, 1657–1668.CrossRefGoogle Scholar
  19. Cragg, G. M., et al. (1997). Interactions with source countries. Guidelines for members of the American Society of Pharmacognosy. Journal of Natural Products, 60, 654–655.CrossRefGoogle Scholar
  20. Cui, J., Hao, J., Ulanovskaya, O. A., Dundas, J., Liang, J., & Kozmin, S. A. (2011). Creation and manipulation of common functional groups en route to a skeletally diverse chemical library. Proceedings of the National Academy of Sciences of the United States of America, 108, 6763–6768.  https://doi.org/10.1073/pnas.1015253108%.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Cushnie, T. P., Cushnie, B., & Lamb, A. J. (2014). Alkaloids: An overview of their antibacterial, antibiotic-enhancing and antivirulence activities. International Journal of Antimicrobial Agents, 44, 377–386.  https://doi.org/10.1016/j.ijantimicag.2014.06.001.CrossRefGoogle Scholar
  22. David, B., Wolfender, J.-L., & Dias, D. A. (2015). The pharmaceutical industry and natural products: Historical status and new trends. Phytochemistry Reviews, 14, 299–315.  https://doi.org/10.1007/s11101-014-9367-z.CrossRefGoogle Scholar
  23. de la Parra, J., & Quave, C. L. (2017). Ethnophytotechnology: Harnessing the power of ethnobotany with biotechnology. Trends in Biotechnology, 35, 802–806.  https://doi.org/10.1016/j.tibtech.2017.07.003.CrossRefPubMedGoogle Scholar
  24. de la Torre, M. C., Garcia, I., & Sierra, M. A. (2003). Photochemical access to tetra- and pentacyclic terpene-like products from R-(+)-sclareolide. The Journal of Organic Chemistry, 68, 6611–6618.  https://doi.org/10.1021/jo034177y.CrossRefPubMedGoogle Scholar
  25. de la Torre, M. C., Garcia, I., & Sierra, M. A. (2005). Diversity oriented synthesis of hispanane-like terpene derivatives from (R)-(+)-sclareolide. Chemistry, 11, 3659–3667.  https://doi.org/10.1002/chem.200401220.CrossRefPubMedGoogle Scholar
  26. Dickey, S. W., Cheung, G. Y. C., & Otto, M. (2017). Different drugs for bad bugs: Antivirulence strategies in the age of antibiotic resistance. Nature Reviews. Drug Discovery, 16, 457.  https://doi.org/10.1038/nrd.2017.23.CrossRefPubMedGoogle Scholar
  27. Duke, J. (1992–2016). Dr. Duke’s phytochemical and ethnobotanical databases. U.S. Department of Agriculture, Agricultural Research Service. http://phytochem.nal.usda.gov/  https://doi.org/10.15482/USDA.ADC/1239279. Accessed 2 Sept 2018.
  28. Enquist, P. A., Gylfe, A., Hagglund, U., Lindstrom, P., Norberg-Scherman, H., Sundin, C., & Elofsson, M. (2012). Derivatives of 8-hydroxyquinoline – Antibacterial agents that target intra- and extracellular Gram-negative pathogens. Bioorganic & Medicinal Chemistry Letters, 22, 3550–3553.  https://doi.org/10.1016/j.bmcl.2012.03.096.CrossRefGoogle Scholar
  29. Farnsworth, N. (2018). Natural products alert. https://www.napralert.org/. Accessed 2 Sept 2018.
  30. Fernando, D. R., Marshall, A. T., Forster, P. I., Hoebee, S. E., & Siegele, R. (2013). Multiple metal accumulation within a manganese-specific genus. American Journal of Botany, 100, 690–700.  https://doi.org/10.3732/ajb.1200545.CrossRefPubMedGoogle Scholar
  31. Galanie, S., Thodey, K., Trenchard, I. J., Filsinger Interrante, M., & Smolke, C. D. (2015). Complete biosynthesis of opioids in yeast. Science, 349, 1095–1100.  https://doi.org/10.1126/science.aac9373.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Gedeck, P., Kramer, C., & Ertl, P. (2010). Computational analysis of structure–Activity relationships. In G. Lawton & D. R. Witty (Eds.), Progress in medicinal chemistry (Vol. 49, pp. 113–160). San Diego: Elsevier.  https://doi.org/10.1016/S0079-6468(10)49004-9.CrossRefGoogle Scholar
  33. Gogineni, V., Schinazi, R. F., & Hamann, M. T. (2015). Role of marine natural products in the genesis of antiviral agents. Chemical Reviews, 115, 9655–9706.  https://doi.org/10.1021/cr4006318.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Guan, D. S., & Peart, M. R. (2006). Heavy metal concentrations in plants and soils at roadside locations and parks of urban Guangzhou. Journal of Environmental Sciences (China), 18, 495–502.Google Scholar
  35. Gul, S., & Gribbon, P. (2010). Exemplification of the challenges associated with utilising fluorescence intensity based assays in discovery. Expert Opinion on Drug Discovery, 5, 681–690.  https://doi.org/10.1517/17460441.2010.495748.CrossRefPubMedGoogle Scholar
  36. Harvey, A. L., Edrada-Ebel, R., & Quinn, R. J. (2015). The re-emergence of natural products for drug discovery in the genomics era. Nature Reviews. Drug Discovery, 14, 111–129.  https://doi.org/10.1038/nrd4510.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Heinrich, M. (2010a). Ethnopharmacology in the 21st century – Grand challenges. Frontiers in Pharmacology, 1, 8.  https://doi.org/10.3389/fphar.2010.00008.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Heinrich, M. (2010b). Galanthamine from Galanthus and other Amaryllidaceae – Chemistry and biology based on traditional use. The Alkaloids. Chemistry and Biology, 68, 157–165.CrossRefGoogle Scholar
  39. Henrich, C. J., & Beutler, J. A. (2013). Matching the power of high throughput screening to the chemical diversity of natural products. Natural Product Reports, 30, 1284–1298.  https://doi.org/10.1039/c3np70052f.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Hermann, J. C., et al. (2013). Metal impurities cause false positives in high-throughput screening campaigns. ACS Medicinal Chemistry Letters, 4, 197–200.  https://doi.org/10.1021/ml3003296.CrossRefPubMedGoogle Scholar
  41. Hostettmann, K., & Marston, A. (1995). Saponins. Cambridge/New York: Cambridge University Press.CrossRefGoogle Scholar
  42. Huigens, R. W., 3rd, Morrison, K. C., Hicklin, R. W., Flood, T. A., Jr., Richter, M. F., & Hergenrother, P. J. (2013). A ring-distortion strategy to construct stereochemically complex and structurally diverse compounds from natural products. Nature Chemistry, 5, 195–202.  https://doi.org/10.1038/nchem.1549.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Hutt, O. E., Doan, T. L., & Georg, G. I. (2013). Synthesis of skeletally diverse and stereochemically complex library templates derived from isosteviol and steviol. Organic Letters, 15, 1602–1605.  https://doi.org/10.1021/ol400385w.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Ignatenko, V. A., & Tochtrop, G. P. (2013). Approach for expanding triterpenoid complexity via divergent Norrish-Yang photocyclization. The Journal of Organic Chemistry, 78, 3821–3831.  https://doi.org/10.1021/jo400275p.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Ignatenko, V. A., Han, Y., & Tochtrop, G. P. (2013). Molecular library synthesis using complex substrates: Expanding the framework of triterpenoids. The Journal of Organic Chemistry, 78, 410–418.  https://doi.org/10.1021/jo302211f.CrossRefPubMedPubMedCentralGoogle Scholar
  46. ISE. (2006). International society of ethnobiology code of ethics (with 2008 additions). http://ethnobiology.net/code-of-ethics/
  47. Jarvis, C., et al. (2016). Antivirulence isoquinolone mannosides: Optimization of the biaryl aglycone for FimH lectin binding affinity and efficacy in the treatment of chronic UTI. ChemMedChem, 11, 367–373.  https://doi.org/10.1002/cmdc.201600006.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Johnson, B. K., & Abramovitch, R. B. (2017). Small molecules that sabotage bacterial virulence. Trends in Pharmacological Sciences, 38, 339–362.  https://doi.org/10.1016/j.tips.2017.01.004.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Kellenberger, E., Hofmann, A., & Quinn, R. J. (2011). Similar interactions of natural products with biosynthetic enzymes and therapeutic targets could explain why nature produces such a large proportion of existing drugs. Natural Product Reports, 28, 1483–1492.  https://doi.org/10.1039/c1np00026h.CrossRefPubMedGoogle Scholar
  50. Kenny, C. R., Furey, A., & Lucey, B. (2015). A post-antibiotic era looms: Can plant natural product research fill the void? British Journal of Biomedical Science, 72, 191–200.CrossRefGoogle Scholar
  51. Keseru, G. M., & Makara, G. M. (2009). The influence of lead discovery strategies on the properties of drug candidates. Nature Reviews. Drug Discovery, 8, 203–212.  https://doi.org/10.1038/nrd2796.CrossRefPubMedGoogle Scholar
  52. Kingston, D. G. (2011). Modern natural products drug discovery and its relevance to biodiversity conservation. Journal of Natural Products, 74, 496–511.  https://doi.org/10.1021/np100550t.CrossRefPubMedGoogle Scholar
  53. Klein-Junior, L. C., et al. (2017). Targeted isolation of monoterpene indole alkaloids from Palicourea sessilis. Journal of Natural Products, 80, 3032–3037.  https://doi.org/10.1021/acs.jnatprod.7b00681.CrossRefPubMedGoogle Scholar
  54. Koehn, F. E., & Carter, G. T. (2005). The evolving role of natural products in drug discovery. Nature Reviews. Drug Discovery, 4, 206–220.  https://doi.org/10.1038/nrd1657.CrossRefPubMedGoogle Scholar
  55. Li, J. W., & Vederas, J. C. (2009). Drug discovery and natural products: End of an era or an endless frontier? Science, 325, 161–165.  https://doi.org/10.1126/science.1168243.CrossRefPubMedGoogle Scholar
  56. Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 23, 3–25.  https://doi.org/10.1016/S0169-409X(96)00423-1.CrossRefGoogle Scholar
  57. Loyola-Vargas, V. M., & Avilez-Montalvo, R. N. (2018). Plant tissue culture: A battle horse in the genome editing using CRISPR/Cas9. Methods in Molecular Biology, 1815, 131–148.  https://doi.org/10.1007/978-1-4939-8594-4_7.CrossRefPubMedGoogle Scholar
  58. Maier, M. E. (2015). Design and synthesis of analogues of natural products. Organic & Biomolecular Chemistry, 13, 5302–5343.  https://doi.org/10.1039/c5ob00169b.CrossRefGoogle Scholar
  59. Moerman, D. (2018). Native American ethnobotanical database. http://naeb.brit.org/. Accessed 2 Sept 2018.
  60. Morrison, K. C., & Hergenrother, P. J. (2014). Natural products as starting points for the synthesis of complex and diverse compounds. Natural Product Reports, 31, 6–14.  https://doi.org/10.1039/c3np70063a.CrossRefPubMedGoogle Scholar
  61. Moudi, M., Go, R., Yien, C. Y., & Nazre, M. (2013). Vinca alkaloids. International Journal of Preventive Medicine, 4, 1231–1235.PubMedPubMedCentralGoogle Scholar
  62. Muhs, A., Lyles, J. T., Parlet, C. P., Nelson, K., Kavanaugh, J. S., Horswill, A. R., & Quave, C. L. (2017). Virulence inhibitors from Brazilian peppertree block quorum sensing and abate dermonecrosis in skin infection models. Scientific Reports, 7, 42275.  https://doi.org/10.1038/srep42275.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Nait Chabane, Y., et al. (2014). Virstatin inhibits biofilm formation and motility of Acinetobacter baumannii. BMC Microbiology, 14, 62.  https://doi.org/10.1186/1471-2180-14-62.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Nakagawa, A., et al. (2016). Total biosynthesis of opiates by stepwise fermentation using engineered Escherichia coli. Nature Communications, 7, 10390.  https://doi.org/10.1038/ncomms10390.CrossRefPubMedPubMedCentralGoogle Scholar
  65. Ngo, L. T., Okogun, J. I., & Folk, W. R. (2013). 21st century natural product research and drug development and traditional medicines. Natural Product Reports, 30, 584–592.  https://doi.org/10.1039/C3NP20120A.CrossRefPubMedPubMedCentralGoogle Scholar
  66. O’Connor, S. E. (2015). Engineering of secondary metabolism. Annual Review of Genetics, 49, 71–94.  https://doi.org/10.1146/annurev-genet-120213-092053.CrossRefPubMedGoogle Scholar
  67. O’Neill, J. (2016). Tackling drug-resistant infections globally: Final report and recommendations review on antimicrobial resistance. http://amr-review.org/sites/default/files/160518_Final%20paper_with%20cover.pdf
  68. Ochoa-Villarreal, M., Howat, S., Hong, S., Jang, M. O., Jin, Y. W., Lee, E. K., & Loake, G. J. (2016). Plant cell culture strategies for the production of natural products. BMB Reports, 49, 149–158.CrossRefGoogle Scholar
  69. Ortholand, J. Y., & Ganesan, A. (2004). Natural products and combinatorial chemistry: Back to the future. Current Opinion in Chemical Biology, 8, 271–280.  https://doi.org/10.1016/j.cbpa.2004.04.011.CrossRefPubMedGoogle Scholar
  70. Patridge, E., Gareiss, P., Kinch, M. S., & Hoyer, D. (2016). An analysis of FDA-approved drugs: Natural products and their derivatives. Drug Discovery Today, 21, 204–207.  https://doi.org/10.1016/j.drudis.2015.01.009.CrossRefPubMedGoogle Scholar
  71. Pieren, M., & Tigges, M. (2012). Adjuvant strategies for potentiation of antibiotics to overcome antimicrobial resistance. Current Opinion in Pharmacology, 12, 551–555.  https://doi.org/10.1016/j.coph.2012.07.005.CrossRefPubMedGoogle Scholar
  72. Prance, G. (2007). Ethnobotany, the science of survival: A declaration from Kaua’i. Economic Botany, 61, 1–2.  https://doi.org/10.1007/BF02862367.CrossRefGoogle Scholar
  73. Quave, C. L., et al. (2015). Castanea sativa (European chestnut) leaf extracts rich in ursene and oleanene derivatives block Staphylococcus aureus virulence and pathogenesis without detectable resistance. PLoS One, 10, e0136486.  https://doi.org/10.1371/journal.pone.0136486.CrossRefGoogle Scholar
  74. Quinn, R. J., et al. (2008). Developing a drug-like natural product library. Journal of Natural Products, 71, 464–468.  https://doi.org/10.1021/np070526y.CrossRefPubMedGoogle Scholar
  75. Rahman, M. M., Shiu, W. K. P., Gibbons, S., & Malkinson, J. P. (2018). Total synthesis of acylphloroglucinols and their antibacterial activities against clinical isolates of multi-drug resistant (MDR) and methicillin-resistant strains of Staphylococcus aureus. European Journal of Medicinal Chemistry, 155, 255–262.  https://doi.org/10.1016/j.ejmech.2018.05.038.CrossRefPubMedGoogle Scholar
  76. Rathahao-Paris, E., Alves, S., Junot, C., & Tabet, J.-C. (2015). High resolution mass spectrometry for structural identification of metabolites in metabolomics. Metabolomics, 12, 10.  https://doi.org/10.1007/s11306-015-0882-8.CrossRefGoogle Scholar
  77. Rossiter, S. E., Fletcher, M. H., & Wuest, W. M. (2017). Natural products as platforms to overcome antibiotic resistance. Chemical Reviews, 117, 12415–12474.  https://doi.org/10.1021/acs.chemrev.7b00283.CrossRefPubMedPubMedCentralGoogle Scholar
  78. Ruocco, K. M., Goncharova, E. I., Young, M. R., Colburn, N. H., McMahon, J. B., & Henrich, C. J. (2007). A high-throughput cell-based assay to identify specific inhibitors of transcription factor AP-1. Journal of Biomolecular Screening, 12, 133–139.  https://doi.org/10.1177/1087057106296686.CrossRefPubMedGoogle Scholar
  79. Salam, A. M., & Quave, C. L. (2018). Targeting virulence in Staphylococcus aureus by chemical inhibition of the accessory gene regulator system in vivo. mSphere, 3, e00500-17.  https://doi.org/10.1128/mSphere.00500-17.CrossRefPubMedPubMedCentralGoogle Scholar
  80. Scannell, J. W., Blanckley, A., Boldon, H., & Warrington, B. (2012). Diagnosing the decline in pharmaceutical R&D efficiency. Nature Reviews. Drug Discovery, 11, 191.  https://doi.org/10.1038/nrd3681.CrossRefPubMedGoogle Scholar
  81. Schreiber, S. L. (2000). Target-oriented and diversity-oriented organic synthesis in drug discovery. Science, 287, 1964–1969.CrossRefGoogle Scholar
  82. Schulze, C. J., Bray, W. M., Woerhmann, M. H., Stuart, J., Lokey, R. S., & Linington, R. G. (2013). “Function-first” lead discovery: Mode of action profiling of natural product libraries using image-based screening. Chemistry & Biology, 20, 285–295.  https://doi.org/10.1016/j.chembiol.2012.12.007.CrossRefGoogle Scholar
  83. Seger, C., Sturm, S., & Stuppner, H. (2013). Mass spectrometry and NMR spectroscopy: Modern high-end detectors for high resolution separation techniques – State of the art in natural product HPLC-MS, HPLC-NMR, and CE-MS hyphenations. Natural Product Reports, 30, 970–987.  https://doi.org/10.1039/c3np70015a.CrossRefPubMedGoogle Scholar
  84. Shen, B. (2015). A new golden age of natural products drug discovery. Cell, 163, 1297–1300.  https://doi.org/10.1016/j.cell.2015.11.031.CrossRefPubMedPubMedCentralGoogle Scholar
  85. Silva, L. N., Zimmer, K. R., Macedo, A. J., & Trentin, D. S. (2016). Plant natural products targeting bacterial virulence factors. Chemical Reviews, 116, 9162–9236.  https://doi.org/10.1021/acs.chemrev.6b00184.CrossRefPubMedGoogle Scholar
  86. Silver, L. L. (2011). Challenges of antibacterial discovery. Clinical Microbiology Reviews, 24, 71–109.  https://doi.org/10.1128/CMR.00030-10.CrossRefPubMedPubMedCentralGoogle Scholar
  87. Song, M., Teng, Z., Li, M., Niu, X., Wang, J., & Deng, X. (2017). Epigallocatechin gallate inhibits Streptococcus pneumoniae virulence by simultaneously targeting pneumolysin and sortase A. Journal of Cellular and Molecular Medicine, 21, 2586–2598.  https://doi.org/10.1111/jcmm.13179.CrossRefPubMedPubMedCentralGoogle Scholar
  88. Szpilman, A. M., & Carreira, E. M. (2010). Probing the biology of natural products: Molecular editing by diverted total synthesis. Angewandte Chemie (International Ed. in English), 49, 9592–9628.  https://doi.org/10.1002/anie.200904761.CrossRefGoogle Scholar
  89. Szychowski, J., Truchon, J. F., & Bennani, Y. L. (2014). Natural products in medicine: Transformational outcome of synthetic chemistry. Journal of Medicinal Chemistry, 57, 9292–9308.  https://doi.org/10.1021/jm500941m.CrossRefPubMedGoogle Scholar
  90. Thomas, C. J., Rahier, N. J., & Hecht, S. M. (2004). Camptothecin: Current perspectives. Bioorganic & Medicinal Chemistry, 12, 1585–1604.  https://doi.org/10.1016/j.bmc.2003.11.036.CrossRefGoogle Scholar
  91. Thornburg, C. C., et al. (2018). NCI program for natural product discovery: A publicly-accessible library of natural product fractions for high-throughput screening. ACS Chemical Biology, 13(9), 2484–2497.  https://doi.org/10.1021/acschembio.8b00389.CrossRefPubMedGoogle Scholar
  92. UN. (2011). Nagoya protocol on access to genetic resources and the fair and equitable sharing of benefits arising from their utilization to the convention on biological diversity. United Nations, https://www.cbd.int/abs/doc/protocol/nagoya-protocol-en.pdf
  93. UN. (2018). Convention on biological diversity. https://www.cbd.int/. Accessed 2 Sept 2018.
  94. van der Meer, J. W., Fears, R., Davies, S. C., & ter Meulen, V. (2014). Antimicrobial innovation: Combining commitment, creativity and coherence. Nature Reviews. Drug Discovery, 13, 709–710.  https://doi.org/10.1038/nrd4448.CrossRefPubMedGoogle Scholar
  95. Vermote, A., Brackman, G., Risseeuw, M. D., Cappoen, D., Cos, P., Coenye, T., & Van Calenbergh, S. (2017a). Novel potentiators for vancomycin in the treatment of biofilm-related MRSA infections via a mix and match approach. ACS Medicinal Chemistry Letters, 8, 38–42.  https://doi.org/10.1021/acsmedchemlett.6b00315.CrossRefPubMedGoogle Scholar
  96. Vermote, A., Brackman, G., Risseeuw, M. D. P., Coenye, T., & Van Calenbergh, S. (2017b). Novel hamamelitannin analogues for the treatment of biofilm related MRSA infections-A scaffold hopping approach. European Journal of Medicinal Chemistry, 127, 757–770.  https://doi.org/10.1016/j.ejmech.2016.10.056.CrossRefPubMedGoogle Scholar
  97. Wagner, H., & Ulrich-Merzenich, G. (2009). Synergy research: Approaching a new generation of phytopharmaceuticals. Phytomedicine, 16, 97–110.  https://doi.org/10.1016/j.phymed.2008.12.018.CrossRefPubMedGoogle Scholar
  98. Wender, P. A., Verma, V. A., Paxton, T. J., & Pillow, T. H. (2008). Function-oriented synthesis, step economy, and drug design. Accounts of Chemical Research, 41, 40–49.  https://doi.org/10.1021/ar700155p.CrossRefPubMedGoogle Scholar
  99. Wetzel, S., Bon, R. S., Kumar, K., & Waldmann, H. (2011). Biology-oriented synthesis. Angewandte Chemie (International Ed. in English), 50, 10800–10826.  https://doi.org/10.1002/anie.201007004.CrossRefGoogle Scholar
  100. White, N. J., Pukrittayakamee, S., Hien, T. T., Faiz, M. A., Mokuolu, O. A., & Dondorp, A. M. (2014). Malaria. Lancet, 383, 723–735.  https://doi.org/10.1016/s0140-6736(13)60024-0.CrossRefPubMedGoogle Scholar
  101. WHO. (2002). WHO traditional medicine strategy 2002–2005. Geneva: WHO.Google Scholar
  102. WHO. (2003). World Health Organization guidelines on good agricultural and collection practices (GACP) for medicinal plants. Geneva: WHO.Google Scholar
  103. Willis, K. J. (Ed.). (2017). State of the world’s plants report. Kew/London: Royal Botanic Gardens.Google Scholar
  104. Woldemichael, G. M., Vasselli, J. R., Gardella, R. S., McKee, T. C., Linehan, W. M., & McMahon, J. B. (2006). Development of a cell-based reporter assay for screening of inhibitors of hypoxia-inducible factor 2-induced gene expression. Journal of Biomolecular Screening, 11, 678–687.  https://doi.org/10.1177/1087057106289234.CrossRefPubMedGoogle Scholar
  105. Wolfender, J. L., Marti, G., Thomas, A., & Bertrand, S. (2015). Current approaches and challenges for the metabolite profiling of complex natural extracts. Journal of Chromatography. A, 1382, 136–164.  https://doi.org/10.1016/j.chroma.2014.10.091.CrossRefPubMedGoogle Scholar
  106. Wright, G. D. (2016). Antibiotic adjuvants: Rescuing antibiotics from resistance. Trends in Microbiology, 24, 862–871.  https://doi.org/10.1016/j.tim.2016.06.009.CrossRefPubMedGoogle Scholar
  107. Zhai, Y., et al. (2016). Traffic-related heavy metals uptake by wild plants grow along two main highways in Hunan Province, China: Effects of soil factors, accumulation ability, and biological indication potential. Environmental Science and Pollution Research International, 23, 13368–13377.  https://doi.org/10.1007/s11356-016-6507-6.CrossRefPubMedGoogle Scholar
  108. Zou, L., Harkey, M. R., & Henderson, G. L. (2002). Effects of intrinsic fluorescence and quenching on fluorescence-based screening of natural products. Phytomedicine, 9, 263–267.  https://doi.org/10.1078/0944-7113-00121.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Molecular and Systems Pharmacology program, Graduate Division of Biological and Biomedical SciencesEmory UniversityAtlantaUSA
  2. 2.Center for the Study of Human HealthEmory University College of Arts and SciencesAtlantaUSA
  3. 3.Department of DermatologyEmory University School of MedicineAtlantaUSA
  4. 4.Antibiotic Resistance CenterEmory UniversityAtlantaUSA
  5. 5.Emory University HerbariumAtlantaUSA

Personalised recommendations