Advertisement

Host Resistance

  • Govind Singh Saharan
  • Naresh K. Mehta
  • Prabhu Dayal Meena
Chapter

Abstract

Host resistance in crucifers to powdery mildews is multilayered, and multi-components both at pre- and post-penetration stages. The intricate immune responses are evolved through accumulation of ROS, H2O2, deposition of callose, pectin, cellulose, waxes, silicon, ion fluxes, formation of papilla, cell wall apposition, phenolic compounds, over expression of R-genes, PR proteins, protein phosphorylation, biosynthesis of phytoalexins, fungal enzymes inhibiters, chito-octamers, triggering of HR, induction of SAR, and non-host resistance mechanisms. These cytoskeleton components have very important and crucial functional, and structural roles in host resistance to powdery mildew pathogens of crucifers. Defenses are activated either through SA signaling, and simultaneous perception of ethylene, and jasmonic acid (JA). The over expression of several R-genes in crucifers –powdery mildew host pathosystem induces host resistance. MLO genes encoding seven-trans-membrane, calmodulin-binding protein confers broad spectrum resistance to adapted powdery mildews of Arabidopsis. edr mutants of Arabidopsis have a general link between SA mediated resistance, mitochondrial function, and programmed cell death. pmr mutants confer resistance to powdery mildew through altered cell wall composition of host. Increased SA enhances the expression of RPW 8.1, and RPW 8.2 leading to HR, or SHL, and resistance. Bj NPR1 gene activates SAR to confer broad spectrum resistance to powdery mildew of B. juncea. At ROP regulated At RLCK V1 A3 has a role in basal resistance to powdery mildews. The At MLO2, At MLO6, and At MLO12 triple mutants are resistance to G. orontii. CPR5 controls resistance to powdery mildews, and PCD in response to infection by E. cruciferarum. There is a role of WRKY transcription factors, and over expression of R-genes like PMR, MLO, PEN, EDR, MAPK, MAPK 65-3, NPR1, PAD3, PAD4, ED5, SNARE, RLCKs, and KDL (At CEP1) to confer R to powdery mildews of crucifers. Higher levels of camalexin contribute to the enhanced R to powdery mildew in Cyp83 a1-3 mutants of Arabidopsis. SR1 plays a critical role in powdery mildew resistance by regulating EIN3, and NDR1 expression. There is harmonous coordination between transcriptional regulation, and resistance to powdery mildews. The application of Trichoderma harzianum and its CF induces (ISR) resistance in crucifers. Mechanisms of non-host R in crucifers to powdery mildews have been unrevealed which is strong and durable. Non-host resistance is PEN-gene-mediated at pre- invasion, and controlled by genes EDS1, PAD4, and SAG (101) at post-invasion of powdery mildew pathogens. In cabbage, R to powdery mildew is controlled by a single dominant gene with modifiers. A single R gene controls R to powdery mildew in HC-1, and PCC-2 with complete dominance. In Arabidopsis, R to PM is polygenic, and based on R-gene RPW8 or on combination of RPW 8 gene complex loci. Powdery mildew resistance genes of Arabidopsis have been mapped on chromosomes II (RPW1), III (RPW2, RPW3, RPW7, RPW8), IV (RPW4), and V (RPW 5, RPW 6). In rapeseed gamma rays mutagenic plants exhibit R to powdery mildew due to an increase in concentration of unsaturated fatty acids with 18 carbon atoms. Induction of glucosinolates, and camalexin plays important roles for resistance to powdery mildew of crucifers. Camalexin biosynthesis, and accumulation are affected by WRKY 18, WRKY 40 transcription factor of Arabidopsis, and enhances upon G. orontii infection to confer resistance. Transfer of powdery mildew resistance to B. oleracea from B. carinata through embryo rescue has been confirmed. Major gene sources of resistance against powdery mildew of crucifers have been identified.

References

  1. Abraham V (1993) Transfer of resistance to powdery mildew from Brassica carinata to Indian mustard (B. juncea). In: Natl Symp on Oilseed Research and Development in India. Status and Strategies Abstr. August 2–5, 1993, Hyderabad, pp 86Google Scholar
  2. Acevedo-Garcia J, Kusch S, Panstruga R (2014) Magical mystery tour: MLO proteins in plant immunity and beyond. New Phytol 204:273–281PubMedCrossRefPubMedCentralGoogle Scholar
  3. Acevedo-Garcia J, Gruner K, Reinstaedler A, Kemen A, Kemen E, Cao L, Takken FLW, Reitz MU, Schafer P, O'Connell RJ, Kusch S, Kuhn H, Panstruga R (2017) The powdery mildew-resistant Arabidopsis mlo2 mlo6 mlo12 triple mutant displays altered infection phenotypes with diverse types of phytopathogens. Sci Rep 7:–9319Google Scholar
  4. Adam L, Somerville SC (1996) Genetic characterization of five powdery mildew disease resistance loci in Arabidopsis thaliana. Plant J 9:341–356CrossRefGoogle Scholar
  5. Adam L, Ellwood S, Wilson I, Saenz G, Xiao S, Oliver RP, Turner JG, Somerville S (1999) Comparison of Erysiphe cichoracearum and E. cruciferarum and a survey of 360 Arabidopsis thaliana accessions for resistance to these two powdery mildew pathogens. Mol Plant-Microbe Interact 12:1031–1043PubMedCrossRefPubMedCentralGoogle Scholar
  6. Adams DJ (2004) Fungal cell wall chitinases and glucanases. Microbiology 150:2029–2035PubMedPubMedCentralCrossRefGoogle Scholar
  7. Afzal AJ, Wood AJ, Lightfoot DA (2008) Plant receptor-like serine threonine kinases: roles in signaling and plant defense. Mol Plant-Microbe Interact 21:507–517PubMedCrossRefPubMedCentralGoogle Scholar
  8. Ahloowalia B, Maluszynski M, Nichterlein K (2004) Global impact of mutation-derived varieties. Euphytica 135:187–204CrossRefGoogle Scholar
  9. Aist JR (1976) Papillae and related wound plugs of plant cells. Annu Rev Phytopathol 14:145–163CrossRefGoogle Scholar
  10. Ali S, Mir ZA, Tyagi A, Mehari H, Meena RP, Bhat JA, Yadav P, Papalou P, Rawat S, Grover A (2017) Over expression of NPR1 in Brassica juncea confers broad spectrum resistance to fungal pathogens. Front in Plant Sci 8:1693Google Scholar
  11. Alkooranee JT, Yin Y, Aledan TR, Jiang Y, Lu G, Wu J, Li M (2015) Systemic resistance to powdery mildew in Brassica napus (AACC) and Raphanus alboglabra (RRCC) by Trichoderma harzianum TH12. PLoS One 10(11):e0142177PubMedPubMedCentralCrossRefGoogle Scholar
  12. Alvarez ME (2000) Salicylic acid in the machinery of hypersensitive cell death and disease resistance. Plant Mol Biol 44:429–442PubMedCrossRefPubMedCentralGoogle Scholar
  13. An Q, Huckelhoven R, Kogel KH, van Bel AJ (2006) Multi-vesicular bodies participate in a cell wall-associated defence response in barley leaves attacked by the pathogenic powdery mildew fungus. Cell Microbiol 8:1009–1019PubMedCrossRefPubMedCentralGoogle Scholar
  14. Andersson MX, Kourtchenko O, Dangl JL, Mackey D, Ellerstrom M (2006) Phospholipase-dependent signalling during the AvrRpm1- and AvrRpt2-induced disease resistance responses in Arabidopsis thaliana. Plant J 47:947–959PubMedCrossRefPubMedCentralGoogle Scholar
  15. Antico CJ, Colon C, Banks T, Ramonell KM (2012) Insights into the role of jasmonic acid-mediated defenses against necrotrophic and biotrophic fungal pathogens. Front Biol 7:48–56CrossRefGoogle Scholar
  16. Aravind L, Koonin EV (1999) Fold prediction and evolutionary analysis of the POZ domain: structural and evolutionary relationship with the potassium channel tetramerization domain. J Mol Biol 285:1353–1361PubMedCrossRefPubMedCentralGoogle Scholar
  17. Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415:977–983PubMedCrossRefPubMedCentralGoogle Scholar
  18. Assaad FF, Qiu JL, Youngs H, Ehrhardt D, Zimmerli L, Kalde M, Wanner G, Peck SC, Edwards H, Ramonell K, Somerville CR, Thordal-Christensen H (2004) The PEN1 syntaxin defines a novel cellular compartment upon fungal attack and is required for the timely assembly of papillae. Mol Biol Cell 15:5118–5129PubMedPubMedCentralCrossRefGoogle Scholar
  19. Auld D, Heikkinen M, Erickson D, Sernyk J, Romero J (1992) Rapeseed mutants with reduced levels of polyunsaturated fatty acids and increased levels of oleic acid. Crop Sci 32:657–662CrossRefGoogle Scholar
  20. Ausubel FM (2005) Are innate immune signaling pathways in plants and animals conserved? Nature Immunol 6:973–979CrossRefGoogle Scholar
  21. Azevedo C, Betsuyaku S, Peart J, Takahashi A, Noel L, Sadanandom A, Casais C, Parker J, Shirasu K (2006) Role of SGT1 in resistance protein accumulation in plant immunity. EMBO J 25:2007–2016PubMedPubMedCentralCrossRefGoogle Scholar
  22. Bai YL, van der Hulst R, Bonnema G, Marcel BC, Meijer-Dekens F, Niks RE, Lindhout P (2005) Tomato defense to Oidium neolycopersici: dominant Ol genes confer isolate-dependent resistance via a different mechanism than recessive ol-2. Mol Plant-Microbe Interact 18:354–362PubMedCrossRefPubMedCentralGoogle Scholar
  23. Bak S, Feyereisen R (2001) The involvement of two p450 enzymes, CYP83B1 and CYP83A1, in auxin homeostasis and glucosinolate biosynthesis. Plant Physiol 127:108–118PubMedPubMedCentralCrossRefGoogle Scholar
  24. Bak S, Beisson F, Bishop G, Hamberger B, Hofer R, Paquette S, Werck-Reichhart D (2011) Cytochromes p450. Arabidopsis Book 9:e0144PubMedPubMedCentralCrossRefGoogle Scholar
  25. Bakshi M, Oelmuller R (2014) WRKY transcription factors: Jack of many trades in plants. Plant Signal Behav 9:e27700PubMedPubMedCentralCrossRefGoogle Scholar
  26. Baluska F, Bacigalova K, Oud JL, Hauskrecht M, Kubica S (1995) Rapid reorganization of microtubular cytoskeleton accompanies early changes in nuclear ploidy and chromatin structure in post-mitotic cells of barley leaves infected with powdery mildew. Protoplasma 185:140–151CrossRefGoogle Scholar
  27. Bari R, Jones JD (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69:473–488PubMedCrossRefPubMedCentralGoogle Scholar
  28. Bayer M, Nawy T, Giglione C, Galli M, Meinnel T, Lukowitz W (2009) Paternal control of embryonic patterning in Arabidopsis thaliana. Science 323:1485–1488PubMedCrossRefPubMedCentralGoogle Scholar
  29. Beckers GJM, Jaskiewicz M, Liu Y, Underwood WR, He SY, Zhang S, Conrath U (2009) Mitogen-activated protein kinases 3 and 6 are required for full priming of stress responses in Arabidopsis thaliana. Plant Cell 21:944–953PubMedPubMedCentralCrossRefGoogle Scholar
  30. Bednarek P (2012) Chemical warfare or modulators of defence responses-the function of secondary metabolites in plant immunity. Curr Opinion Plant Biol 15:407–414CrossRefGoogle Scholar
  31. Bednarek P, Osbourn A (2009) Plant–microbe interactions: chemical diversity in plant defense. Science 324:746–748CrossRefGoogle Scholar
  32. Bednarek P, Pislewska-Bednarek M, Svatos A, Schneider B, Doubsky J, Mansurova M, Humphry M, Consonni C, Panstruga R, Sanchez-Vallet A, Molina A, Schulze-Lefert P (2009) A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense. Science 323:101–106CrossRefGoogle Scholar
  33. Beekwilder J, van Leeuwen W, van Dam NM, Bertossi M, Grandi V, Mizzi L, Soloviev M, Szabados L, Molthoff JW, Schipper B, Verbocht H, de Vos RCH, Morandini P, Arts MGM, Bovy A (2008) The impact of the absence of aliphatic glucosinolates on insect herbivory in Arabidopsis. PLoS One 3:e2068PubMedPubMedCentralCrossRefGoogle Scholar
  34. Beers EP, Jones AM, Dickerman AW (2004) The S8 serine, C1A cysteine and A1 aspartic protease families in Arabidopsis. Phytochemistry 65:43–58CrossRefGoogle Scholar
  35. Belanger RR, Bushnell WR, Dik AJ, Carver TLW (2002) The powdery mildews: a comprehensive treatise. (St. Paul: Am Phytopathol Soc (APS Press)Google Scholar
  36. Belanger RR, Benhamou N, Menzies JG (2003) Cytological evidence of an active role of silicon in wheat resistance to powdery mildew (Blumeria graminis f. sp. tritici). Phytopathology 93:402–412PubMedCrossRefPubMedCentralGoogle Scholar
  37. Bell CJ, Ecker JR (1994) Assignment of 30 microsatellite markers to the linkage map of Arabidopsis. Genomics 19:137–144CrossRefGoogle Scholar
  38. Berken A (2006) ROPs in the spotlight of plant signal transduction. Cell Mol Life Sci 63:2446–2459PubMedCrossRefPubMedCentralGoogle Scholar
  39. Bethke G, Unthan T, Uhrig JF, Poschl Y, Gust AA, Scheel D, Lee J (2009) Flg22 regulates the release of an ethylene response factor substrate from MAP kinase 6 in Arabidopsis thaliana via ethylene signaling. Proc Natl Acad Sci U S A 106:8067–8072PubMedPubMedCentralCrossRefGoogle Scholar
  40. Bhat RA, Miklis M, Schmelzer E, Schulze-Lefert P, Panstruga R (2005) Recruitment and interaction dynamics of plant penetration resistance components in a plasma membrane microdomain. Proc Natl Acad Sci U S A 102:3135–3140PubMedPubMedCentralCrossRefGoogle Scholar
  41. Bisgrove SR, Simonich MT, Smith NM, Sattler A, Innes RW (1994) A disease resistance gene in Arabidopsis with specificity for two different pathogen avirulence genes. Plant Cell 6:927–933PubMedPubMedCentralGoogle Scholar
  42. Bittel P, Robatzek S (2007) Microbe-associated molecular patterns (MAMPs) probe plant immunity. Curr Opinion Plant Biol 10:335–341CrossRefGoogle Scholar
  43. Boch J, Verbsky ML, Robertson TL, Larkin JC, Kunkel BN (1998) Analysis of resistance gene-mediated defense responses in Arabidopsis thaliana plants carrying a mutation in CPR5. Mol Plant-Microbe Interact 11:1196–1206CrossRefGoogle Scholar
  44. Bohlenius H, Morch SM, Godfrey D, Nielsen ME, Thordal-Christensen H (2010) The multi-vesicular body-localized GTPase ARFA1b/1c is important for callose deposition and ROR2 syntaxin-dependent pre-invasive basal defense in barley. Plant Cell 22:3831–3844PubMedPubMedCentralCrossRefGoogle Scholar
  45. Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Ann Rev Plant Biol 60:379–406CrossRefGoogle Scholar
  46. Bottcher C, Westphal L, Schmotz C, Prade E, Scheel D, Glawischnig E (2009) The multifunctional enzyme CYP71B15 (PHYTOALEXIN DEFICIENT3) converts cysteine-indole-3-acetonitrile to camalexin in the indole-3-acetonitrile metabolic network of Arabidopsis thaliana. Plant Cell 21:1830–1845PubMedPubMedCentralCrossRefGoogle Scholar
  47. Bowling SA, Clarke JD, Liu Y, Klessig DF, Dong X (1997) The cpr5 mutant of Arabidopsis expresses both NPR1-dependent and NPR1- independent resistance. Plant Cell 9:1573–1584PubMedPubMedCentralGoogle Scholar
  48. Bracker CE (1968) Ultra-structure of the haustorial apparatus of Erysiphe graminis and its relationship to the epidermal cell of barley. Phytopathology 58:12–30Google Scholar
  49. Brininstool G, Kasili R, Simmons LA, Kirik V, Hulskamp M, Larkin JC (2008) Constitutive Expressor of pathogenesis-related genes 5 affects cell wall biogenesis and trichome development. BMC Plant Biol 8:58PubMedPubMedCentralCrossRefGoogle Scholar
  50. Burr CA, Leslie ME, Orlowski SK, Chen I, Wright CE, Daniels MJ, Liljegren SJ (2011) CAST AWAY, a membrane-associated receptor-like kinase, inhibits organ abscission in Arabidopsis. Plant Physiol 156:1837–1850PubMedPubMedCentralCrossRefGoogle Scholar
  51. Buscaill P, Rivas S (2014) Transcriptional control of plant defence responses. Curr Opinion Plant Biol 20:35–46CrossRefGoogle Scholar
  52. Caarls L, Pieterse CMJ, Van Wees SCM (2015) How salicylic acid takes transcriptional control over jasmonic acid signaling. Front Plant Sci 6:170.  https://doi.org/10.3389/fpls.2015.00170CrossRefPubMedPubMedCentralGoogle Scholar
  53. Cahill D, Rookes J, Michalczyk A, McDonald K, Drake A (2002) Microtubule dynamics in compatible and incompatible interactions of soybean hypocotyl cells with Phytophthora sojae. Plant Pathol 51:629–640CrossRefGoogle Scholar
  54. Caillaud MC, Abad P, Favery B (2008a) Cytoskeleton reorganization, a key process in root-knot nematode-induced giant cell ontogenesis. Plant Signal Behav 3:816–818PubMedPubMedCentralCrossRefGoogle Scholar
  55. Caillaud MC, Lecomte P, Jammes F, Quentin M, Pagnotta S, Andrio E, de Almeida Engler J, Marfaing N, Gounon P, Abad P, Favery B (2008b) MAP65-3 microtubule-associated protein is essential for nematode-induced giant cell ontogenesis in Arabidopsis. Plant Cell 20(2):423–437PubMedPubMedCentralCrossRefGoogle Scholar
  56. Campe R, Langenbach C, Leissing F, Popescu GV, Popescu SC, Goellner K, Beckers GJM, Conrath U (2015) ABC transporter PEN3/PDR8/ABCG36 interacts with calmodulin that, like PEN3, is required for Arabidopsis non-host resistance. New Phytol 209:294–306PubMedCrossRefPubMedCentralGoogle Scholar
  57. Cao H, Bowling SA, Gordon AS, Dong X (1994) Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell 6:1583–1592PubMedPubMedCentralCrossRefGoogle Scholar
  58. Cao H, Glazebrook J, Clarke JD, Volko S, Dong X (1997) The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88:57–63PubMedCrossRefPubMedCentralGoogle Scholar
  59. Cao H, Li X, Dong XN (1998) Generation of broad–spectrum disease resistance by over expression of an essential regulatory gene in systemic acquired resistance. Proc Natl Acad Sci U S A 95:6531–6536PubMedPubMedCentralCrossRefGoogle Scholar
  60. Cao Y, Liang Y, Tanaka K, Nguyen CT, Jedrzejczak RP, Joachimiak A, Stacey G (2014) The kinase LYK5 is a major chitin receptor in Arabidopsis and forms a chitin-induced complex with related kinase CERK1. elife 3:e03766Google Scholar
  61. Carver TLW (1986) Histology of infection by E. graminis f.sp. hordei in spring barley lines with various levels of partial resistance. Plant Pathol 35:232–240CrossRefGoogle Scholar
  62. Century KS, Shapiro AD, Repetti PP, Dahlbeck D, Holub E, Staskawicz BJ (1997) NDR1, a pathogen-induced component required for Arabidopsis disease resistance. Science 278:1963–1965PubMedCrossRefPubMedCentralGoogle Scholar
  63. Chan J, Jensen CG, Jensen LC, Bush M, Lloyd CW (1999) The 65-kDa carrot microtubule-associated protein forms regularly arranged filamentous cross-bridges between microtubules. Proc Natl Acad Sci U S A 96:14931–14936PubMedPubMedCentralCrossRefGoogle Scholar
  64. Chandran D, Tai YC, Hather G, Dewdney J, Denoux C, Burgess DG, Ausubel FM, Speed TP, Wildermuth MC (2009) Temporal global expression data reveal known and novel salicylate-impacted processes and regulators mediating powdery mildew growth and reproduction on Arabidopsis. Plant Physiol 149:1435–1451PubMedPubMedCentralCrossRefGoogle Scholar
  65. Chandran D, Inada N, Hather G, Kleindt CK, Wildermuth MC (2010) Laser microdissection of Arabidopsis cells at the powdery mildew infection site reveals site-specific processes and regulators. Proc Natl Acad Sci U S A 107:460–465PubMedCrossRefPubMedCentralGoogle Scholar
  66. Chandran D, Rickert J, Cherk C, Dotson BR, Wildermuth MC (2013) Host cell ploidy underlying the fungal feeding site is a determinant of powdery mildew growth and reproduction. Mol Plant-Microbe Interact 26:537–545PubMedCrossRefPubMedCentralGoogle Scholar
  67. Chandran D, Rickert J, Huang Y, Steinwand MA, Marr SK, Wildermuth MC (2014) A typical E2F transcriptional repressor DEL1 acts at the intersection of plant growth and immunity by controlling the hormone salicylic acid. Cell Host Microbe 15:506–513PubMedPubMedCentralCrossRefGoogle Scholar
  68. Chelkowski J, Tyrka M, Sobkiewicz A (2003) Resistance genes in barley (Hordeum vulgare L.) and their identification with molecular markers. J Appl Genet 44:291–309PubMedPubMedCentralGoogle Scholar
  69. Chen L, Shiotani K, Togashi T, Miki D, Aoyama M, Wong HL, Kawasaki T, Shimamoto K (2010) Analysis of the Rac/Rop small GTPase family in rice: expression, sub-cellular localization and role in disease resistance. Plant Cell Physiol 51:585–595PubMedCrossRefPubMedCentralGoogle Scholar
  70. Chen X, Barnaby JY, Sreedharan A, Huang X, Orbovic V, Grosser JW, Wang N, Dong X, Song WY (2013) Over–expression of the citrus gene CtNH1 confers resistance to bacterial canker disease. Physiol Mol Plant Pathol 84:115–122CrossRefGoogle Scholar
  71. Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host–microbe interactions: shaping the evolution of the plant immune response. Cell 124:803–814PubMedPubMedCentralCrossRefGoogle Scholar
  72. Christiansen KM, Gu Y, Rodibaugh N, Innes RW (2011) Negative regulation of defence signalling pathways by the EDR1 protein kinase. Mol Plant Pathol 12:746–758PubMedPubMedCentralCrossRefGoogle Scholar
  73. Clarke JD, Volko SM, Ledford H, Ausubel FM, Dong X (2000) Roles of salicylic acid, jasmonic acid, and ethylene in cpr-induced resistance in Arabidopsis. Plant Cell 12:2175–2190PubMedPubMedCentralCrossRefGoogle Scholar
  74. Clay NK, Adio AM, Denoux C, Jander G, Ausubel FM (2009) Glucosinolate metabolites required for an Arabidopsis innate immune response. Science 323:95–101PubMedCrossRefPubMedCentralGoogle Scholar
  75. Collins NC, Thordal-Christensen H, Lipka V, Bau S, Kombrink E, Qiu JL, Huckelhoven R, Stein M, Freialdenhoven A, Somerville SC, Schulze-Lefert P (2003) SNARE-protein-mediated disease resistance at the plant cell wall. Nature 425:973–977CrossRefGoogle Scholar
  76. Consonni C, Humphry ME, Hartmann HA, Livaja M, Durner J, Westphal L, Vogel J, Lipka V, Kemmerling B, Schulze-Lefert P, Somerville SC, Panstruga R (2006) Conserved requirement for a plant host cell protein in powdery mildew pathogenesis. Nature Genet 38:716–720PubMedCrossRefPubMedCentralGoogle Scholar
  77. Consonni C, Bednarek P, Humphry M, Francocci F, Ferrari S, Harzen A, Ver Loren van Themaat E, Panstruga R (2010) Tryptophan-derived metabolites are required for antifungal defense in the Arabidopsis mlo2 mutant. Plant Physiol 152:1544–1561PubMedCrossRefPubMedCentralGoogle Scholar
  78. Crouzet J, Trombik T, Fraysse AS, Boutry M (2006) Organization and function of the plant pleiotropic drug resistance ABC transporter family. FEBS Lett 580:1123–1130PubMedCrossRefPubMedCentralGoogle Scholar
  79. Dang JK, Sangwan MS, Mehta N, Kaushik CD (2000) Multiple disease resistance against four fungal foliar diseases of rapeseed-mustard. Indian Phytopathol 53(4):455–458Google Scholar
  80. Dangl JL, Jones JDG (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833PubMedCrossRefPubMedCentralGoogle Scholar
  81. Dangl JL, Horvath DM, Staskawicz BJ (2013) Pivoting the plant immune system from dissection to deployment. Science 341:746–751PubMedPubMedCentralCrossRefGoogle Scholar
  82. De Almeida EJ, Favery B (2011) The plant cytoskeleton remodelling in nematode induced feeding sites. In: Jones J, Gheysen G, Fenoll C (eds) Genomics and molecular genetics of plant–nematode interactions. Springer, Heidelberg, pp 369–393Google Scholar
  83. De Almeida EJ, Favery B, Engler G, Abad P (2005) Loss of susceptibility as an alternative for nematode resistance. Curr Opinion Biotech 16:112–117CrossRefGoogle Scholar
  84. de Jong CF, Laxalt AM, Bargmann BO, de Wit PJ, Joosten MH, Munnik T (2004) Phosphatidic acid accumulation is an early response in the Cf-4/Avr4 interaction. Plant J 39:1–12PubMedCrossRefPubMedCentralGoogle Scholar
  85. Delaney TP, Friedrich L, Ryals JA (1995) Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance. Proc Natl Acad Sci U S A 92:6602–6606PubMedPubMedCentralCrossRefGoogle Scholar
  86. Dempsey DA, Shah J, Klessig DF (1999) Salicylic acid and disease resistance in plants. Critical Rev Plant Sci 18:547–575CrossRefGoogle Scholar
  87. De-Vos M, Van-Oosten VR, van Poecke RMP, Van Pelt JA, Pozo MJ, Mueller MJ, Buchala AJ, Metraux JP, Van Loon LC, Dicke M, Pieterse CMJ (2005) Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Mol Plant-Microbe Interact 18:923–937PubMedCrossRefPubMedCentralGoogle Scholar
  88. Devoto A, Hartmann HA, Piffanelli P, Elliott C, Simmons C, Taramino G, Goh CS, Cohen FE, Emerson BC, Schulze-Lefert P, Panstruga R (2003) Molecular phylogeny and evolution of the plant-specific seven-transmembrane MLO family. J Mol Evol 56:77–88CrossRefGoogle Scholar
  89. Dewdney J, Reuber TL, Mary CW, Alessandra D, Jianping C, Lisa MS, Emma PD, Frederick MA (2000) Three unique mutants of Arabidopsis identify eds loci required for limiting growth of a biotrophic fungal pathogen. Plant J 24:205–218PubMedCrossRefPubMedCentralGoogle Scholar
  90. Dickman MB, Fluhr R (2013) Centrality of host cell death in plant-microbe interactions. Annu Rev Phytopathol 51:543–570PubMedCrossRefPubMedCentralGoogle Scholar
  91. Dorjgotov D, Jurca ME, Fodor-Dunai C, Szucs A, Otvos K, Klement E, Biro J, Feher A (2009) Plant rho-type (Rop) GTPase-dependent activation of receptor-like cytoplasmic kinases in vitro. FEBS Lett 583:1175–1182PubMedCrossRefPubMedCentralGoogle Scholar
  92. Dormann P, Kim H, Ott T, Schulze-Lefert P, Trujillo M, Wewer V, Huckelhoven R (2014) Cell-autonomous defense, re-organization and trafficking of membranes in plant-microbe interactions. New Phytol 204:815–822PubMedCrossRefPubMedCentralGoogle Scholar
  93. Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209PubMedCrossRefPubMedCentralGoogle Scholar
  94. Dutt M, Barthe G, Irey M, Grosser J (2015) Transgenic citrus expressing an Arabidopsis NPR1 gene exhibit enhanced resistance against huanglongbing (HLB; citrus greening). PLoS One 10:e0137134PubMedPubMedCentralCrossRefGoogle Scholar
  95. Eckey C, Korell M, Leib K, Biedenkopf D, Jansen C, Langen G, Kogel KH (2004) Identification of powdery mildew-induced barley genes by cDNA-AFLP: functional assessment of an early expressed MAP kinase. Plant Mol Biol 55:1–15PubMedCrossRefPubMedCentralGoogle Scholar
  96. Ederli L, Dawe A, Pasqualini S, Quaglia M, Xiong L, Gehring C (2015) Arabidopsis flower specific defense gene expression patterns affect resistance to pathogens. Front Plant Sci 6:79Google Scholar
  97. Eggert D, Naumann M, Reimer R, Voigt CA (2014) Nanoscale glucan polymer network causes pathogen resistance. Sci Rep 4:4159Google Scholar
  98. Ehness R, Ecker M, Godt DE, Roitsch T (1997) Glucose and stress independently regulate source and sink metabolism and defence mechanisms via signal transduction pathways involving protein phosphorylation. Plant Cell 9:1825–1841PubMedPubMedCentralCrossRefGoogle Scholar
  99. Ellinger D, Voigt CA (2014a) The use of nano scale fluorescence microscopic to decipher cell wall modifications during fungal penetration. Front Plant Sci 5:270Google Scholar
  100. Ellinger D, Voigt CA (2014b) Callose biosynthesis in Arabidopsis with a focus on pathogen response: what we have learned within the last decade. Ann Bot 114:1349–1358PubMedPubMedCentralCrossRefGoogle Scholar
  101. Ellinger D, Naumann M, Falter C, Zwikowics C, Jamrow T, Manisseri C, Somerville SC, Voigt CA (2013) Elevated early callose deposition results in complete penetration resistance to powdery mildew in Arabidopsis. Plant Physiol 161:1433–1444PubMedPubMedCentralCrossRefGoogle Scholar
  102. Ellinger D, Glockner A, Koch J, Naumann M, Sturtz V, Schutt K, Manisseri C, Somerville SC, Voigt CA (2014) Interaction of the Arabidopsis GTPase RabA4c with its effector PMR4 results in complete penetration resistance to powdery mildew. Plant Cell 26:3185–3200PubMedPubMedCentralCrossRefGoogle Scholar
  103. Ellis C, Karafyllidis I, Turner JG (2002a) Constitutive activation of jasmonate signaling in an Arabidopsis mutant correlates with enhanced resistance to Erysiphe cichoracearum, Pseudomonas syringae, and Myzus persicae. Mol Plant-Microbe Interact 15:1025–1030PubMedCrossRefGoogle Scholar
  104. Ellis C, Karafyllidis I, Wasternack C, Turner JG (2002b) The Arabidopsis mutant cev1 links cell wall signaling to jasmonate and ethylene responses. Plant Cell 14:1557–1566PubMedPubMedCentralCrossRefGoogle Scholar
  105. Enright SM, Cipollini D (2007) Infection by powdery mildew Erysiphe cruciferarum (Erysiphaceae) strongly affects growth and fitness of Alliaria petiolata (Brassicaceae). Am J Bot 94(11):1813CrossRefGoogle Scholar
  106. Eulgem T, Somssich IE (2007) Networks of WRKY transcription factors in defense signaling. Curr Opinion Plant Biol 10:366–371CrossRefGoogle Scholar
  107. Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY super family of plant transcription factors. Trends Plant Sci 5:199–206PubMedCrossRefGoogle Scholar
  108. Fabro G, Di Rienzo JA, Voigt CA, Savchenko T, Dehesh K, Somerville S, Alvarez ME (2008) Genome-wide expression profiling Arabidopsis at the stage of Golovinomyces cichoracearum haustorium formation. Plant Physiol 146:1421–1439PubMedPubMedCentralCrossRefGoogle Scholar
  109. Falk A, Feys BJ, Frost LN, Jones JDG, Daniels MJ, Parker JE (1999) EDS1, an essential component of R genemediated disease resistance in Arabidopsis has homology to eukaryotic lipases. Proc Natl Acad Sci U S A 96:3292–3297PubMedPubMedCentralCrossRefGoogle Scholar
  110. Fan J, Crooks C, Creissen G, Hill L, Fairhurst S, Doerner P, Lamb C (2011) Pseudomonas sax genes overcome aliphatic isothiocyanate-mediated non-host resistance in Arabidopsis. Science 331:1185–1188PubMedCrossRefGoogle Scholar
  111. Fauteux F, Rémus-Borel W, Menzies JG, Bélanger RR (2005) Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiol Lett 249:1–6PubMedCrossRefPubMedCentralGoogle Scholar
  112. Fauteux F, Chain F, Belzile F, Menzies JG, Bélanger RR (2006) The protective role of silicon in the Arabidopsis–powdery mildew pathosystem. Proc Natl Acad Sci U S A 103:17554–17559PubMedPubMedCentralCrossRefGoogle Scholar
  113. Feechan A, Kwon E, Yun BW, Wang Y, Pallas JA, Loake GJ (2005) A central role for S-nitrosothiols in plant disease resistance. Proc Natl Acad Sci U S A 102:8054–8059PubMedPubMedCentralCrossRefGoogle Scholar
  114. Feechan A, Kabbara S, Dry IB (2011) Mechanisms of powdery mildew resistance in the vitaceae family. Mol Plant Pathol 12:263–274PubMedCrossRefPubMedCentralGoogle Scholar
  115. Ferrari S, Plotnikova JM, DeLorenzo G, Ausubel FM (2003) Arabidopsis local resistance to Botrytis cinerea involves salicylic acid and camalexin and requires EDS4 and PAD2, but not SID2, EDS5 or PAD4. Plant J 35:193–205PubMedCrossRefGoogle Scholar
  116. Feys BJ, Moisan LJ, Newman MA, Parker JE (2001) Direct interaction between the Arabidopsis disease resistance signaling proteins, EDS1 and PAD4. EMBO J 20:5400–5411PubMedPubMedCentralCrossRefGoogle Scholar
  117. Feys BJ, Wiermer M, Bhat RA, Moisan LJ, Medina-Escobar N, Neu C, Cabral A, Parker JE (2005) Arabidopsis senescence-associated gene101 stabilizes and signals within an enhanced disease susceptibility1 complex in plant innate immunity. Plant Cell 17:2601–2613PubMedPubMedCentralCrossRefGoogle Scholar
  118. Fotopoulos V, Gilbert MJ, Pittman JK, Marvier AC, Buchanan AJ, Sauer N, Hall JL, Williams LE (2003) The monosaccharide transporter gene, AtSTP4, and the Cell-Wall invertase, Atfruct1, are induced in Arabidopsis during infection with the fungal biotroph Erysiphe cichoracearum. Plant Physiol 132:PubMedPubMedCentralCrossRefGoogle Scholar
  119. Freymark G, Diehl T, Miklis M, Romeis T, Panstruga R (2007) Antagonistic control of powdery mildew host cell entry by barley calcium-dependent protein kinases (CDPKs). Mol Plant-Microbe Interact 20:1213–1221PubMedCrossRefGoogle Scholar
  120. Friedrich L, Lawton K, Dietrich R, Willits M, Cade R, Ryals J (2001) NIM1 overexpression in Arabidopsis potentiates plant disease resistance and results in enhanced effectiveness of fungicides. Mol Plant-Microbe Interact 14:1114–1124PubMedCrossRefGoogle Scholar
  121. Frye CA, Innes RW (1998) An Arabidopsis mutant with enhanced resistance to powdery mildew. Plant Cell 10:947–956PubMedPubMedCentralCrossRefGoogle Scholar
  122. Frye CA, Tang D, Innes RW (2001) Negative regulation of defense responses in plants by a conserved MAPKK kinase. Proc Natl Acad Sci U S A 98:373–378PubMedPubMedCentralCrossRefGoogle Scholar
  123. Fu Y, Gu Y, Zheng Z, Wasteneys G, Yang Z (2005) Arabidopsis interdigitating cell growth requires two antagonistic pathways with opposing action on cell morphogenesis. Cell 120:687–700PubMedCrossRefGoogle Scholar
  124. Fu Y, Xu T, Zhu L, Wen M, Yang Z (2009) A ROP GTPase signaling pathway controls cortical microtubule ordering and cell expansion in Arabidopsis. Curr Biol 19:1827–1832PubMedPubMedCentralCrossRefGoogle Scholar
  125. Fu ZQ, Yan S, Saleh A, Wang W, Ruble J, Oka N, Mohan R, Spoel SH, Tada Y, Zheng N, Dong X (2012) NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature 486:228–232PubMedPubMedCentralCrossRefGoogle Scholar
  126. Fuchs R, Kopischke M, Klapprodt C, Hause G, Meyer AJ, Schwarzlander M, Fricker MD, Lipka V (2016) Immobilized subpopulations of leaf epidermal mitochondria mediate PEN2-dependent pathogen entry control in Arabidopsis. Plant Cell 28:130–145PubMedCrossRefPubMedCentralGoogle Scholar
  127. Galun M, Braun A, Frensdorff A, Galun E (1976) Hyphal walls of isolated lichen fungi: autoradiographic localization of precursor incorporation and binding of fluorescein-conjugated lections. Acta Microbiol 108:9–16Google Scholar
  128. Gardiner J (2013) The evolution and diversification of plant microtubule associated proteins. Plant J 75:219–229PubMedCrossRefGoogle Scholar
  129. Geiger HH, Heun M (1989) Genetics of quantitative resistance to fungal diseases. Annu Rev Phytopathol 27:317–341CrossRefGoogle Scholar
  130. Genre A, Chabaud M, Timmers T (2005) Arbuscular mycorrhizal fungi elicit a novel intracellular apparatus in Medicago truncatula root epidermal cells before infection. Plant Cell 17:3489–3499PubMedPubMedCentralCrossRefGoogle Scholar
  131. Ghanmi D, McNally DJ, Benhamou N, Menzies JG, Belanger RR (2004) Powdery mildew of Arabidopsis thaliana: a pathosystem for exploring the role of silicon in plant–microbe interactions. Physiol Mol Plant Pathol 64:189–199CrossRefGoogle Scholar
  132. Gil F, Gay JL (1977) Ultra-structural and physiological properties of the host interfacial components of haustoria of Erysiphe pisi in vivo and in vitro. Physiol Plant Pathol 10:1–4CrossRefGoogle Scholar
  133. Gillmor CS, Poindexter P, Lorieau J, Sujino K, Palcic M, Somerville CR (2002) The a-glucosidase I encoded by the KNOPF gene is required for cellulose biosynthesis and embryo morphogenesis in Arabidopsis. J Cell Biol 256:1003–1013CrossRefGoogle Scholar
  134. Gish LA, Clark SE (2011) The RLK/Pelle family of kinases. Plant J 66:117–127PubMedPubMedCentralCrossRefGoogle Scholar
  135. Gjetting T, Carver TL, Skot L, Lyngkjaer MF (2004) Differential gene expression in individual papilla-resistant and powdery mildew-infected barley epidermal cells. Mol Plant-Microbe Interact 17:729–738PubMedCrossRefGoogle Scholar
  136. Gjetting T, Hagedorn PH, Schweizer P, Thordal-Christensen H, Carver TL, Lyngkjaer MF (2007) Single-cell transcript profiling of barley attacked by the powdery mildew fungus. Mol Plant-Microbe Interact 20:235–246PubMedCrossRefGoogle Scholar
  137. Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227PubMedCrossRefGoogle Scholar
  138. Glazebrook J, Rogers EE, Ausubel FM (1996) Isolation of Arabidopsis mutants with enhanced disease susceptibility by direct screening. Genetics 143:973–982PubMedPubMedCentralGoogle Scholar
  139. Gollner K, Schweizer P, Bai Y, Panstruga R (2008) Natural genetic resources of Arabidopsis thaliana reveals a high prevalence and unexpected phenotypic plasticity of RPW8-mediated powdery mildew resistance. New Phytol 177:725–742CrossRefGoogle Scholar
  140. Gomez-Gómez L, Felix G, Boller T (1999) A single locus determines sensitivity to bacterial flagellin in Arabidopsis thaliana. Plant J 18:277–284PubMedCrossRefGoogle Scholar
  141. Grant M, Lamb C (2006) Systemic immunity. Curr Opinion Plant Biol 9:414–420CrossRefGoogle Scholar
  142. Grant MR, Godiard L, Straube E, Ashfield T, Lewald J, Sattler A, Innes RW, Dangl JL (1995) Structure of the Arabidopsis RPM7 gene enabling dual specificity disease resistance. Science 269:843–846PubMedCrossRefGoogle Scholar
  143. Green JR, Carver TL, Gurr SJ (2002) The formation and function of infection and feeding structures. In: Belanger RR, Bushnell WR, Dik AJ, Carver TL (eds.) The powdery mildews: a comprehensive treatise. St Paul: APS Press, 66–82Google Scholar
  144. Grubb CD, Abel S (2006) Glucosinolate metabolism and its control. Trends Plant Sci 11:89–100PubMedCrossRefGoogle Scholar
  145. Gu Y, Innes RW (2011) The keep on going protein of Arabidopsis recruits the enhanced disease resistance1 protein to trans-golgi network/early endosome vesicles. Plant Physiol 155:1827–1838PubMedPubMedCentralCrossRefGoogle Scholar
  146. Gu Y, Innes RW (2012) The KEEP ON GOING protein of Arabidopsis regulates intracellular protein trafficking and is degraded during fungal infection. Plant Cell 24:4717–4730PubMedPubMedCentralCrossRefGoogle Scholar
  147. Gu YQ, Wildermuth MC, Chakravarthy S, Loh YT, Yang C, He X, Han Y, Martin GB (2002) Tomato transcription factors Pti4, Pti5, and Pti6 activate defense responses when expressed in Arabidopsis. Plant Cell 14:817–831PubMedPubMedCentralCrossRefGoogle Scholar
  148. Guo CY, Wu GH, Xing J, Li WQ, Tang DZ, Cui BM (2013) A mutation in a coproporphyrinogen III oxidase gene confers growth inhibition, enhanced powdery mildew resistance and powdery mildew-induced cell death in Arabidopsis. Plant Cell Report 32:687–702PubMedCrossRefGoogle Scholar
  149. Gus-Meyer S, Naton B, Hahlbrock K, Schmelzer E (1998) Local mechanical stimulation induces components of the pathogen defense response in parsley. Proc Natl Acad Sci U S A 146(1):8398–8403CrossRefGoogle Scholar
  150. Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Ann Rev Plant Biol 57:303–333CrossRefGoogle Scholar
  151. Hall D (1994) Interactions of Arabidopsis with fungal pathogens. PhD thesis. Norwich: University of East AngliaGoogle Scholar
  152. Hamada T (2014) Microtubule organization and microtubule-associated proteins in plant cells. Intl Rev Cell Mol Biol 312:1–52CrossRefGoogle Scholar
  153. Hammerschmidt R (1999) Phytoalexins: what have we learned after 60 years? Annu Rev Phytopathol 37:285–306PubMedCrossRefGoogle Scholar
  154. Hansen CH, Du L, Naur P, Olsen CE, Axelsen KB, Hick AJ, Pickett JA, Halkier BA (2001) CYP83b1 is the oxime-metabolizing enzyme in the glucosinolate pathway in Arabidopsis. J Biol Chem 276:24790–24796PubMedCrossRefGoogle Scholar
  155. Hardham AR (2013) Microtubules and biotic interactions. Plant J 75:278–289PubMedCrossRefGoogle Scholar
  156. Hardham A, Jones DA, Takemoto D (2007) Cytoskeleton and cell wall function in penetration resistance. Curr Opinion Plant Biol 106(1):342–348CrossRefGoogle Scholar
  157. Hardham AR, Takemoto D, White RG (2008) Rapid and dynamic sub-cellular reorganization following mechanical stimulation of Arabidopsis epidermal cells mimics responses to fungal and oomycete attack. BMC Plant Biol 8:63PubMedPubMedCentralCrossRefGoogle Scholar
  158. Harel TM, Mehar ZHI, Rav-David D, Elad Y (2014) Systemic resistance to gray Mold induced in tomato by Benzothiadiazole and Trichoderma harzianum T39. Phytopathology 104:150–157CrossRefGoogle Scholar
  159. Heath MC (2000) Non-host resistance and nonspecific plant defences. Curr Opinion Plant Biol 3:315–319CrossRefGoogle Scholar
  160. Helm M, Schmid M, Hierl G, Terneus K, Tan L, Lottspeich F, Kieliszewski MJ, Gietl C (2008) KDEL-tailed cysteine end peptidases involved in programmed cell death, inter-calation of new cells and dismantling of extension scaffolds. Am J Bot 95:1049–1062PubMedCrossRefPubMedCentralGoogle Scholar
  161. Hemm MR, Ruegger MO, Chapple C (2003) The Arabidopsis ref2 mutant is defective in the gene encoding CYP83A1 and shows both phenylpropanoid and glucosinolate phenotypes. Plant Cell 15:179–194PubMedPubMedCentralCrossRefGoogle Scholar
  162. Hepworth SR, Zhang Y, McKim S, Li X, Haughn GW (2005) BLADE-ON-PETIOLE–dependent signaling controls leaf and floral patterning in Arabidopsis. Plant Cell 17:1434–1448PubMedPubMedCentralCrossRefGoogle Scholar
  163. Herbers K, Takahata Y, Melzer M, Mock H-P, Hajirezaei M, Sonnewald U (2000) Regulation of carbohydrate partitioning during the interaction of potato virus Y with tobacco. Mol Plant Pathol 1:51–59PubMedCrossRefPubMedCentralGoogle Scholar
  164. Hermosa R, Viterbo A, Chet I, Monte E (2012) Plant-beneficial effects of Trichoderma and of its genes. Microbiology 158:17–25PubMedCrossRefGoogle Scholar
  165. Hierl G, Vothknecht U, Gietl C (2012) Programmed cell death in Ricinus and Arabidopsis: the function of KDEL cysteine peptidases in development. Physiol Plant 145:103–113PubMedCrossRefGoogle Scholar
  166. Hierl G, Howing T, Isono E, Lottspeich F, Gietl C (2014) Ex vivo processing for maturation of Arabidopsis KDEL-tailed cytokine endopeptidase2 (AtCEP2) pro-enzyme and its storage in endoplasmic reticulum derived organelles. Plant Mol Biol 84:605–620PubMedCrossRefGoogle Scholar
  167. Ho CMK, Hotta T, Guo F, Roberson RW, Lee YRJ, Liu B (2011) Interaction of antiparallel microtubules in the phragmoplast is mediated by the microtubule-associated protein MAP65-3 in Arabidopsis. Plant Cell 23:2909–2923PubMedPubMedCentralCrossRefGoogle Scholar
  168. Hoefle C, Huesmann C, Schultheiss H, Bornke F, Hensel G, Kumlehn J, Huckelhoven R (2011) A barley ROP GTPase ACTIVATING PROTEIN associates with microtubules and regulates entry of the barley powdery mildew fungus into leaf epidermal cells. Plant Cell 23:2422–2439PubMedPubMedCentralCrossRefGoogle Scholar
  169. Hossain MY, Jasmine S, Ibrahim AHM, Ahmed ZF, Rahman MM, Ohtomi J (2008a) Length-weight and length-length relationships of ten small fish species from the Ganges (Bangladesh). J Appl Ichthyol 25:117–119CrossRefGoogle Scholar
  170. Hossain MY, Leunda PM, Ohtomi J, Ahmed ZF, Oscoz J, Miranda R (2008b) Biological aspects of the ganges river sprat Corica soborna (Clupeidae) in the Mathabhanga river (SW Bangladesh). Cybium 32:241–246Google Scholar
  171. Hou CT, Forman RJ (2000) Growth inhibition of plant pathogenic fungi by hydroxy fatty acids. J Indust Microbiol Biochem 24:275–276Google Scholar
  172. Howing T, Huesmann C, Hoefle C, Nagel M-K, Isono E, Hueckelhoven R, Gietl C (2014) Endoplasmic reticulum KDEL-tailed cysteine endo-peptidases 1of Arabidopsis (AtCEP1) is involved in pathogen defense. Front Plant Sci 5:58.  https://doi.org/10.3389/fpls.2014.00058CrossRefPubMedPubMedCentralGoogle Scholar
  173. Howing T, Dann M, Hoefle C, Huckelhoven R, Gietl C (2017) Involvement of Arabidopsis thaliana endoplasmic reticulum KDEL- tailed cysteine endopeptidase 1 (AtCEP1) in powdery mildew-induced and AtCPR5-controlled cell death. PLoS One 12(8):e0183870PubMedPubMedCentralCrossRefGoogle Scholar
  174. Huang YY, Shi Y, Lei Y, Li Y, Fan J, Xu YJ, Ma XF, Zhao JQ, Xiao S, Wang WM (2014) Functional identification of multiple nucleocytoplasmic trafficking signals in the broad-spectrum resistance protein RPW8.2. Planta 239:455–468PubMedCrossRefPubMedCentralGoogle Scholar
  175. Huckelhoven R (2005) Powdery mildew susceptibility and biotrophic infection strategies. FEMS Microbiol Lett 245:9–17PubMedCrossRefPubMedCentralGoogle Scholar
  176. Huckelhoven R (2007) Cell wall-associated mechanisms of disease resistance and susceptibility. Annu Rev Phytopathol 45:101–127PubMedCrossRefPubMedCentralGoogle Scholar
  177. Huckelhoven R, Panstruga R (2011) Cell biology of the plant-powdery mildew interaction. Curr Opinion Plant Biol 14:738–746CrossRefGoogle Scholar
  178. Huckelhoven R, Eichmann R, Weis C, Hoefle C, Proels RK (2013) Genetic loss of susceptibility: a costly route to disease resistance? Plant Pathol 62(Suppl 1):56–62CrossRefGoogle Scholar
  179. Huesmann C, Hoefle C, Huckelhoven R (2011) ROPGAPs of Arabidopsis limit susceptibility to powdery mildew. Plant Signal Behav 6:1691–1694PubMedPubMedCentralCrossRefGoogle Scholar
  180. Huesmann C, Reiner T, Hoefle C, Preuss J, Jurca ME, Domoki M, Fehér A, Huckelhoven R (2012) Barley ROP binding kinase1 is involved in microtubule organization and in basal penetration resistance to the barley powdery mildew fungus. Plant Physiol 159:311–320PubMedPubMedCentralCrossRefGoogle Scholar
  181. Humphry M, Consonni C, Panstruga R (2006) mlo-based powdery mildew immunity: silver bullet or simply non-host resistance? Mol Plant Pathol 7:605–610CrossRefGoogle Scholar
  182. Humphry M, Bednarek P, Kemmerling B, Koh S, Stein M, Gobel U, Stuber K, Pislewska-Bednarek M, Loraine A, Schulze-Lefert P, Somerville S, Panstruga R (2010) A regulon conserved in monocot and dicot plants defines a functional module in antifungal plant immunity. Proc Natl Acad Sci U S A 107:21896–21901PubMedPubMedCentralCrossRefGoogle Scholar
  183. Humphry M, Reinstadler A, Ivanov S, Bisseling T, Panstruga R (2011) Durable broad-spectrum powdery mildew resistance in pea er1 plants is conferred by natural loss-of-function mutations in PsMLO1. Mol Plant Pathol 12:866–878PubMedPubMedCentralCrossRefGoogle Scholar
  184. Hussey PJ, Hawkins TJ, Igarashi H, Kaloriti D, Smertenko A (2002) The plant cytoskeleton: recent advances in the study of the plant microtubule-associated proteins MAP-65, MAP-190 and the Xenopus MAP215-like protein, MOR1. Plant Mol Biol 50:915–924PubMedCrossRefPubMedCentralGoogle Scholar
  185. Inada N, Ueda T (2014) Membrane trafficking pathways and their roles in plant-microbe interactions. Plant Cell Physiol 55:672–686PubMedCrossRefPubMedCentralGoogle Scholar
  186. Inada N, Higaki T, Hasezawa S (2016) Nuclear function of subclass I actin depolymerizing factor contributes to susceptibility in Arabidopsis to an adapted powdery mildew fungus. Plant Physiol 170:1420–1434PubMedPubMedCentralCrossRefGoogle Scholar
  187. Jacobs AK, Lipka V, Burton RA, Panstruga R, Strizhov N, Schulze-Lefert P, Fincher GB (2003) An Arabidopsis callose synthase, GSL5, is required for wound and papillary callose formation. Plant Cell 15:2503–2513PubMedPubMedCentralCrossRefGoogle Scholar
  188. Jacobs S, Zechmann B, Molitor A, Trujillo M, Petutschnig E, Lipka V, Kogel KH, Schcafer P (2011) Broad-spectrum suppression of innate immunity is required for colonization of Arabidopsis roots by the fungus Piriformospora indica. Plant Physiol 156:726–740PubMedPubMedCentralCrossRefGoogle Scholar
  189. Jensen MK, Rung JH, Gregersen PL, Gjetting T, Fuglsang AT, Hansen M, Joehnk N, Lyngkjaer MF, Collinge DB (2007) The HvNAC6 transcription factor: a positive regulator of penetration resistance in barley and Arabidopsis. Plant Mol Biol 65:137–150PubMedCrossRefPubMedCentralGoogle Scholar
  190. Jensen MK, Hagedorn PH, de Torres-Zabala M, Grant MR, Rung JH, Collinge DB, Lyngkjaer MF (2008) Transcriptional regulation by an NAC (NAM-ATAF1, 2-CUC2) transcription factor attenuates ABA signalling for efficient basal defence towards Blumeria graminis f. sp. hordei in Arabidopsis. Plant J 56:867–880PubMedCrossRefPubMedCentralGoogle Scholar
  191. Jiang Z, Dong X, Zhang Z (2016) Network-based comparative analysis of Arabidopsis immune responses to Golovinomyces orontii and Botrytis cinerea infections. Sci Rep 6:19149PubMedPubMedCentralCrossRefGoogle Scholar
  192. Jirage D, Tootle TL, Reuber TL, Frost LN, Feys BJ, Parker JE, Ausubel FM, Glazebrook J (1999) Arabidopsis thaliana PAD4 encodes a lipase-like gene that is important for salicylic acid signaling. Proc Natal Accad Sci, USA 96:13583–13588CrossRefGoogle Scholar
  193. Jones JDG, Dangl JL (2006) The plant immune system. Nature 444(7117):323–329CrossRefGoogle Scholar
  194. Jorgensen JH (1992) Multigene families of powdery mildew resistance genes in locus Mlo on barley chromosome 5. Plant Breed 108:53–59CrossRefGoogle Scholar
  195. Jorgensen JH (1994) Genetics of powdery mildew resistance in barley. Critical Rev PIant Sci 13:97–119CrossRefGoogle Scholar
  196. Jurca ME, Bottka S, Feher A (2008) Characterization of a family of Arabidopsis receptor-like cytoplasmic kinases (RLCK class VI). Plant Cell Report 27:739–748CrossRefGoogle Scholar
  197. Kachroo A, Kachroo P (2009) Fatty acid-derived signals in plant defense. Annu Rev Phytopathol 47:153–176PubMedCrossRefPubMedCentralGoogle Scholar
  198. Kawano Y, Kaneko-Kawano T, Shimamoto K (2014) Rho family GTPase-dependent immunity in plants and animals. Front Plant Sci 5:522PubMedPubMedCentralCrossRefGoogle Scholar
  199. Kehr J (2003) Single cell technology. Curr Opinion Plant Biol 6:617–621CrossRefGoogle Scholar
  200. Kim H, O’Connell R, Maekawa-Yoshikawa M, Uemura T, Neumann U, Schulze-Lefert P (2014) The powdery mildew resistance protein RPW8.2 is carried on VAMP721/722 vesicles to the extrahaustorial membrane of haustorial complexes. Plant J 79:835–847PubMedCrossRefPubMedCentralGoogle Scholar
  201. Kirik A, Mudgett MB (2009) SOBER1 phospholipase activity suppresses phosphatidic acid accumulation and plant immunity in response to bacterial effector AvrBsT. Proc Natl Acad Sci U S A 106:20532–20537PubMedPubMedCentralCrossRefGoogle Scholar
  202. Kirik V, Bouyer D, Schobinger U, Bechtold N, Herzog M, Bonneville JM, Hulskamp M (2001) CPR5 is involved in cell proliferation and cell death control and encodes a novel transmembrane protein. Curr Biol 11:1891–1895PubMedCrossRefPubMedCentralGoogle Scholar
  203. Kliebenstein DJ, Rowe HC, Denby KJ (2005) Secondary metabolites influence Arabidopsis/Botrytis interactions: variation in host production and pathogen sensitivity. Plant J 44:25–36PubMedCrossRefPubMedCentralGoogle Scholar
  204. Kobayashi I, Kobayashi Y, Hardham AR (1994) Dynamic reorganization of microtubules and microfilaments in flax cells during the resistance response to flax rust infection. Planta 61:237–247Google Scholar
  205. Kobayashi Y, Kobayashi I, Funaki Y, Fujimoto S, Takemoto T, Kunoh H (1997a) Dynamic reorganization of microfilaments and microtubules is necessary for the expression of non-host resistance in barley coleoptile cells. Plant J 11:525–537CrossRefGoogle Scholar
  206. Kobayashi Y, Yamada M, Kobayashi I, Kunoh H (1997b) Actin microfilaments are required for the expression of non-host resistance in higher plants. Plant Cell Physiol 38:725–733CrossRefGoogle Scholar
  207. Koh S, Andre A, Edwards H, Ehrhardt D, Somerville S (2005) Arabidopsis thaliana sub-cellular responses to compatible Erysiphe cichoracearum infections. Plant J 44:516–529CrossRefGoogle Scholar
  208. Kolattukudy PE (1974) Biosynthesis of a hydroxy fatty acid polymer, cutin. Identification and biosynthesis of 16-oxo-9- or 10- hydroxypalmitic acid, a novel compound in Vicia faba. Biochemistry 13:1354–1363PubMedCrossRefPubMedCentralGoogle Scholar
  209. Kolattukudy PE (1980) Biopolyester membranes of plants: cutin and suberin. Science 208:990–1000PubMedCrossRefGoogle Scholar
  210. Konieczny A, Ausubel FM (1993) A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR based markers. Plant J 4:403–410CrossRefGoogle Scholar
  211. Korolev N, David DR, Elad Y (2008) The role of phytohormones in basal resistance and Trichoderma-induced systemic resistance to Botrytis cinerea in Arabidopsis thaliana. BioControl 53:667–683CrossRefGoogle Scholar
  212. Kragler F, Curin M, Trutnyeva K, Gansch A, Waigmann E (2003) MPB2C, a microtubule-associated plant protein binds to and interferes with cell-to-cell transport of tobacco mosaic virus movement protein. Plant Physiol 132:1870–1883PubMedPubMedCentralCrossRefGoogle Scholar
  213. Krishnia SK, Saharan GS, Singh D (2000) Genetic variation for multiple disease resistance in the families of interspecific cross of Brassica juncea x Brassica carinata. Cruciferae Newslett 22:51–53Google Scholar
  214. Kuhn H, Kwaaitaal M, Kusch S, Acevedo-Garcia J, Wu H, Panstruga R (2016) Biotrophy at its best: novel findings and unsolved mysteries of the Arabidopsis-powdery mildew pathosystem. Arabidopsis Book.  https://doi.org/10.1199/tab.0184PubMedPubMedCentralCrossRefGoogle Scholar
  215. Kumar D (2014) Salicylic acid signaling in disease resistance. Plant Sci 228:127–134PubMedCrossRefGoogle Scholar
  216. Kumar S, Saharan GS, Singh D (2002) Inheritance of resistance in inter and intraspecific crosses of Brassica juncea and Brassica carinata to Albugo candida and Erysiphe cruciferarum. J Mycol Pl Pathol 32(1):59–63Google Scholar
  217. Kunkel BN (1996) A useful weed put to work: genetic analysis of disease resistance in Arabidopsis thaliana. Trends Genet 12:63–69PubMedCrossRefGoogle Scholar
  218. Kusch S, Panstruga R (2017) mlo-based resistance: An apparently universal “weapon” to defeat powdery mildew disease. Mol Plant-Microbe Interact 30:179–189PubMedCrossRefGoogle Scholar
  219. Kusch S, Pesch L, Panstruga R (2016) Comprehensive phylogenetic analysis sheds light on the diversity and origin of the MLO family of integral membrane proteins. Genom Biol Evol 8:878–895CrossRefGoogle Scholar
  220. Kwaaitaal M, Keinath NF, Pajonk S, Biskup C, Panstruga R (2010) Combined bimolecular fluorescence complementation and forster resonance energy transfer reveals ternary SNARE complex formation in living plant cells. Plant Physiol 152:1135–1147PubMedPubMedCentralCrossRefGoogle Scholar
  221. Kwon C, Panstruga R, Schulze-Lefert P (2008a) Les liaisons dangereuses: immunological synapse formation in animals and plants. Trends Immunol 29:159–166CrossRefGoogle Scholar
  222. Kwon C, Neu C, Pajonk S, Yun HS, Lipka U, Humphry M, Bau S, Straus M, Kwaaitaal M, Rampelt H, El Kasmi F, Jurgens G, Parker J, Panstruga R, Lipka V, Schulze-Lefert P (2008b) Co-option of a default secretory pathway for plant immune responses. Nature 451:835–840CrossRefGoogle Scholar
  223. Laluk K, Luo H, Chai M, Dhawan R, Lai Z, Mengiste T (2011) Biochemical and genetic requirements for function of the immune response regulator BOTRYTIS-INDUCED KINASE1 in plant growth, ethylene signaling, and PAMP-triggered immunity in Arabidopsis. Plant Cell 23:2831–2849PubMedPubMedCentralCrossRefGoogle Scholar
  224. Lammens T, Boudolf V, Kheibarshekan L, Zalmas LP, Gaamouche T, Maes S, Vanstraelen M, Kondorosi E, La Thangue NB, Govaerts W, Inzé D, De Veylder L (2008) Atypical E2F activity restrains APC/CCCS52A2 function obligatory for endocycle onset. Proc Natl Acad Sci U S A 105:14721–14726PubMedPubMedCentralCrossRefGoogle Scholar
  225. Lapin D, Van den Ackerveken G (2013) Susceptibility to plant disease: more than a failure of host immunity. Trends Plant Sci 18:546–554PubMedCrossRefGoogle Scholar
  226. Lebel E, Heifetz P, Thorne L, Uknes S, Ryals J, Ward E (1998) Functional analysis of regulatory sequences controlling PR-1 gene expression in Arabidopsis. Plant J 16:223–233PubMedCrossRefGoogle Scholar
  227. Leborgne-Castel N, Bouhidel K (2014) Plasma membrane protein trafficking in plant-microbe interactions: a plant cell point of view. Front Plant Sci 5:735CrossRefGoogle Scholar
  228. Li H, Shen JJ, Zheng ZL, Lin Y, Yang Z (2001) The Rop GTPase switch controls multiple developmental processes in Arabidopsis. Plant Physiol 126:670–684PubMedPubMedCentralCrossRefGoogle Scholar
  229. Li J, Brader G, Kariola T, Palva ET (2006) WRKY70 modulates the selection of signaling pathways in plant defense. Plant J 46:477–491PubMedCrossRefGoogle Scholar
  230. Lin W, Ma X, Shan L, He P (2013) Big roles of small kinases: the complex functions of receptor-like cytoplasmic kinases in plant immunity and development. J Integ Plant Biol 55:1188–1197CrossRefGoogle Scholar
  231. Lipka V, Dittgen J, Bednarek P, Bhat R, Wiermer M, Stein M, Landtag J, Brandt W, Rosahl S, Scheel D, Llorente F, Molina A, Parker J, Somerville S, Schulze-Lefert P (2005) Pre- and post invasion defenses both contribute to non-host resistance in Arabidopsis. Science 310:1180–1183CrossRefGoogle Scholar
  232. Lipka V, Kwon C, Panstruga R (2007) SNARE-ware: the role of SNARE-domain proteins in plant biology. Ann Rev Cell Develop Biol 23:147–174CrossRefGoogle Scholar
  233. Lipka U, Fuchs R, Lipka V (2008) Arabidopsis non-host resistance to powdery mildews. Curr Opinion Plant Biol 11:404–411CrossRefGoogle Scholar
  234. Liu Y, Bassham DC (2012) Autophagy: pathways for self-eating in plant cells. Ann Rev Plant Biol 63:215–237CrossRefGoogle Scholar
  235. Liu H, Stone SL (2013) Cytoplasmic degradation of the Arabidopsis transcription factor ABSCISIC ACID INSENSITIVE 5 is mediated by the RING-type E3 ligase KEEP ON GOING. J Biol Chem 288:20267–20279PubMedPubMedCentralCrossRefGoogle Scholar
  236. Liu G, Holub EB, Alonso JM, Ecker JR, Fobert PR (2005) An Arabidopsis NPR1-like gene, NPR4, is required for disease resistance. Plant J 41:304–318PubMedCrossRefGoogle Scholar
  237. Liu S, Bartnikas LM, Volko SM, Ausubel FM, Tang D (2016) Mutation of the glucosinolate biosynthesis enzyme cytochrome P450 83A1 monooxygenase increases camalexin accumulation and powdery mildew resistance. Front Plant Sci 7:227PubMedPubMedCentralGoogle Scholar
  238. Loake G, Grant M (2007) Salicylic acid in plant defence-the players and protagonists. Curr Opinion Plant Biol 10:466–472CrossRefGoogle Scholar
  239. Loapez-Fernaandez MP, Maldonado S (2015) Programmed cell death in seeds of angiosperms. J Integ Plant Biol 57:996–1002CrossRefGoogle Scholar
  240. Lorek J, Griebel T, Jones AM, Kuhn H, Panstruga R (2013) The role of Arabidopsis heterotrimeric G-protein subunits in MLO2 function and MAMP-triggered immunity. Mol Plant-Microbe Interact 26:991–1003PubMedPubMedCentralCrossRefGoogle Scholar
  241. Lu D, Wu S, Gao X, Zhang Y, Shan L, He P (2010) A receptor-like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity. Proc Natl Acad Sci U S A 107:496–501PubMedCrossRefGoogle Scholar
  242. Lu X, Dittgen J, Piślewska-Bednarek M, Molina A, Schneider B, Svatos A, Doubský J, Schneeberger K, Weigel D, Bednarek P, Schulze-Lefert P (2015) Mutant allele-specific uncoupling of PENETRATION3 functions reveals engagement of the ATP-binding cassette transporter in distinct tryptophan metabolic pathways. Plant Physiol 168:814–827PubMedPubMedCentralCrossRefGoogle Scholar
  243. Luna E, Pastor V, Robert J, Flors V, Mauch-Mani B, Ton J (2011) Callose deposition: a multifaceted plant defense response. Mol Plant-Microbe Interact 24:183–193PubMedCrossRefGoogle Scholar
  244. Lyngkjær MF, Newton AC, Atzema JL, Baker SJ (2000) The barley mlo -gene: an important powdery mildew resistance source. Agronomie 20:745–756CrossRefGoogle Scholar
  245. Ma XF, Li Y, Sun JL, Wang TT, Fan J, Lei Y, Huang YY, Xu YJ, Zhao JQ, Xiao S, Wang WM (2014) Ectopic expression of RESISTANCE TO POWDERY MILDEW8.1 confers resistance to fungal and oomycete pathogens in Arabidopsis. Plant Cell Physiol 55:1484–1496PubMedCrossRefGoogle Scholar
  246. Maeda K, Houjyou Y, Komatsu T, Hori H, Kodaira T, Ishikawa A (2009) AGB1 and PMR5 contribute to PEN2-mediated pre-invasion resistance to Magnaporthe oryzae in Arabidopsis thaliana. Mol Plant-Microbe Interact 22:1331–1340PubMedCrossRefPubMedCentralGoogle Scholar
  247. Maekawa T, Kufer TA, Schulze-Lefert P (2011) NLR functions in plant and animal immune systems: so far and yet so close. Nat Immun 12:817–826CrossRefGoogle Scholar
  248. Maekawa T, Kracher B, Vernaldi S, Ver Loren van Themaat E, Schulze-Lefert P (2012) Conservation of NLR-triggered immunity across plant lineages. Proc Natl Acad Sci U S A 109:20119–20123PubMedPubMedCentralCrossRefGoogle Scholar
  249. Maekawa S, Inada N, Yasuda S, Fukao Y, Fujiwara M, Sato T, Yamaguchi J (2014) The carbon/nitrogen regulator ARABIDOPSIS TOXICOS EN LEVADURA31 controls papilla formation in response to powdery mildew fungi penetration by interacting with SYNTAXIN OF PLANTS121 in Arabidopsis. Plant Physiol 164:879–887PubMedPubMedCentralCrossRefGoogle Scholar
  250. Makandar R, Essig JS, Schapaugh MA, Trick HN, Shah J (2006) Genetically engineered resistance to Fusarium head blight in wheat by expression of Arabidopsis NPR1. Mol Plant-Microbe Interact 19:123–129PubMedCrossRefPubMedCentralGoogle Scholar
  251. Maksimov V, Abizgil’dina RR, Pusenkova LI (2011) Plant growth promoting rhizobacteria as alternative to chemical crop protectors from pathogens (review). Appl Biochem Microbiol 47(4):373–385CrossRefGoogle Scholar
  252. Malamy J, Klessig DF (1992) Salicylic acid and plant disease resistance. Plant J 2:643–654CrossRefGoogle Scholar
  253. Malinovsky FG, Fangel JU, Willats WGT (2014) The role of the cell wall in plant immunity. Front Plant Sci 5.:PMID, 24834069Google Scholar
  254. Mao G, Meng X, Liu Y, Zheng Z, Chen Z, Zhang S (2011) Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis. Plant Cell 23:1639–1653PubMedPubMedCentralCrossRefGoogle Scholar
  255. Marone D, Russo MA, Laido G, De Vita P, Papa R, Blanco A, Gadaleta A, Rubiales D, Mastrangelo AM (2013) Genetic basis of qualitative and quantitative resistance to powdery mildew in wheat: from consensus regions to candidate genes. BMC Genomics 14:562PubMedPubMedCentralCrossRefGoogle Scholar
  256. Martiniere A, Gargani D, Uzest M, Lautredou N, Blanc S, Drucker M (2009) A role for plant microtubules in the formation of transmission specific inclusion bodies of cauliflower mosaic virus. Plant J 58:135–146PubMedCrossRefGoogle Scholar
  257. Meena PD, Mehta N, Rai PK, Saharan GS (2018) Geographical distribution of rapeseed-mustard powdery mildew disease in India. J Mycol Pl Pathol 48(3):284–302Google Scholar
  258. Mehta N, Singh K, Sangwan MS (2008) Assessment of yield losses and evaluation of different varieties/ genotypes of mustard against powdery mildew in Haryana. Plant Dis Res 23(1):55–59Google Scholar
  259. Meng X, Zhang S (2013) MAPK cascades in plant disease resistance signaling. Annu Rev Phytopathol 51:245–266PubMedCrossRefGoogle Scholar
  260. Meyer D, Pajonk S, Micali C, O’Connell R, Schulze-Lefert P (2009) Extracellular transport and integration of plant secretory proteins into pathogen-induced cell wall compartments. Plant J 57:986–999CrossRefGoogle Scholar
  261. Micali C, Gollner K, Humphry M, Consonni C, Panstruga R (2008) The powdery mildew disease of Arabidopsis: a paradigm for the interaction between plants and biotrophic fungi. Arabidopsis Book 6:e0115PubMedPubMedCentralCrossRefGoogle Scholar
  262. Micali C, Neumann U, Grunewald D, Panstruga R, O’Connell R (2011) Biogenesis of a specialized plant-fungal interface during host cell internalization of Golovinomyces orontii haustoria. Cell Microbiol 13:210–226CrossRefGoogle Scholar
  263. Miklis M, Consonni C, Bhat RA, Lipka V, Schulze-Lefert P, Panstruga R (2007) Barley mlo modulates actin-dependent and actin-independent antifungal defense pathways at the cell periphery. Plant Physiol 144(2):1132–1143PubMedPubMedCentralCrossRefGoogle Scholar
  264. Misas-Villamil JC, van der Hoorn RA, Doehlemann G (2016) Papain-like cysteine proteases as hubs in plant immunity. New Phytol 212:902–907PubMedCrossRefGoogle Scholar
  265. Mitchell-Olds T, James RV, Palmer MJ, Williams PH (1995) Genetics of Brassica rapa (Syn. campestris) L. multiple disease resistance to three fungal pathogens: Peronospora parasitica, Albugo candida and Leptosphaeria maculans. Heredity 75:362–369PubMedCrossRefGoogle Scholar
  266. Miya A, Albert P, Shinya T, Desaki Y, Ichimura K, Shirasu K, Narusaka Y, Kawakami N, Kaku H, Shibuya N (2007) CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc Natl Acad Sci U S A 104:19613–19618PubMedPubMedCentralCrossRefGoogle Scholar
  267. Molendijk AJ, Ruperti B, Singh MK, Dovzhenko A, Ditengou FA, Milia M, Westphal L, Rosahl S, Soellick TR, Uhrig J, Weingarten L, Huber M, Palme K (2008) A cysteine rich receptor-like kinase NCRK and a pathogen-induced protein kinase RBK1 are Rop GTPase interactors. Plant J 53:909–923PubMedCrossRefGoogle Scholar
  268. Mou Z, Fan W, Dong X (2003) Inducers of plant systemic acquired resistance regulate NPR function through redox changes. Cell 113:935–944PubMedCrossRefGoogle Scholar
  269. Mucha E, Fricke I, Schaefer A, Wittinghofer A, Berken A (2011) Rho proteins of plants—functional cycle and regulation of cytoskeletal dynamics. European J Cell Biol 90:934–943CrossRefGoogle Scholar
  270. Muller S, Smertenko A, Wagner V, Heinrich M, Hussey PJ, Hauser MT (2004) The plant microtubule-associated protein AtMAP65-3/PLE is essential for cytokinetic phragmoplast function. Curr Biol 14:412–417PubMedPubMedCentralCrossRefGoogle Scholar
  271. Murase K, Shiba H, Iwano M, Che FS, Watanabe M, Isogai A, Takayama S (2004) A membrane-anchored protein kinase involved in Brassica self-incompatibility signaling. Science 303:1516–1519PubMedCrossRefGoogle Scholar
  272. Mysore KS, Ryu CM (2004) Non-host resistance how much do we know? Trends Plant Sci 9:97–104PubMedCrossRefGoogle Scholar
  273. Nafisi M, Goregaoker S, Botanga CJ, Glawischnig E, Olsen CE, Halkier BA (2007) Arabidopsis cytochrome P450 monooxygenase 71A13 catalyzes the conversion of indole-3-acetaldoxime in camalexin synthesis. Plant Cell 19:2039–2052PubMedPubMedCentralCrossRefGoogle Scholar
  274. Nakano RT, Yamada K, Bednarek P, Nishimura M, Hara-Nishimura I (2014) ER bodies in plants of the Brassicales order: biogenesis and association with innate immunity. Front Plant Sci 5:73PubMedPubMedCentralGoogle Scholar
  275. Naumann M, Somerville S, Voigt C (2013) Differences in early callose deposition during adapted and non-adapted powdery mildew infection of resistant Arabidopsis lines. Plant Signal Behav 8:e24408PubMedPubMedCentralCrossRefGoogle Scholar
  276. Naur P, Petersen BL, Mikkelsen MD, Bak S, Rasmussen H, Olsen CE, Halkier BA (2003) CYP83A1 and CYP83B1, two non-redundant cytochrome P450 enzymes metabolizing oximes in the biosynthesis of glucosinolates in Arabidopsis. Plant Physiol 133:63–72PubMedPubMedCentralCrossRefGoogle Scholar
  277. Newton AC (1993) The effect of humidity on the expression of partial resistance to powdery mildew in barley. Plant Pathol 42:364–367CrossRefGoogle Scholar
  278. Nibau C, Wu HM, Cheung AY (2006) RAC/ROP GTPases: 'hubs' for signal integration and diversification in plants. Trends Plant Sci 11:309–315PubMedCrossRefPubMedCentralGoogle Scholar
  279. Nie H, Wu Y, Yao C, Tang D (2011) Suppression of edr2-mediated powdery mildew resistance, cell death and ethylene-induced senescence by mutations in ALD1 in Arabidopsis. J Genet Genom 38:137–148CrossRefGoogle Scholar
  280. Nie H, Zhao C, Wu G, Wu Y, Chen Y, Tang D (2012) SR1, a calmodulin binding transcription factor, modulates plant defense and ethylene-induced senescence by directly regulating NDR1 and EIN3. Plant Physiol 158:1847–1859PubMedPubMedCentralCrossRefGoogle Scholar
  281. Nielsen ME, Feechan A, Bohlenius H, Ueda T, Thordal-Christensen H (2012) Arabidopsis ARF-GTP exchange factor, GNOM, mediates transport required for innate immunity and focal accumulation of syntaxin PEN1. Proc Natl Acad Sci U S A 109:11443–11448PubMedPubMedCentralCrossRefGoogle Scholar
  282. Nishimura MT, Stein M, Hou BH, Vogel JP, Edwards H, Somerville SC (2003) Loss of a callose synthase results in salicylic acid-dependent disease resistance. Science 301:969–972CrossRefGoogle Scholar
  283. Noel LD, Cagna G, Stuttmann J, Wirthmuller L, Betsuyaku S, Witte C-P, Bhat R, Pochon N, Colby T, Parker JE (2007) Interaction between SGT1 and cytosolic/nuclear HSC70 chaperones regulates Arabidopsis immune responses. Plant Cell 19:4061–4076PubMedPubMedCentralCrossRefGoogle Scholar
  284. Nongbri PL, Johnson JM, Sherameti I, Glawischnig E, Halkier BA, Oelm€uller R (2012) Indole-3-acetaldoxime-derived compounds restrict root colonization in the beneficial interaction between Arabidopsis roots and the endophyte Piriformospora indica. Mol Plant-Microbe Interact 25:1186–1197PubMedCrossRefGoogle Scholar
  285. Nurnberger T, Lipka V (2005) Non-host resistance in plants: new insights into an old phenomenon. Mol Plant Pathol 6:335–345PubMedCrossRefGoogle Scholar
  286. O’Connell RJ, Panstruga R (2006) Tete a Tete inside a plant cell: establishing compatibility between plants and biotrophic fungi and oomycetes. New Phytol 171:699–718PubMedPubMedCentralCrossRefGoogle Scholar
  287. Opalski KS, Schultheiss H, Kogel KH, Huckelhoven R (2005) The receptor-like MLO protein and the RAC/ROP family G-protein RACB modulate actin reorganization in barley attacked by the biotrophic powdery mildew fungus Blumeria graminis f.sp. hordei. Plant J 41:291–303PubMedCrossRefGoogle Scholar
  288. Orgil U, Araki H, Tangchaiburana S, Berkey R, Xiao S (2007) Intraspecific genetic variations, fitness cost and benefit of RPW8, a disease resistance locus in Arabidopsis thaliana. Genetics 176:2317–2333PubMedPubMedCentralCrossRefGoogle Scholar
  289. Ouko MO, Sambade A, Brandner K, Niehl A, Pena E, Ahad A, Heinlein M, Nick P (2010) Tobacco mutants with reduced microtubule dynamics are less susceptible to TMV. Plant J 62:829–839PubMedCrossRefGoogle Scholar
  290. Pajerowska-Mukhtar KM, Emerine DK, Mukhtar MS (2013) Tell me more: roles of NPRs in plant immunity. Trends Plant Sci 18:402–411PubMedCrossRefGoogle Scholar
  291. Pandey SP, Roccaro M, Schon M, Logemann E, Somssich IE (2010) Transcriptional reprogramming regulated by WRKY18 and WRKY40 facilitates powdery mildew infection of Arabidopsis. Plant J 64:912–923PubMedPubMedCentralCrossRefGoogle Scholar
  292. Parkhi V, Kumar V, Campbell LM, Bell AA, Shah J, Rathore KS (2010) Resistance against various fungal pathogens and reniform nematode in transgenic cotton plants expressing Arabidopsis NPR1. Transgenic Res 19:959–975PubMedCrossRefGoogle Scholar
  293. Pavan S, Jacobsen E, Visser RG, Bai Y (2010) Loss of susceptibility as a novel breeding strategy for durable and broad-spectrum resistance. Mol Breed 25:1–12PubMedCrossRefPubMedCentralGoogle Scholar
  294. Pedras MSC, Adio AM (2008) Phytoalexins and phytoanticipins from the wild crucifers Thellungiella halophila and Arabidopsis thaliana: rapalexin a, was alexins and camalexin. Phytochemistry 69:889–893PubMedCrossRefPubMedCentralGoogle Scholar
  295. Pedras MSC, Yaya EE, Glawischnig E (2011) The phytoalexins from cultivated and wild crucifers: chemistry and biology. Nat Prod Rep 28:1381–1405PubMedCrossRefPubMedCentralGoogle Scholar
  296. Penaud A (1999) Chemical control and yield losses caused by Erysiphe cruciferarum on oilseed rape in France. In: Wratten N, Salisbury PA (eds) Proceedings of the 10th international Rapeseed Congress. The Regional Institute Ltd., Canberra, Australia CD-ROM, Doc. No. 327:1–8Google Scholar
  297. Perrin RM, Jia X, Wagner TA, O’Neill MA, Sarria R, York WS, Raikhel NV, Keegstra K (2003) Analysis of xyloglucan fucosylation in Arabidopsis. Plant Physiol 132:768–778PubMedPubMedCentralCrossRefGoogle Scholar
  298. Peters W, Latka I (1986) Electron microscopic localization of chitin using colloidal gold labeled with wheat germ agglutinin. Histochem 84:155–160CrossRefGoogle Scholar
  299. Petkova M, Dimova M, Dimova D, Bistrichanov S (2014) Effect of gamma-irradiation on the fatty acid composition and susceptibility to powdery mildew (Erysiphe cruciferarum) of oilseed rape plants. Agril Sci Technol 6(4):413–416Google Scholar
  300. Pieterse CMJ, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SCM (2012) Hormonal modulation of plant immunity. Ann Rev Cell Dev Biol 28:489–521CrossRefGoogle Scholar
  301. Pinosa F, Buhot N, Kwaaitaal M, Fahlberg P, Thordal-Christensen H, Ellerstrom M, Andersson MX (2013) Arabidopsis phospholipase Dδ is involved in basal defense and non-host resistance to powdery mildew fungi. Plant Physiol 163:896–906PubMedPubMedCentralCrossRefGoogle Scholar
  302. Pinot F, Benveniste IJ, Salau P, Loreau O, Noe J, Schreiber L, Durst F (1999) Production in vitro by the cytochrome P450 CYP94A1 of major C18 cutin monomers and potential messengers in plant–pathogen interactions: enantioselectivity studies. Biochem J 342:27–32PubMedPubMedCentralGoogle Scholar
  303. Pleines S, Friendt W (1989) Genetic control of linolenic acid concentrations in seed oil of rapeseed (Brassica napus L.). Theor Appl Genet 78:793–797PubMedCrossRefPubMedCentralGoogle Scholar
  304. Plotnikova JM, Reuber TL, Ausubel FM, Pfister DH (1998) Powdery mildew pathogenesis of Arabidopsis thaliana. Mycologia 90:1009–1016CrossRefGoogle Scholar
  305. Poraty-Gavra L, Zimmermann P, Haigis S, Bednarek P, Hazak O, Stelmakh OR, Sadot E, Schulze-Lefert P, Gruissem W, Yalovsky S (2013) The Arabidopsis rho of plants GTPase AtROP6 functions in developmental and pathogen response pathways. Plant Physiol 161:1172–1188PubMedPubMedCentralCrossRefGoogle Scholar
  306. Qiu JL, Fiil BK, Petersen K, Nielsen HB, Botanga CJ, Thorgrimsen S (2008) Arabidopsis MAP kinase 4 regulates gene expression through transcription factor release in the nucleus. EMBO J 27:2214–2221PubMedPubMedCentralCrossRefGoogle Scholar
  307. Quentin M, Baures I, Hoefle C, Caillaud MC, Allasia V, Panabieres F, Abad P, Huckelhoven R, Keller H, Favery B (2016) The Arabidopsis microtubule-associated protein MAP65-3 supports infection by filamentous biotrophic pathogens by down-regulating salicylic acid-dependent defences. J Exp Bot 67(6):1731–1743PubMedCrossRefPubMedCentralGoogle Scholar
  308. Quilis J, Penas G, Messeguer J, Brugidou C, Segundo BS (2008) The Arabidopsis AtNPR1 inversely modulates defense responses against fungal, bacterial, or viral pathogens while conferring hypersensitivity to abiotic stresses in transgenic rice. Mol Plant-Microbe Interact 21:1215–1231PubMedCrossRefPubMedCentralGoogle Scholar
  309. Rahimi M, Bahrani A (2011) Effect of gamma irradiation on qualitative and quantitative characteristics of canola. Middle East J Sci Res 8:519–525Google Scholar
  310. Ramonell KM, Zhang B, Ewing RM, Chen Y, Xu D, Stacey G, Somerville S (2002) Microarray analysis of chitin elicitation in Arabidopsis thaliana. Mol Plant Pathol 3:301–311PubMedPubMedCentralCrossRefGoogle Scholar
  311. Ramonell K, Berrocal-Lobo M, Koh S, Wan J, Edwards H, Stacey G, Somerville S (2005) Loss-of-function mutations in chitin responsive genes show increased susceptibility to the powdery mildew pathogen Erysiphe cichoracearum. Plant Physiol:138Google Scholar
  312. Rauhut T, Glawischnig E (2009) Evolution of camalexin and structurally related indolic compounds. Phytochemistry 70:1638–1644PubMedCrossRefPubMedCentralGoogle Scholar
  313. Reddy KS, Pawar SE, Bhatia CR (1994) Inheritance of powdery mildew resistance (Erysiphe polygoni DC) resistance in mungbean. Theor Appl Genet 88:945–948PubMedCrossRefPubMedCentralGoogle Scholar
  314. Reiner T, Hoefle C, Huesmann C, Menesi D, Feher A, Huckelhoven R (2014) The Arabidopsis ROP-activated receptor-like cytoplasmic kinase RLCK VI-A3 is involved in control of basal resistance to powdery mildew and trichome branching. Plant Cell Reptr 34(3):457–468CrossRefGoogle Scholar
  315. Reuber TL, Plotnikova JM, Dewdney J, Rogers EE, Wood W, Ausubel FM (1998) Correlation of defense gene induction defects with powdery mildew susceptibility in Arabidopsis enhanced disease susceptibility mutants. Plant J 16:473–485CrossRefGoogle Scholar
  316. Rietz S, Stamm A, Malonek S, Wagner S, Becker D, Medina-Escobar N, Vlot AC, Feys BJ, Niefind K, Parker JE (2011) Different roles of enhanced disease susceptibility1 (EDS1) bound to and dissociated from phytoalexin deficient4 (PAD4) in Arabidopsis immunity. New Phytol 191:107–119PubMedCrossRefPubMedCentralGoogle Scholar
  317. Roux F, Voisin D, Badet T, Balague C, Barlet X, Huard-Chauveau C, Roby D, Raffaele S (2014) Resistance to phytopathogens e tutti quanti: placing plant quantitative disease resistance on the map. Mol Plant Pathol 15(5):427–432PubMedPubMedCentralCrossRefGoogle Scholar
  318. Rushton PJ, Somssich IE (1998) Transcriptional control of plant genes responsive to pathogens. Curr Opinion Plant Biol 1:311–315CrossRefGoogle Scholar
  319. Russo VM, Bushnell WR (1989) Responses of barley cells to puncture by micro needles and to attempted penetration by Erysiphe graminis f. sp. hordei. Can J Bot 67:2912–2921CrossRefGoogle Scholar
  320. Rusterucci C, Aviv DH, Holt BF, Dangl JL, Parker JE (2001) The disease resistance signaling components EDS1 and PAD4 are essential regulators of the cell death pathway controlled by LSD1 in Arabidopsis. Plant Cell 13:2211–2224PubMedPubMedCentralCrossRefGoogle Scholar
  321. Saenz GS, Taylor JW (1999) Phylogeny of the Erysiphales (powdery mildews) inferred from internal transcribed spacer (ITS) ribosomal DNA sequences. Can J Bot 77:150–169Google Scholar
  322. Saharan GS, Krishnia SK (2001) Multiple disease resistance in rapeseed and mustard. In: Nagarajan S, Singh DP (eds) Role of resistance in intensive agriculture, vol 10. Kalyani Publishers, New Delhi, pp 98–100Google Scholar
  323. Saharan GS, Mehta N, Sangwan MS (2005) Development of disease resistance in rapeseed-mustard pp 561-617. In: Saharan GS, Mehta N, Sangwan MS (eds) Diseases of oilseed crops. Indus Publishing Co., New Delhi, 643pGoogle Scholar
  324. Saharan GS, Verma PR, Meena PD, Kumar A (2014) White rust of crucifers: biology, ecology and management. Springer, New Delhi. 244ppGoogle Scholar
  325. Saharan GS, Mehta N, Meena PD (2016) Alternaria blight of crucifers: biology, ecology and disease management. Springer Verlag, Singapore 326. ISBN 978-981-10-0019-5Google Scholar
  326. Saharan GS, Mehta N Meena PD (2017) Downy mildew disease of crucifers: biology, ecology and disease management. Springer Verlag Singapore LVI: 357. ISBN 978-981-10-7499-8Google Scholar
  327. Schaller A (2004) A cut above the rest: the regulatory function of plant proteases. Planta 220:183–197PubMedCrossRefGoogle Scholar
  328. Scheler B, Schnepf V, Galgenmuller C, Ranf S, Huckelhoven R (2016) Barley disease susceptibility factor RACB acts in epidermal cell polarity and positioning of the nucleus. J Exp Bot.  https://doi.org/10.1093/jxb/erw141PubMedPubMedCentralCrossRefGoogle Scholar
  329. Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC, Manners JM (2000) Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc Natl Acad Sci U S A 97:11655–11660PubMedPubMedCentralCrossRefGoogle Scholar
  330. Schiff CL, Wilson IW, Somerville SC (2001) Polygenic powdery mildew disease resistance in Arabidopsis thaliana: quantitative trait analysis of the accession Warschau-1. Plant Pathol 50:690–701CrossRefGoogle Scholar
  331. Schlaeppi K, Abou-Mansour E, Buchala A, Mauch F (2010) Disease resistance of Arabidopsis to Phytophthora brassicae is established by the sequential action of indole glucosinolates and camalexin. Plant J 62:840–851.  https://doi.org/10.1111/j.1365-313X.2010.04197.xCrossRefPubMedGoogle Scholar
  332. Schmelzer E (2002) Cell polarization, a crucial process in fungal defence. Trends Plant Sci 7:411–415PubMedCrossRefGoogle Scholar
  333. Schmid M, Simpson D, Kalousek F, Gietl C (1998) A cysteine endopeptidase with a C-terminal KDEL motif isolated from castor bean endosperm is a marker enzyme for the ricinosome, a putative lytic compartment. Planta 206:466–475PubMedCrossRefGoogle Scholar
  334. Schmidt SM, Panstruga R (2007) Cytoskeleton functions in plant–microbe interactions. Physiol Mol Plant Pathol 71:135–148CrossRefGoogle Scholar
  335. Schmidt SM, Kuhn H, Micali C, Liller C, Kwaaitaal M, Panstruga R (2014) Interaction of a Blumeria graminis f. sp. hordei effector candidate with a barley ARF-GAP suggests that host vesicle trafficking is a fungal pathogenicity target. Mol Plant Pathol 15:535–549PubMedPubMedCentralCrossRefGoogle Scholar
  336. Schon M, Toller A, Diezel C, Roth C, Westphal L, Wiermer M, Somssich IE (2013) Analyses of wrky18 wrky40 plants reveal critical roles of SA/EDS1 signaling and indole-glucosinolate biosynthesis for Golovinomyces orontii resistance and a loss-of resistance towards Pseudomonas syringae pv. tomato AvrRPS4. Mol Plant-Microbe Interact 26:758–767PubMedCrossRefGoogle Scholar
  337. Schuhegger R, Nafisi M, Mansourova M, Petersen BL, Olsen CE, Svatos A, Halkier BA, Glawischnig E (2006) CYP71B15 (PAD3) catalyzes the final step in camalexin biosynthesis. Plant Physiol 141:1248–1254PubMedPubMedCentralCrossRefGoogle Scholar
  338. Schuhegger R, Nafisi M, Mansourova M, Petersen BL, Olsen CE, Svatos A, Halkier BA, Glawischnig E (2007a) CYP71 B15 (PAD3) catalyzes the final step in camalexin biosynthesis-correction. Plant Physiol 145:1086–1086.  https://doi.org/10.1104/pp.104.900240CrossRefGoogle Scholar
  339. Schuhegger R, Rauhut T, Glawischnig E (2007b) Regulatory variability of camalexin biosynthesis. J. Plant Physiol 164:636–644.  https://doi.org/10.1016/j.jplph.2006.04.012CrossRefGoogle Scholar
  340. Schultheiss H, Dechert C, Kogel KH, Huckelhoven R (2002) A small GTP-binding host protein is required for entry of powdery mildew fungus into epidermal cells of barley. Plant Physiol 128:1447–1454PubMedPubMedCentralCrossRefGoogle Scholar
  341. Schultheiss H, Dechert C, Kogel KH, Huckelhoven R (2003) Functional analysis of barley RAC/ROP G-protein family members in susceptibility to the powdery mildew fungus. Plant J:589–601PubMedCrossRefGoogle Scholar
  342. Schuster A, Schmoll M (2010) Biology and biotechnology of Trichoderma. Appl Microbiol Biotech 87:787–799CrossRefGoogle Scholar
  343. Schweizer P (2007) Non-host resistance of plants to powdery mildew-new opportunities to unravel the mystery. Physiol Mol Plant Pathol 70:3–7CrossRefGoogle Scholar
  344. Schweizer P, Kmecl A, Carpita N, Dudler R (2000) A soluble carbohydrate elicitor from Blumeria graminis f. sp tritici is recognized by a broad range of cereals. Physiol Mol Plant Pathol 56:157–167CrossRefGoogle Scholar
  345. Serrano I, Gu Y, Qi D, Dubiella U, Innes RW (2014) The Arabidopsis EDR1 protein kinase negatively regulates the ATL1 E3 ubiquitin ligase to suppress cell death. Plant Cell 26:4532–4546PubMedPubMedCentralCrossRefGoogle Scholar
  346. Seyfferth C, Tsuda K (2014) Salicylic acid signal transduction: the initiation of biosynthesis, perception and transcriptional reprogramming. Front Plant Sci 5:697PubMedPubMedCentralCrossRefGoogle Scholar
  347. Shapiro AD, Zhang C (2001) The role of NDR1 in avirulence gene-directed signaling and control of programmed cell death in Arabidopsis. Plant Physiol 127:1089–1101PubMedPubMedCentralCrossRefGoogle Scholar
  348. Sharma P, Sain SK (2004) Induction of systemic resistance in tomato and cauliflower by Trichoderma spp. against stalk rot pathogen, Sclerotinia sclerotiorum Lib de Bary. J Biol Control 18(1):21–27Google Scholar
  349. Shattuck VI (1993) Powdery mildew-resistant UG3 and UG4 rutabaga germplasm. Can J Plant Sci 73:301–302CrossRefGoogle Scholar
  350. Shen QH, Saijo Y, Mauch S, Biskup C, Bieri S, Keller B, Seki H, Ulker B, Somssich IE, Schulze-Lefert P (2007) Nuclear activity of MLA immune receptors links isolate-specific and basal disease-resistance responses. Science 315:1098–1103PubMedCrossRefPubMedCentralGoogle Scholar
  351. Shirasu K, Nakajima H, Rajasekhar VK, Dixon RA, Lamb C (1999) Salicylic acid potentiates an agonist-dependent gain control that amplifies pathogen signals in the activation of defense mechanisms. Plant Cell 9:261–270Google Scholar
  352. Shiu SH, Karlowski WM, Pan R, Tzeng YH, Mayer KF, Li WH (2004) Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell 16:1220–1234PubMedPubMedCentralCrossRefGoogle Scholar
  353. Shoresh M, Harman GE, Mastouri F (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:21–43PubMedCrossRefGoogle Scholar
  354. Singh RB, Singh RN (2003) Management of powdery mildew of mustard Department of Plant Pathology, N. D. University of Agriculture and Technology, Kumarganj, Faizabad 224 229Google Scholar
  355. Singh K (2004) Studies on the ecofriendly management of powdery mildew (Erysiphe cruciferarum Opiz ex. Junell) of mustard [Brassica juncea (Linn.) Czern & Coss]. M. Sc Thesis, CCS HAU, Hisar 108 + xixGoogle Scholar
  356. Singh D, Chandra N, Gupta PP (1997) Inheritance of powdery mildew resistance in interspecific crosses of Indian and Ethiopian mustard. Ann Biol 13:73–77Google Scholar
  357. Singh R, Singh D, Salisbury P, Barbetti MJ (2010) Field evaluation of indigenous and exotic Brassica juncea genotypes against Alternaria blight, white rust, downy mildew and powdery mildew diseases in India. Indian J Agril Sci 80(2):155–159Google Scholar
  358. Skoric D, Jocic S, Sakac Z, Lecic N (2008) Genetic possibilities for altering sunflower oil quality to obtain novel oils. Can J Physio Pharmacology 86:215–221CrossRefGoogle Scholar
  359. Smits GJ, van den Ende H, Klis FM (2001) Differential regulation of cell wall biogenesis during growth and development in yeast. Microbiol 147:781–794CrossRefGoogle Scholar
  360. Sonderby IE, Geu-Flores F, Halkier BA (2010) Biosynthesis of glucosinolates–gene discovery and beyond. Trends Plant Sci 15:283–290.  https://doi.org/10.1016/j.tplants.2010.02.005CrossRefPubMedGoogle Scholar
  361. Spencer-Phillips PTN, Gay JL (1981) Domains of ATPase in plasma membrane and transport through infected plant cells. New Phytol 89:393–400CrossRefGoogle Scholar
  362. Speth EB, Lee YN, He SY (2007) (2007). Pathogen virulence factors as molecular probes of basic plant cellular functions. Curr Opinion Plant Biol 10:580–586CrossRefGoogle Scholar
  363. Spoel SH, Koornneef A, Claessens SM, Korzelius JP, Van-Pelt JA, Mueller MJ, Buchala AJ, Metraux J-P, Brown R, Kazan K, Van Loon LC, Dong X, Pieterse CMJ (2003) NPR1 modulates cross–talk between salicylate and jasmonate dependent defense pathways through a novel function in the cytosol. Plant Cell 15:760–770.  https://doi.org/10.1105/tpc.009159CrossRefPubMedPubMedCentralGoogle Scholar
  364. Sreeramulu S, Mostizky Y, Sunitha S, Shani E, Nahum H, Salomon D, Hayun LB, Gruetter C, Rauh D, Ori N, Sessa G (2013) BSKs are partially redundant positive regulators of brassinosteroid signaling in Arabidopsis. Plant J 74:905–919PubMedCrossRefGoogle Scholar
  365. Stein M, Dittgen J, Sánchez-Rodríguez C, Hou BH, Molina A, Schulze-Lefert P, Lipka V, Somerville S (2006) Arabidopsis PEN3/PDR8, an ATP binding cassette transporter, contributes to non-host resistance to inappropriate pathogens that enter by direct penetration. Plant Cell 18:731–746PubMedPubMedCentralCrossRefGoogle Scholar
  366. Stein E, Molitor A, Kogel KH, Waller F (2008) Systemic resistance in Arabidopsis conferred by the mycorrhizal fungus Piriformospora indica requires jasmonic acid signaling and the cytoplasmic function of NPR1. Plant Cell Physiol 49:1747–1751PubMedCrossRefGoogle Scholar
  367. Stitt M, von Schaewen A, Willmitzer L (1990) “Sink” regulation of photosynthetic metabolism in transgenic tobacco plants expressing yeast invertase in their cell wall involves a decrease of the Calvin-cycle enzymes and an increase in glycolytic enzymes. Planta 183:40–50CrossRefGoogle Scholar
  368. Stotz HU, Sawada Y, Shimada Y, Hirai MY, Sasaki E, Krischke M, Brown PD, Saito K, Kamiya Y (2011) Role of camalexin, indole glucosinolates, and side chain modification of glucosinolate-derived isothiocyanates in defense of Arabidopsis against Sclerotinia sclerotiorum. Plant J 67:81–93PubMedCrossRefPubMedCentralGoogle Scholar
  369. Strack D, Vogt T, Schliemann W (2003) Recent advances in betalain research. Phytochem 62:247Ð269PubMedCrossRefPubMedCentralGoogle Scholar
  370. Strawn MA, Marr SK, Inoue K, Inada N, Zubieta C, Wildermuth MC (2007) Arabidopsis isochorismate synthase functional in pathogen-induced salicylate biosynthesis exhibits properties consistent with a role in diverse stress responses. J Biol Chem 282:5919–5933PubMedCrossRefGoogle Scholar
  371. Sundaresha S, Rohini S, Appanna V K, Arthikala M K, Shanmugam N B, Shashibhushan N B, Kishore C M , Pannerselvam R , Kirti P B , Udayakumar M (2016). Co-overexpression of Brassica juncea NPR1 (BjNPR1) and Trigonella foenum-graecum defensin (Tfgd) in transgenic peanut provides comprehensive but varied protection against Aspergillus flavus and Cercospora arachidicola. Plant Cell Rep 35:1189–1203.  https://doi.org/10.1007/s00299-016-1945-7PubMedCrossRefGoogle Scholar
  372. Swarbrick PJ, Schulze-Lefert P, Scholes JD (2006) Metabolic consequences of susceptibility and resistance (race-specific and broad-spectrum) in barley leaves challenged with powdery mildew. Plant Cell Environ 29:1061–1076PubMedCrossRefGoogle Scholar
  373. Swiderski MR, Innes RW (2001) The Arabidopsis PBS1 resistance gene encodes a member of a novel protein kinase subfamily. Plant J 26:101–112PubMedCrossRefGoogle Scholar
  374. Tada Y, Spoel SH, Pajerowska-Mukhtar K, Mou Z, Song J, Wang C, Zuo J, Dong X (2008) Plant immunity requires conformational charges of NPR1 via S-nitrosylation and thioredoxins. Science 321:952–956PubMedCrossRefGoogle Scholar
  375. Takemoto D, Jones DA, Hardham AR (2003) GFP-tagging of cell components reveals the dynamics of sub-cellular re-organization in response to infection of Arabidopsis by oomycete pathogens. Plant J 33:775–792PubMedCrossRefGoogle Scholar
  376. Takemoto D, Jones DA, Hardham AR (2006) Re-organization of the cytoskeleton and endoplasmic reticulum in the Arabidopsis pen1-1 mutant inoculated with the non-adapted powdery mildew pathogen, Blumeria graminis f. sp. hordei. Mol Plant Pathol 7:553–563CrossRefGoogle Scholar
  377. Takken FL, Goverse A (2012) How to build a pathogen detector: structural basis of NB-LRR function. Curr Opinion Plant Biol 15:375–384CrossRefGoogle Scholar
  378. Tang D, Innes RW (2002) Overexpression of a kinase-deficient form of the EDR1 gene enhances powdery mildew resistance and ethylene-induced senescence in Arabidopsis. Plant J 32:975–983PubMedPubMedCentralCrossRefGoogle Scholar
  379. Tang XY, Xie MT, Kim YJ, Zhou JM, Klessig DF, Martin GB (1999) Overexpression of Pto activates defense responses and confers broad resistance. Plant Cell 11:15–29PubMedPubMedCentralCrossRefGoogle Scholar
  380. Tang D, Christiansen KM, Innes RW (2005a) Regulation of plant disease resistance, stress responses, cell death, and ethylene signaling in Arabidopsis by the EDR1 protein kinase. Plant Physiol 138:1018–1026PubMedPubMedCentralCrossRefGoogle Scholar
  381. Tang D, Ade J, Frye CA, Innes RW (2005b) Regulation of plant defense responses in Arabidopsis by EDR2, a PH and START domain-containing protein. Plant J 44:245–257PubMedPubMedCentralCrossRefGoogle Scholar
  382. Tang D, Ade J, Frye CA, Innes RW (2006) A mutation in the GTP hydrolysis site of Arabidopsis dynamin-related protein 1E confers enhanced cell death in response to powdery mildew infection. Plant J 47:75–84PubMedPubMedCentralCrossRefGoogle Scholar
  383. Tang W, Kim TW, Oses-Prieto JA, Sun Y, Deng Z, Zhu S, Wang R, Burlingame AL, Wang ZY (2008) BSKs mediate signal transduction from the receptor kinase BRI1 in Arabidopsis. Science 321:557–560PubMedPubMedCentralCrossRefGoogle Scholar
  384. Teh OK, Hofius D (2014) Membrane trafficking and autophagy in pathogen-triggered cell death and immunity. J Exp Bot 65:1297–1312PubMedCrossRefGoogle Scholar
  385. Thaler JS, Humphrey PT, Whiteman NK (2012) Evolution of jasmonate and salicylate signal crosstalk. Trends Plant Sci 17:260–270PubMedCrossRefGoogle Scholar
  386. Than ME, Helm M, Simpson DJ, Lottspeich F, Huber R, Gietl C (2004) The2.0-Å crystal structure of the KDEL-tailed cysteine endopeptidase from germinating endosperm of Ricinus communis confirms its function in the final stage of programmed cell death. J Mol Biol 336:1103–1116PubMedCrossRefGoogle Scholar
  387. Thomma BPHJ, Eggermont K, Penninckx IA, Mauch-Mani B, Vogelsang R, Cammue BP, Broekaert WF (1998) Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc Natl Acad Sci U S A 95:15107–15111PubMedPubMedCentralCrossRefGoogle Scholar
  388. Thomma BPHJ, Nelissen I, Eggermont K, Broekaert WF (1999) Deficiency in phytoalexin production causes enhanced susceptibility of Arabidopsis thaliana to the fungus Alternaria brassicicola. Plant J 19:163–171PubMedCrossRefGoogle Scholar
  389. Thomma BPHJ, Penninckx IAMA, Broekaert WF, Cammue BPA (2001) The complexity of disease signaling in Arabidopsis. Curr Opinion Immun 13:63–68CrossRefGoogle Scholar
  390. Thordal-Christensen H (2003) Fresh insights into processes of non-host resistance. Curr Opinion Plant Biol 6:351–357CrossRefGoogle Scholar
  391. Timonen KL, Vanninen E, de Hartog J, Ibald-Mulli A, Brunekreef B, Gold DR, Heinrich J, Hoek G, Lanki T, Peters A, Tarkiainen P, Kreyling W, Pekkanen J (2006) Effects of ultrafine and fine particulate and gaseous air pollution on cardiac autonomic control in subjects with coronary artery disease-the ULTRA study. J Expo Sci Environ Epidemiol 16(4):332–341PubMedCrossRefGoogle Scholar
  392. Tongue M, Griffiths PD (2004) Transfer of powdery mildew resistance from Brassica carinata to Brassica oleracea through embryo rescue. Plant Breed 123:587–589CrossRefGoogle Scholar
  393. Tronchin G, Poulain D, Herbaut J, Biguet J (1981) Localization of chitin in the cell wall of Candida albicans by means of wheat germ agglutinin. Fluorescence and ultra-structural studies. Eur J Cell Biol 26:121–128PubMedPubMedCentralGoogle Scholar
  394. Tsuda K, Somssich IE (2015) Transcriptional networks in plant immunity. New Phytol 206:932–947CrossRefGoogle Scholar
  395. Uemura T, Kim H, Saito C, Ebine K, Ueda T, Schulze-Lefert P, Nakano A (2012) Qa-SNAREs localized to the trans-Golgi network regulate multiple transport pathways and extracellular disease resistance in plants. Proc Natl Acad Sci U S A 109:1784–1789PubMedPubMedCentralCrossRefGoogle Scholar
  396. Ulker B, Shahid Mukhtar M, Somssich IE (2007) The WRKY70 transcription factor of Arabidopsis influences both the plant senescence and defense signaling pathways. Planta 226:125–137PubMedCrossRefGoogle Scholar
  397. Underwood W, Somerville SC (2008) Focal accumulation of defences at sites of fungal pathogen attack. J Exp Bot 59:3501–3508PubMedPubMedCentralCrossRefGoogle Scholar
  398. Underwood W, Somerville SC (2013) Perception of conserved pathogen elicitors at the plasma membrane leads to relocalization of the Arabidopsis PEN3 transporter proc Natl Acad Sci. USA 110:12492–12497CrossRefGoogle Scholar
  399. Van der Does D, Leon-Reyes A, Koornneef A, Van Verk MC, Rodenburg N, Pauwels L, Goossens A, Korbes AP, Memelink J, Ritsema T, Van Wees SCM, Pieterse CMJ (2013) Salicylic acid suppresses jasmonic acid signaling downstream of SCFCOI1-JAZ by targeting GCC promoter motifs via transcription factor ORA59. Plant Cell 25:744–761PubMedPubMedCentralCrossRefGoogle Scholar
  400. Van der Luit AH, Piatti T, van Doorn A, Musgrave A, Felix G, Boller T, Munnik T (2000) Elicitation of suspension-cultured tomato cells triggers the formation of phosphatidic acid and diacylglycerol pyrophosphate. Plant Physiol 123:1507–1516PubMedPubMedCentralCrossRefGoogle Scholar
  401. Van Schie CC, Takken FL (2014) Susceptibility genes: how to be a good host. Annu Rev Phytopathol 52:551–581PubMedCrossRefPubMedCentralGoogle Scholar
  402. Vassileva VN, Kouchi H, Ridge RW (2005) Microtubule dynamics in living root hairs: transient slowing by lipochitin oligosaccharide nodulation signals. Plant Cell 17:1777–1787PubMedPubMedCentralCrossRefGoogle Scholar
  403. Verhagen BWM, Glazebrook J, Zhu T, Chang HS, van Loon LC, Pieterse CMJ (2004) The transcriptome of rhizobacteria-induced systemic resistance in Arabidopsis. Mol Plant-Microbe Interact 17:895–908PubMedCrossRefGoogle Scholar
  404. Veronese P, Nakagami H, Bluhm B, AbuQamar S, Chen X, Salmeron J, Dietrich RA, Hirt H, Mengiste T (2006) The membrane-anchored BOTRYTIS-INDUCED KINASE1 plays distinct roles in Arabidopsis resistance to necrotrophic and biotrophic pathogens. Plant Cell 18:257–273PubMedPubMedCentralCrossRefGoogle Scholar
  405. Vivancos J, Labbé C, Menzies JG, Bélanger RR (2015) Silicon-mediated resistance of Arabidopsis against powdery mildew involves mechanisms other than the salicylic acid (SA)-dependent defence pathway. Mol Plant Pathol 16:572–582PubMedCrossRefGoogle Scholar
  406. Vlieghe K, Boudolf V, Beemster GTS, Maes S, Magyar Z, Atanassova A, de Almeida EJ, De Groodt R, Inzé D, De Veylder L (2005) The DP-E2F-like gene DEL1 controls the endocycle in Arabidopsis thaliana. Curr Biol 15:59–63CrossRefGoogle Scholar
  407. Voegele RT, Stuck C, Hahn M, Mendgen K (2001) The role of haustoria in sugar supply during infection of broad bean by the rust fungus Uromyces fabae. Proc Natl Acad Sci U S A 98:8133–8138PubMedPubMedCentralCrossRefGoogle Scholar
  408. Vogel J, Somerville S (2000) Isolation and characterization of powdery mildew-resistant Arabidopsis mutants. Proc Natl Acad Sci U S A 97:1897–1902PubMedPubMedCentralCrossRefGoogle Scholar
  409. Vogel JP, Raab TK, Schiff C, Somerville SC (2002) PMR6, a pectate lyase–like gene required for powdery mildew susceptibility in Arabidopsis. Plant Cell 14:2095–2106PubMedPubMedCentralCrossRefGoogle Scholar
  410. Vogel JP, Raab TK, Somerville CR, Somerville SC (2004) Mutations in PMR5 result in powdery mildew resistance and altered cell wall composition. Plant J 40:968–978CrossRefGoogle Scholar
  411. von Schaewen A, Stitt M, Schmidt R, Sonnewald U, Willmitzer L (1990) Expression of a yeast-derived invertase in the cell wall of tobacco and Arabidopsis plants leads to accumulation of carbohydrate and inhibition of photosynthesis and strongly influences growth and phenotype of transgenic tobacco plants. EMBO J 9:3033–3044CrossRefGoogle Scholar
  412. Vorwerk S, Schiff C, Santamaria M, Koh S, Nishimura M, Vogel J, Somerville C, Somerville S (2007) EDR2 negatively regulates salicylic acid-based defenses and cell death during powdery mildew infections of Arabidopsis thaliana. BMC Plant Biol 7:35PubMedPubMedCentralCrossRefGoogle Scholar
  413. Wagner S, Stuttmann J, Rietz S, Guerois R, Brunstein E, Bautor J, Niefind K, Parker JE (2013) Structural basis for signaling by exclusive EDS1 heteromeric complexes with SAG101 or PAD4 in plant innate immunity. Cell Host Microbe 14:619–630PubMedCrossRefPubMedCentralGoogle Scholar
  414. Walker JC, Williams PH (1965) The inheritance of powdery mildew resistance in cabbage. Plant Dis Reptr 49:198–201Google Scholar
  415. Wally O, Jayaraj J, Punja ZK (2009) Comparative resistance to foliar fungal pathogens in transgenic carrot plants expressing genes encoding for chitinase, beta–1, 3– glucanase and peroxidase. Eur J Plant Pathol 123:331–342CrossRefGoogle Scholar
  416. Walters DR, Ratsep J, Havis Neil D (2013) Controlling crop diseases using induced resistance: challenges for the future. J Exp Bot 64:1263–1280PubMedCrossRefPubMedCentralGoogle Scholar
  417. Wan J, Zhang XC, Neece D, Ramonell KM, Clough S, Kim SY, Stacey MG, Stacey G (2008) A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis. Plant Cell 20:471–481PubMedPubMedCentralCrossRefGoogle Scholar
  418. Wang X (2004) Lipid signaling. Curr Opinion Plant Biol 7:329–336CrossRefGoogle Scholar
  419. Wang D, Amornsiripanitch N, Dong X (2006) A genomic approach to identify regulatory nodes in the transcriptional network of systemic acquired resistance in plants. PLOS Pathol 2:e123CrossRefGoogle Scholar
  420. Wang W, Devoto A, Turner JG, Xiao S (2007) Expression of the membrane-associated resistance protein RPW8 enhances basal defense against biotrophic pathogens. Mol Plant-Microbe Interact 20:966–976PubMedCrossRefPubMedCentralGoogle Scholar
  421. Wang W, Wen Y, Berkey R, Xiao S (2009) Specific targeting of the Arabidopsis resistance protein RPW8.2 to the interfacial membrane encasing the fungal haustorium renders broad-spectrum resistance to powdery mildew. Plant Cell 21:2898–2913PubMedPubMedCentralCrossRefGoogle Scholar
  422. Wang W, Berkey R, Wen Y, Xiao S (2010) Accurate and adequate spatiotemporal expression and localization of RPW8.2 is key to activation of resistance at the host-pathogen interface. Plant Signalling Behav 5:1002–1005CrossRefGoogle Scholar
  423. Wang Y, Nishimura MT, Zhao T, Tang D (2011a) ATG2, an autophagy-related protein, negatively affects powdery mildew resistance and mildew-induced cell death in Arabidopsis. Plant J 68:74–87PubMedCrossRefPubMedCentralGoogle Scholar
  424. Wang Y, Wu Y, Tang D (2011b) The autophagy gene, ATG18a, plays a negative role in powdery mildew resistance and mildew-induced cell death in Arabidopsis. Plant Signalling Behav 6:1408–1410CrossRefGoogle Scholar
  425. Wang WM, Ma XF, Zhang Y, Luo MC, Wang GL, Bellizzi M, Xiong XY, Xiao SY (2012) PAPP2C interacts with the atypical disease resistance protein RPW8.2 and negatively regulates salicylic acid-dependent defense responses in Arabidopsis. Mol Plant 5:1125–1137PubMedCrossRefPubMedCentralGoogle Scholar
  426. Wang W, Zhang Y, Wen Y, Berkey R, Ma X, Pan Z, Bendigeri D, King H, Zhang Q, Xiao S (2013) A comprehensive mutational analysis of the Arabidopsis resistance protein RPW8.2 reveals key amino acids for defense activation and protein targeting. Plant Cell 25:4242–4261PubMedPubMedCentralCrossRefGoogle Scholar
  427. Wasteneys GO (2004) Progress in understanding the role of microtubules in plant cells. Curr Opinion Plant Biol 7:651–660CrossRefGoogle Scholar
  428. Wasteneys GO, Galway ME (2003) Remodeling the cytoskeleton for growth and form: an overview with some new views. Ann Rev Plant Biol 54:691–722CrossRefGoogle Scholar
  429. Wawrzynska A, Rodibaugh NL, Innes RW (2010) Synergistic activation of defense responses in Arabidopsis by simultaneous loss of the GSL5 callose synthase and the EDR1 protein kinase. Mol Plant-Microbe Interact 23:578–584PubMedPubMedCentralCrossRefGoogle Scholar
  430. Weis C, Huckelhoven R, Eichmann R (2013) LIFEGUARD proteins support plant colonization by biotrophic powdery mildew fungi. J Exp Bot 64:3855–3867PubMedPubMedCentralCrossRefGoogle Scholar
  431. Weis C, Hildebrandt U, Hoffmann T, Hemetsberger C, Pfeilmeier S, Konig C, Schwab W, Eichmann R, Huckelhoven R (2014) CYP83A1 is required for metabolic compatibility of Arabidopsis with the adapted powdery mildew fungus Erysiphe cruciferarum. New Phytol 202:1310–1319PubMedCrossRefPubMedCentralGoogle Scholar
  432. Weymann K, Hunt M, Uknes S, Neuenschwander U, Lawton K, Steiner HY, Ryals J (1995) Suppression and restoration of lesion formation in Arabidopsis lsd mutants. Plant Cell 7:2013–2022PubMedPubMedCentralCrossRefGoogle Scholar
  433. Wiermer M, Feys BJ, Parker JE (2005) Plant immunity-the EDS1 regulatory node. Curr Opinion Plant Biol 8:383–389CrossRefGoogle Scholar
  434. Williams PH, Walker JC, Pound GS (1968) Hybelle and Sanibel, multiple disease-resistant F1 hybrid cabbages. Phytopathology 58:791–796Google Scholar
  435. Wilson IW, Schiff CL, Hughes DE, Somerville SC (2001) Quantitative trait loci analysis of powdery mildew disease resistance in the Arabidopsis thaliana accession Kashmir-1. Genetics 158:1301–1309PubMedPubMedCentralGoogle Scholar
  436. Winge P, Brembu T, Kristensen R, Bones AM (2000) Genetic structure and evolution of RAC-GTPases in Arabidopsis thaliana. Genetics 156:1959–1971PubMedPubMedCentralGoogle Scholar
  437. Wittstock U, Halkier BA (2002) Glucosinolate research in the Arabidopsis era. Trends Plant Sci 7:263–270PubMedCrossRefPubMedCentralGoogle Scholar
  438. Wright DP, Baldwin BC, Shephard MC, Scholes JD (1995a) Source-sink relationships in wheat leaves infected with powdery mildew. II. Changes in the regulation of the Calvin cycle. Physiol Mol Plant Pathol 47:255–267CrossRefGoogle Scholar
  439. Wright DP, Baldwin BC, Shephard MC, Scholes JD (1995b) Source-sink relationships in wheat leaves infected with powdery mildew. I. Alterations in carbohydrate metabolism. Physiol Mol Plant Pathol 47:237–253CrossRefGoogle Scholar
  440. Wu Y, Zhang D, Chu JY, Boyle P, Wang Y, Brindle ID, De Luca V, Despres C (2012) The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid. Cell Rep 1:639–647PubMedCrossRefPubMedCentralGoogle Scholar
  441. Wu G, Liu S, Zhao Y, Wang W, Kong Z, Tang D (2015) Enhanced disease resistance 4 associates with clathrin heavy chain 2 and modulates plant immunity by regulating relocation of edr1 in Arabidopsis. Plant Cell 27:857–873PubMedPubMedCentralCrossRefGoogle Scholar
  442. Xiao S, Ellwood S, Findlay K, Oliver RP, Turner JG (1997) Characterization of three loci controlling resistance of Arabidopsis thaliana accession Ms-0 to two powdery mildew diseases. Plant J 12(4):757–768CrossRefGoogle Scholar
  443. Xiao S, Ellwood S, Calis O, Patrick E, Li T, Coleman M, Turner JG (2001) Broad-spectrum mildew resistance in Arabidopsis thaliana mediated by RPW8. Science 291:118–120PubMedCrossRefPubMedCentralGoogle Scholar
  444. Xiao S, Brown S, Patrick E, Brearley C, Turner JG (2003) Enhanced transcription of the Arabidopsis disease resistance genes RPW8.1 and RPW8.2 via a salicylic acid–dependent amplification circuit is required for hypersensitive cell death. Plant Cell 15:33–45PubMedPubMedCentralCrossRefGoogle Scholar
  445. Xiao S, Emerson B, Ratanasut K, Patrick E, O’Neill C, Bancroft I, Turner JG (2004) Origin and maintenance of a broad-spectrum disease resistance locus in Arabidopsis. Mol Biol Evol 21:1661–1672PubMedCrossRefPubMedCentralGoogle Scholar
  446. Xiao S, Calis O, Patrick E, Zhang G, Charoenwattana P, Muskett P, Parker JE, Turner JG (2005) The atypical resistance gene, RPW8, recruits components of basal defence for powdery mildew resistance in Arabidopsis. Plant J 42:95–110CrossRefGoogle Scholar
  447. Xu X, Kanbara K, Azakami H, Kato A (2004) Expression and characterization of Saccharomyces cerevisiae Cne1p, a calnexin homologue. J Biochem 135(5):615–618PubMedCrossRefGoogle Scholar
  448. Xu T, Wen M, Nagawa S, Fu Y, Chen JG, Wu MJ, Perrot-Rechenmann C, Friml J, Jones AM, Yang Z (2010) Cell surface- and rho GTPase-based auxin signaling controls cellular interdigitation in Arabidopsis. Cell 143:99–110PubMedPubMedCentralCrossRefGoogle Scholar
  449. Yan S, Dong X (2014) Perception of the plant immune signal salicylic acid. Curr Opinion Plant Biol 20:64–68CrossRefGoogle Scholar
  450. Yang Y, Shah J, Klessig DF (1997) Signal perception and transduction in plant defense responses. Genes Dev 11:1621–1639PubMedCrossRefGoogle Scholar
  451. Yang X, Wang W, Coleman M, Orgil U, Feng J, Ma X, Ferl R, Turner JG, Xiao S (2009) Arabidopsis 14-3-3 lambda is a positive regulator of RPW8-mediated disease resistance. Plant J 60:539–550PubMedCrossRefGoogle Scholar
  452. Yang L, Qin L, Liu G, Peremyslov VV, Dolja VV, Wei Y (2014) Myosins XI modulate host cellular responses and penetration resistance to fungal pathogens. Proc Natl Acad Sci U S A 111:13996–14001PubMedPubMedCentralCrossRefGoogle Scholar
  453. Yedidia I, Benhamou N, Chet I (1999) Induction of defense responses in cucumber plants (Cucumis sativus L.) by the biocontrol agent Trichoderma harzianum. Appl Env Microbiol 65:1061–1070Google Scholar
  454. Yoshimoto K, Jikumaru Y, Kamiya Y, Kusano M, Consonni C, Panstruga R, Ohsumi Y, Shirasu K (2009) Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis. Plant Cell 21:2914–2927PubMedPubMedCentralCrossRefGoogle Scholar
  455. Yu D, Chen C, Chen Z (2001) Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression. Plant Cell 13:1527–1540PubMedPubMedCentralCrossRefGoogle Scholar
  456. Yun BW, Atkinson HA, Gaborit C, Greenland A, Read ND, Pallas JA, Loake GJ (2003) Loss of actin cytoskeletal function and EDS1 activity, in combination, severely compromises non-host resistance in Arabidopsis against wheat powdery mildew. Plant J 34:768–777PubMedCrossRefGoogle Scholar
  457. Zablackis E, Huang J, Muller B, Darvill AG, Albersheim P (1995) Characterization of the cell wall polysaccharides of Arabidopsis thaliana leaves. Plant Physiol 107:1129–1138PubMedPubMedCentralCrossRefGoogle Scholar
  458. Zander M, Chen S, Imkampe J, Thurow C, Gatz C (2012) Repression of the Arabidopsis thaliana jasmonic acid/ethylene-induced defense pathway by TGA-interacting glutaredoxins depends on their C-terminal ALWL motif. Mol Plant 5:831–840PubMedCrossRefGoogle Scholar
  459. Zander M, Thurow C, Gatz C (2014) TGA transcription factors activate the salicylic acid-suppressible branch of the ethylene-induced defense program by regulating ORA59 expression. Plant Physiol 165:1671–1683PubMedPubMedCentralCrossRefGoogle Scholar
  460. Zeller FJ, Lutz J, Reimlein E, Limpert E, Koenig J (1993) Identification of powdery mildew resistance genes in common wheat (Triticum aestivum L.) II. French cultivars. Agronomie 13:201–207CrossRefGoogle Scholar
  461. Zeyen RJ, Kruger WM, Lyngkjær MF, Carver TLW (2002) Differential effects of D-mannose and 2-deoxym-D-glucose on attempted powdery mildew fungal infection of inappropriate and appropriate gramineae. Physiol Mol Plant Pathol 61:315–323CrossRefGoogle Scholar
  462. Zhang C, Shapiro AD (2002) Two pathways act in an additive rather than obligatorily synergistic fashion to induce systemic acquired resistance and PR gene expression. BMC Plant Biol 2:9PubMedPubMedCentralCrossRefGoogle Scholar
  463. Zhang Y, Tessaro MJ, Lassner M, Li X (2003) Knockout analysis of Arabidopsis transcription factors TGA2, TGA5, and TGA6 reveals their redundant and essential roles in systemic acquired resistance. Plant Cell 15:2647–2653PubMedPubMedCentralCrossRefGoogle Scholar
  464. Zhang Z, Feechan A, Pedersen C, Newman MA, Qiu JL, Olesen KL, Thordal-Christensen H (2007) A SNARE-protein has opposing functions in penetration resistance and defence signalling pathways. Plant J 49:302–312PubMedCrossRefGoogle Scholar
  465. Zhang X, Francis MI, Dawson WO, Graham JH, Orbovic V (2010) Over-expression of the Arabidopsis NPR1 gene in citrus increases resistance to citrus canker. Eur J Plant Pathol 128:91–100CrossRefGoogle Scholar
  466. Zhang D, Liu D, Lv X, Wang Y, Xun Z, Liu Z, Li F, Lu H (2014) The cysteine protease CEP1, a key executor involved in tapetal programmed cell death, regulates pollen development in Arabidopsis. Plant Cell 26:2939–2961PubMedPubMedCentralCrossRefGoogle Scholar
  467. Zhang LL, Ma XF, Zhou BB, Zhao JQ, Fan J, Huang F, Li Y, Wang WM (2015a) EDS1-mediated basal defense and SA-signaling contribute to post-invasion resistance against tobacco powdery mildew in Arabidopsis. Physiol Mol Plant Pathol 91:120–130CrossRefGoogle Scholar
  468. Zhang Q, Berkey R, Pan Z, Wang W, Zhang Y, Ma X, King H, Xiao S (2015b) Dominant negative RPW8.2 fusion proteins reveal the importance of haustorium-oriented protein trafficking for resistance against powdery mildew in Arabidopsis. Plant Signalling Behav 10:e989766CrossRefGoogle Scholar
  469. Zhao J, Last RL (1996) Coordinate regulation of the tryptophan biosynthetic pathway and indolic phytoalexin accumulation in Arabidopsis. Plant Cell 8:2235–2244PubMedPubMedCentralGoogle Scholar
  470. Zhao C, Nie H, Shen Q, Zhang S, Lukowitz W, Tang D (2014) EDR1 physically interacts with MKK4/MKK5 and negatively regulates a MAP kinase cascade to modulate plant innate immunity. PLoS Genet 10:e1004389PubMedPubMedCentralCrossRefGoogle Scholar
  471. Zhong X, Xi L, Lian Q, Luo X, Wu Z, Seng S, Yuan X, Yi M (2015) The NPR1 homolog GhNPR1 plays an important role in the defense response of Gladiolus hybridus. Plant Cell Reptr 34:1063–1074CrossRefGoogle Scholar
  472. Zhou N, Tootle TL, Tsui F, Klessig DF, Glazebrook J (1998) PAD4 functions upstream from salicylic acid to control defense responses in Arabidopsis. Plant Cell 10:1021–1030PubMedPubMedCentralCrossRefGoogle Scholar
  473. Zhou L-Z, Howing T, Muller B, Hammes UZ, Getl C, Dresselhaus T (2016) Expression analysis of KDEL CysEPs programmed cell death markers during reproduction in Arabidopsis. Plant Reprod 29:265–272PubMedCrossRefPubMedCentralGoogle Scholar
  474. Zimmerli L, Stein M, Lipka V, Schulze-Lefert P, Somerville S (2004) Host and non-host pathogens elicit different jasmonate/ethylene responses in Arabidopsis. Plant J 40:633–646PubMedCrossRefGoogle Scholar
  475. Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) Genevestigator. Arabidopsis microarray data base and analysis toolbox. Plant Physiol 136:2621–2632PubMedPubMedCentralCrossRefGoogle Scholar
  476. Zipfel C, Robatzek S, Navarro L, Oakeley EJ, Jones JDG, Felix G, Boller T (2004) Bacterial disease resistance in Arabidopsis through flagellin perception. Nat Intl J Sci 428:764–767Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Govind Singh Saharan
    • 1
  • Naresh K. Mehta
    • 1
  • Prabhu Dayal Meena
    • 2
  1. 1.Department of Plant PathologyCCS Haryana Agricultural UniversityHisarIndia
  2. 2.Crop Protection Unit, ICAR-Directorate of Rapeseed-Mustard ResearchBharatpurIndia

Personalised recommendations