Advertisement

The Pathogen

  • Govind Singh Saharan
  • Naresh K. Mehta
  • Prabhu Dayal Meena
Chapter

Abstract

On the basis of morphological, pathological, host range, anatomical, phylogenetical, and developmental features, and characteristics of the powdery mildew fungus at anamorph, and teleomorph states the major causal organism of crucifer’s powdery mildew has been identified as Erysiphe cruciferarum. Under artificial inoculation conditions three other powdery mildew fungi viz., Golovinomyces cichoracearum, G. orontii, and Oidium neolycopersici are able to complete their anamorph state on a crucifers weed Arabidopsis thaliana. Arabidopsis–powdery mildew host-pathosystem has been used recently as a model system for molecular and genetical studies all over the world. Morphological features of all the four powdery mildew species pathogenic to crucifers’, Brassica species, and Arabidopsis have been described as observed on the host species. Classification, taxonomy, and nomenclature of powdery mildew pathogens of crucifers have been updated on the basis of features on the surfaces of powdery mildew conidia revealed through scanning electron microscopy, and light microscopy at anamorph state where teleomorph state was absent. The four powdery mildew species pathogenic on crucifers have been distinguished on the basis of conidial size, shape, appearance, number of conidia per conidiophore, conidiophores shape, and size, haustoria, hyphal branch angles, conidial germination with respect to temperature, relative humidity, light, and substrate, size of chasmothecia, asci, ascospores, number of ascospores per chasmothecium, and type of appendages. Phylogenetics relationship of crucifers powdery mildew with other powdery mildew species has been determined through sequence analysis of the ITS rDNA, and sequence comparison of DNA encoding the 5.8s, rRNA, and ITS2. The powdery mildew pathogen genomes, and transcriptomes have been determined. Powdery mildew fungi have sizeable genomes, which are about four times larger than those of other ascomycetes. The number of coding genes in the powdery mildew genomes is comparatively low. The structure of powdery mildew family, Erysiphaceae, the position of genes Erysiphe, its sections, and subsections Golovinomyces, key to the recognized genera, and species of the family, and relationship within the family have been exploited.

References

  1. Adam L, Somerville SC (1996) Genetic characterization of five powdery mildew disease resistance loci in Arabidopsis thaliana. Plant J 9:341–356CrossRefGoogle Scholar
  2. Adam L, Ellwood S, Wilson I, Saenz G, Xiao S, Oliver RP, Turner JG, Somerville S (1999) Comparison of Erysiphe cichoracearum and E. cruciferarum and a survey of 360 Arabidopsis thaliana accessions for resistance to these two powdery mildew pathogens. Mol Plant Microbe Interact 12:1031–1043Google Scholar
  3. Arnaud G (1921) Etude sur les champignons parasites. Ann des Epiphy 7:1–115Google Scholar
  4. Ashraf S, Yadav B (2009) Studies on the anamorph characters and management of powdery mildew of mustard. Trends Biosci 2(2):79–80Google Scholar
  5. Bai YL, Pavan S, Zheng Z, Zappel NF, Reinstadler A, Lotti C, De Giovanni C, Ricciardi L, Lindhout P, Visser R, Theres K, Panstruga R (2008) Naturally occurring broad-spectrum powdery mildew resistance in a central American tomato accession is caused by loss of Mlo function. Mol Plant Microbe Interact 21:30–39PubMedCrossRefGoogle Scholar
  6. Blumer S (1933) Die Erysiphaceen Mitteleuropasunter besonderer Beriicksichtigung der Schweiz. Beitr Krypt-Fl Schweiz 7(1):1–483Google Scholar
  7. Blumer S (1967) Echte Mehltaupilze (Erysiphaceae). G Fischer, JenaGoogle Scholar
  8. Boesewinkel HJ (1976) Cleistothecia of powdery mildews in New Zealand. Trans Br Mycol Soc 67:143–146CrossRefGoogle Scholar
  9. Boesewinkel HJ (1977) Identification of Erysiphaceae by conidial characteristics. Rev Mycol 41:493–507Google Scholar
  10. Boesewinkel HJ (1980) The morphology of the imperfect states of powdery mildews (Erysiphaceae). Bot Rev 46:167–224CrossRefGoogle Scholar
  11. Braun U (1977) Das Erysiphaceen-Keimungsbild als taxonomisches Merkmal und Bestimmungshilfe. Boletus 1(1):3–8Google Scholar
  12. Braun U (1978) Beitrag zur Systematik und Nomenklatur der Erysiphales. Feddes Repert 88:655–665CrossRefGoogle Scholar
  13. Braun U (1980a) Morphological studies in the genus Oidium. Flora 170:77–90CrossRefGoogle Scholar
  14. Braun U (1980b) The genus Leveillula- a preliminary study. Nova Hedwigia 32:565–583Google Scholar
  15. Braun U (1981) Taxonomic studies in the genus Erysiphe I. Generic delimitation and position in the system of the Erysiphaceae. Nova Hedwigia 34:679–719Google Scholar
  16. Braun U (1987) A monograph of the Erysiphales (powdery mildews). Beihefte zur Nova Hedwigia 89:1–700. J Cramer Berlin, GermanyGoogle Scholar
  17. Braun U (1995) The powdery mildews (Erysiphales) of Europe. VEB G Fischer Verlag, JenaGoogle Scholar
  18. Braun U, Cook RTA (2012) Taxonomic manual of the Erysiphales (powdery mildews), CBS biodiversity series no. 11. CBS-KNAW Fungal Diversity Centre, UtrechtGoogle Scholar
  19. Chandran D, Inada N, Hather G, Kleindt CK, Wildermuth MC (2010) Laser microdissection of Arabidopsis cells at the powdery mildew infection site reveals site-specific processes and regulators. PNAS 107(1):460–465PubMedPubMedCentralCrossRefGoogle Scholar
  20. Chiddarwar PP (1955) A new species of Erysiphe. Curr Sci 24:420–421Google Scholar
  21. Choi HO, Choi Y, Kim DS, Hwang IS, Choi DS, Kim NH, Lee DH, Shin HD, Nam J, Hwang BK (2009) First report of powdery mildew caused by Erysiphe cruciferarum on Arabidopsis thaliana in Korea. Plant Pathol J 25(1):86–90CrossRefGoogle Scholar
  22. Chona BL, Kapoor JN, Gill HS (1960) Studies on powdery mildews from India-I. Indian Phytopathol 13:72–75Google Scholar
  23. Cook RTA, Inman AJ, Billings C (1997) Identification and classification of powdery mildew anamorphs using light and scanning electron microscopy and host range data. Mycol Res 101(8):975–1002CrossRefGoogle Scholar
  24. De Candolle AP (1805) Flore Francaise 2:272–275Google Scholar
  25. De Candolle AP (1815) Flore Francaise 6:104–109Google Scholar
  26. De Schweinitz LD (1834) Synopsis fungorum in America. Trans Am Philos Soc 4:269–270CrossRefGoogle Scholar
  27. Dixon GR (1978) Powdery mildews of vegetable and allied crops. In: Spencer DM (ed) The powdery mildews. Academic, London, pp 495–525Google Scholar
  28. Dixon G (1981) Pathogens of Brassicas. In: Vegetable crop diseases. Macmillan, London, pp 116–119Google Scholar
  29. Farris JJ (1989) The retention index and the rescaled consistency index. Cladistics 5:417–419CrossRefGoogle Scholar
  30. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  31. Fries EM (1829) Systema mycologicum 3:234–247Google Scholar
  32. Gollner K, Schweizer P, Bai Y, Panstruga R (2008) Natural genetic resources of Arabidopsis thaliana reveal a high prevalence and unexpected phenotypic plasticity of RPW8-mediated powdery mildew resistance. New Phytol 177:725–742CrossRefGoogle Scholar
  33. Golovin N (1958) Obsor rodov semeistva Erysiphaceae. Sborn. Rabot. Inst Prikl Zool I Fitop 5:101–139Google Scholar
  34. Hacquard S, Kracher B, Maekawa T, Vernaldi S, Schulze-Lefert P, Ver Loren van Themaat E (2013) Mosaic genome structure of the barley powdery mildew pathogen and conservation of transcriptional programs in divergent hosts. PNAS 110(24):E2219–E2228PubMedCrossRefPubMedCentralGoogle Scholar
  35. Hall D (1994) Interactions of Arabidopsis with fungal pathogens. Ph.D. thesis. Norwich, University of East AngliaGoogle Scholar
  36. Hirata K (1942) On the shape of the germ tubes of Erysipheae. Bull Chiba Coll Hort 5:34–49Google Scholar
  37. Hirata K (1955) On the shape of the germ tubes of Erysipheae (II). Bull Fac Agric Niigata Univ 7:24–36Google Scholar
  38. Hirata K (1969) Notes on host range and geographic distribution of the powdery mildew fungi II. Trans Mycol Soc Jpn 10(2):42–72Google Scholar
  39. Hirata K (1976) Notes on host range and geographic distribution of the powdery mildew fungi VI. Distribution of the hosts of powdery mildew fungi in the families of angiosperms. Trans Mycol Soc Jpn 17:35–62Google Scholar
  40. Hirata K, Kojima M (1962) On the structure and sack of some powdery mildews, with some considerations on the significance of the sack. Trans Mycol Soc Jpn 3:43–46Google Scholar
  41. Hirata T, Takamatsu S (1996) Nucleotide sequence diversity of rDNA internal transcribed spacers extracted from conidia and cleistothecia from several powdery mildew fungi. Mycoscience 37:283–288CrossRefGoogle Scholar
  42. Homma Y (1937) Erysiphaceae of Japan. J Fac Agric Hokkaida Univ 38:183–461Google Scholar
  43. Ialongo MT (1992) Taxonomic study of some species of the genus Erysiphe. Mycotaxon 44:251–256Google Scholar
  44. Jarvis W (1964) Thermal and translocated introduction of endophytic mycelium in two powdery mildews. Nature 203:895CrossRefGoogle Scholar
  45. Jones H, Whipps JM, Gurr SJ (2001) The tomato powdery mildew fungus Oidium neolycopersici. Mol Plant Pathol 2:303–309CrossRefGoogle Scholar
  46. Jorgensen JH (1988) Erysiphe graminis, powdery mildew of cereals and grasses. Adv Plant Pathol 6:135–157Google Scholar
  47. Junell L (1965) Nomencultural remarks on some species of Erysiphaceae. Trans Br Mycol Soc 48(4):539–548CrossRefGoogle Scholar
  48. Junell L (1967) Erysiphaceae of Sweden. Symbolae Botanicae Upsalienses 19:1–117Google Scholar
  49. Kapoor JW (1965) Two powdery mildews from Sikkim. Indian Phytopathol 18:90–91Google Scholar
  50. Katumoto K (1973) Notes on the genera Lanomyces Gaum. and Cystotheca Berk. et Curt. Rep Tottori Mycol Inst 10:437–446Google Scholar
  51. Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Ainsworth Bisby’s dictionary of the fungi, 10th edn. CAB International, WallingfordCrossRefGoogle Scholar
  52. Koch E, Slusarenko AJ (1990) Fungal pathogens of Arabidopsis thaliana (L.) Heyhn. Bot Helv 100:257–268Google Scholar
  53. Kuhn H, Kwaaitaal M, Kusch S, Acevedo-Garcia J, Wu H, Panstruga R (2016) Biotrophy at its best: novel findings and unsolved mysteries of the Arabidopsis-powdery mildew pathosystem. Arabidopsis Book 14:e0184.  https://doi.org/10.1199/tab.0184CrossRefPubMedPubMedCentralGoogle Scholar
  54. Kusch S, Ahmadinejad N, Panstruga R, Kuhn H (2014) In silico analysis of the core signaling proteome from the barley powdery mildew pathogen (Blumeria graminis f.sp. hordei). BMC Genomics 15(1):843PubMedPubMedCentralCrossRefGoogle Scholar
  55. Leveille J (1851) Organisation et disposition methodique des especes qui composent le genre Erysiphe. Ann Sci Nat Bot III Ser 15:109–179Google Scholar
  56. Linnaeus C (1753) Species plantarum. Tomus I. Impensis Laurentii Salvii, HolmiaeGoogle Scholar
  57. Marchal E (1902) De la specialization du parasitisme chez l’Erysiphe graminis. Comptes Rendus 135:210–212Google Scholar
  58. Marchal E (1903) De la specialization de la parasitism chez.-I: Erysiphe graminis. Compt Rend Acad: des Sci, Paris 135:210–212. 1067–1068; 136, 1280–1281Google Scholar
  59. Meena PD, Mehta N, Rai PK, Saharan GS (2018) Geographical distribution of rapeseed-mustard powdery mildew disease in India. J Mycol Plant Pathol 48(3):284–302Google Scholar
  60. Mehta N, Sangwan MS, Saharan GS (2005) Fungal diseases of rapeseed-mustard. In: Saharan GS, Mehta N, Sangwan MS (eds) Diseases of oilseed crops. Indus Publication Co, New Delhi, pp 15–86Google Scholar
  61. Merat FV (1821) Nouvelle Flore des Environs de Paris, 2nd, vol I. ParisGoogle Scholar
  62. Micali C, Gollner K, Humphry M, Consonni C, Panstruga R (2008) The powdery mildew disease of Arabidopsis: a paradigm for the interaction between plants and biotrophic fungi. Bio OneGoogle Scholar
  63. Micali C, Neumann U, Grunewald D, Panstruga R, O’Connell R (2011) Biogenesis of a specialized plant–fungal interface during host cell internalization of Golovinomyces orontii haustoria. Cell Microbiol 13:210–226CrossRefGoogle Scholar
  64. Mohanta TK, Bae H (2015) The diversity of fungal genome. Biol Proced Online 17:8PubMedPubMedCentralCrossRefGoogle Scholar
  65. Munro JM, Lennard JH (1982) Variation in the development of Erysiphe cruciferarum Opiz. Ex.L Junnel on two cultivars of Brassica napus. Cruciferae Newslett 7:68–69Google Scholar
  66. Nagy GS (1977) Erysiphe monardae sp. nov. Phytopathol Z 88:285–286CrossRefGoogle Scholar
  67. Neger FW (1901) Beitrage zur Biologie der Erysipheen. Flora 88:333–370Google Scholar
  68. Neger FW (1902) Beitrage zur Biologie der Erysipheen. Flora 90:221–272Google Scholar
  69. O’Donnell KO (1992) Ribosomal DNA internal transcribed spacers are highly divergent in the phytopathogenic ascomycete Fusarium sambucinum (Gibberella pulicaris). Curr Genet 22:213–220PubMedCrossRefGoogle Scholar
  70. Palla E (1899) Uber die gattung Phyllactinia. Ber. Deustch. Bot Ges 17:64–72Google Scholar
  71. Parmelee JA (1977) The fungi of Ontario. II. Erysiphaceae (mildews). Can J Bot 55:1940–1983CrossRefGoogle Scholar
  72. Persoon CH (1796) Observations mycologicae sur descriptions tan novorum quam notibilium fungorum exhibitae. Part 1:115Google Scholar
  73. Persoon CH (1801) Synopsis methodica fungorium, vol I, pp 124Google Scholar
  74. Plotnikova JM, Reuber TL, Ausubel FM, Pfister DH (1998) Powdery mildew pathogenesis of Arabidopsis thaliana. Mycol Soc Am 90(6):1009–1016CrossRefGoogle Scholar
  75. Purnell TJA, Sivanesan (1970) Erysiphe cruciferarum Opiz ex Junell. CMI Descr Pathog Fungi Bact 26:251–260Google Scholar
  76. Rayss T (1940) Nouvelle contribution a letude de la mycoflore de Palestine (Deuxième partie). Palestine J Bot Jerusalem Ser 1:313–335Google Scholar
  77. Rayss T (1947) Nouvelle contribution a letude de la mycoflore de Palestine (Quartième partie). Palestine J Bot Jerusalem Ser 4(2):59–76Google Scholar
  78. Rebentish JF (1804) Prodromus florae neomarchicae, pp 360–361Google Scholar
  79. Reed GM (1905) Infection experiments with Erysiphe graminis DC. Trans Wis Acad Sci Arts Lett 15:135–162Google Scholar
  80. Reed GM (1907) Infection experiments with the mildew on cucurbits, Erysiphe cichoracearum DC. Trans Wis Acad Sci Arts Lett 15:527–547Google Scholar
  81. Reed GM (1908) Infection experiments with Erysiphe cichoracearum DC. Bull Univ Wisconsin Sci Ser 3:337–416Google Scholar
  82. Reed GM (1909) The mildews of the cereals. Bull Torrey Bot Club 36:353–388CrossRefGoogle Scholar
  83. Reed GM (1912) Infection experiments with the powdery mildew of wheat. Phytopathology 2:81–87Google Scholar
  84. Saenz GS, Taylor JW (1999) Phylogeny of the Erysiphales (powdery mildews) inferred from internal transcribed spacer ribosomal DNA sequences. Can J Bot 77:150–168Google Scholar
  85. Saenz GS, Taylor JW, Gargas A (1994) 18S rRNA gene sequences and supraordinal classification of the Erysiphales. Mycologia 86:212–216CrossRefGoogle Scholar
  86. Saharan GS, Kaushik JC (1981) Occurrence and epidemiology of powdery mildew of Brassica. Indian Phytopathol 35:17–21Google Scholar
  87. Saharan GS, Sheoran BS (1988) Conidial germination, germ tube elongation and appressorium formation of Erysiphe cruciferarum. Indian Phytopathol 41(1):157–159Google Scholar
  88. Salmon ES (1900) A monograph of the Erysiphaceae. Mem Torrey Bot Club 9:1–292Google Scholar
  89. Salmon ES (1903a) Infection powers of ascospores in Erysipheae. J Bot 41(159):204–212Google Scholar
  90. Salmon ES (1903b) On specialization of parasitism in the Erysiphaceae. Beihefte zum botanischen Centralblatt 14:261–315Google Scholar
  91. Salmon ES (1904a) On specialization of parasitism in the Erysiphaceae. New Phytol 3:109CrossRefGoogle Scholar
  92. Salmon ES (1904b) Mycological notes. J Bot 42:182–186Google Scholar
  93. Salmon ES (1904c) On Erysiphe graminis DC. and its adaptive parasitism within the genus Bromus. Ann Mycol 2:255–267Google Scholar
  94. Salmon ES (1905a) Cultural experiments with an Oidium on Euonymus japonicas Linn. f. Ann Mycol 3:1–15Google Scholar
  95. Salmon ES (1905b) On the variation shown by the conidial stage of Phyllactinia corylea (Pers.) Karst. Ann Mycol 3:493–505Google Scholar
  96. Sankhla HS, Dalela GG, Mathur RL (1967) Occurrence of perithecial stage of E. polygoni on B. campestris var. Sarson and B. juncea. Plant Dis Rep 51:800Google Scholar
  97. Sawada K (1927) On the systematic investigation of Erysiphe in Formosa. Formosa Dept Agric Govt Res Inst Rep 24:55Google Scholar
  98. Sawada K (1949) Fungi from the north-eastern region of Honshu, Japan (1). Erysiphaceae, Tohuku. Biol Res 1:2–8Google Scholar
  99. Sawada K (1951) Researches on fungi in the Tohoku district of Japan (I). Erysiphaceae. Bull Govt Forest Exp Sta No. 50Google Scholar
  100. Sawada K (1959) Descriptive catalogue of the Formosan Fungi XI. Spec. Bull Coll Agric Nat Taiwan Univ 10:16–24Google Scholar
  101. Shin HD, La YJ (1993) Morphology of edge lines of chained immature conidia on conidiophores in powdery mildew fungi and their taxonomic significance. Mycotaxon 66:445–451Google Scholar
  102. Singh B (1984) Epidemiology and control of rapeseed-mustard powdery mildew caused by Erysiphe cruciferarum. M.Sc thesis, CCS HAU, Hisar 61pGoogle Scholar
  103. Spanu PD, Abbott JC, Amselem J, Burgis TA, Soanes DM, Stuber K, Ver Loren van Themaat E, Brown JK, Butcher SA, Gurr SJ, Lebrun MH, Ridout CJ, Schulze-Lefert P, Talbot NJ, Ahmadinejad N, Ametz C, Barton GR, Benjdia M, Bidzinski P, Bindschedler LV, Both M, Brewer MT, Cadle-Davidson L, Cadle-Davidson MM, Collemare J, Cramer R, Frenkel O, Godfrey HJ, Hoede C, King BC, Klages S, Kleemann J, Knoll D, Koti PS, Kreplak J, López-Ruiz FJ, Lu X, Maekawa T, Mahanil S, Micali C, Milgroom MG, Montana G, Noir S, O’Connell RJ, Oberhaensli S, Parlange F, Pedersen C, Quesneville H, Reinhardt R, Rott M, Sacristán S, Schmidt SM, Schon M, Skamnioti P, Sommer H, Stephens A, Takahara H, Thordal-Christensen H, Vigouroux M, Wessling R, Wicker T, Panstruga R (2010) Genome expansion and gene loss in powdery mildew fungi reveal tradeoffs in extreme parasitism. Science 330(6010):1543–1546PubMedCrossRefGoogle Scholar
  104. Speer EO (1975) Untersuchungen zur morphologie und systematic der Erysiphaceen I. Die Gattung Blumeria Golovin und ihre Typusart Erysiphe graminis DC. Sydowia 27:1–6Google Scholar
  105. Steiner JA (1908) Die Specialisation der Alchemillenbewohnenden Sphaerotheca humuli (DC.) Burr. Centrallblatt fur Bakt., Parasitenkunde, und Infextious Krankheiten, Abstr II 21:677–736Google Scholar
  106. Stevens FL (1925) Plant disease fungi. The Macmillan Company, New YorkCrossRefGoogle Scholar
  107. Swofford DL (1993) Phylogenetic analysis using parsimony (PAUP version 3.1.1). Illinois Natural History Survey, ChampaignGoogle Scholar
  108. Tai LF (1946) Further studies on the Erysiphaceae of China. Bull Torrey Bot Club 73(2):108–130CrossRefGoogle Scholar
  109. Takamatsu S, Kano Y (2001) PCR primers useful for nucleotide sequences of rDNA of the powdery mildew fungi. Mycoscience 42:135–139CrossRefGoogle Scholar
  110. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Bio Evol 24:1596–1599CrossRefGoogle Scholar
  111. Uloth MB, You MP, Barbetti MJ (2017) Plant age and ambient temperature: significant drivers for powdery mildew (Erysiphe cruciferarum) epidemics on oilseed rape (Brassica napus). Plant Pathol.  https://doi.org/10.1111/ppa.12740CrossRefGoogle Scholar
  112. Vogel J, Somerville S (2000) Isolation and characterization of powdery mildew-resistant Arabidopsis mutants. Proc Natl Acad Sci 97(4):1897–1902PubMedCrossRefGoogle Scholar
  113. Voglino P (1905) Contribuzione allo studio della Phyllactinia corylea. Nuovo Giornale Bot Italiano 12:313–327Google Scholar
  114. Wallroth FW (1819) Naturgeschichte des Mucor Erysiphe L. Berl Ges Nat Freunde Verhandl I:6–45Google Scholar
  115. Weltzien HC (1963) Erysiphe betae (Vanha) comb, nov., the powdery mildew of beets. Phytopathol Z 47(2):123–128CrossRefGoogle Scholar
  116. Wen Y, Wang W, Feng J, Luo MC, Tsuda K, Katagiri F, Bauchan G, Xiao S (2011) Identification and utilization of a sow thistle powdery mildew as a poorly adapted pathogen to dissect post-invasion non-host resistance mechanisms in Arabidopsis. J Exp Bot 62:2117–2129PubMedCrossRefGoogle Scholar
  117. Weßling R, Panstruga R (2012) Rapid quantification of plant-powdery mildew interactions by qPCR and conidiospore counts. Plant Methods 8:35PubMedPubMedCentralCrossRefGoogle Scholar
  118. Weßling R, Schmidt SM, Micali CO, Knaust F, Reinhardt R, Neumann U, Ver Loren van Themaat E, Panstruga R (2012) Transcriptome analysis of enriched Golovinomyces orontii haustoria by deep 454 pyrosequencing. Fungal Gent Biol 49(6):470–482CrossRefGoogle Scholar
  119. Weßling R, Epple P, Altmann S, He Y, Yang L, Henz SR, McDonald N, Wiley K, Bader KC, Glaßer C, Mukhtar MS, Haigis S, Ghamsari L, Stephens AE, Ecker JR, Vidal M, Jones JDG, Mayer KFX, Ver Loren van Themaat E, Weigel D, Schulze-Lefert P, Dangl JL, Panstruga R, Braun P (2014) Convergent targeting of a common host protein-network by pathogen effectors from three kingdoms of life. Cell Host Microbe 16(3):364–375PubMedPubMedCentralCrossRefGoogle Scholar
  120. West E (1933) Powdery mildew of crape myrtle caused by Erysiphe lagerstroemiae n. sp. Phytopathology 23(10):814–819Google Scholar
  121. Whipps JM, Budge SP, Fenlon JS (1998) Characteristics and host range of tomato powdery mildew. Plant Pathol 47:36–48CrossRefGoogle Scholar
  122. White TJ, Bruns TD, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal genes for phylogenetics. In: Innis MA, Gelfrand DH, Sninsky JJ, White TJ (eds) PCR protocols. Academic, San Diego, pp 315–322Google Scholar
  123. Wicker T, Oberhaensli S, Parlange F, Buchmann JP, Shatalina M, Roffler S, Ben-David R, Dolezel J, Simková H, Schulze-Lefert P, Spanu PD, Bruggmann R, Amselem J, Quesneville H, Ver Loren van Themaat E, Paape T, Shimizu KK, Keller B (2013) The wheat powdery mildew genome shows the unique evolution of an obligate biotroph. Nat Genet 45(9):1092–1096PubMedCrossRefGoogle Scholar
  124. Xiao S, Ellwood S, Findlay K, Oliver RP, Turner JG (1997) Characterization of three loci controlling resistance of Arabidopsis thaliana accession Ms-0 to two powdery mildew diseases. Plant J 12(4):757–768PubMedCrossRefGoogle Scholar
  125. Yarwood CE (1963) Predisposition to powdery mildew. Phytopathology 53:1144–1145Google Scholar
  126. Yarwood CE (1978) History and taxonomy of powdery mildews. In: Spencer DM (ed) The powdery mildews. Academic, London, pp 1–37Google Scholar
  127. Zeller KA (1995) Phylogenetic relatedness within the genus Erysiphe estimated with morphological characteristics. Mycologia 87:525–531CrossRefGoogle Scholar
  128. Zhang D, Ouyang SH, Wang LL, Cui Y, Wu QH, Liang Y, Wang ZZ, Xie JZ, Zhang DY, Wang Y, Chen YX, Liu ZY (2015) Comparative genetic mapping revealed powdery mildew resistance gene MlWE4 derived from wild emmer is located in same genomic region of Pm36 and Ml3D232 on chromosome 5BL. J Integr Agric 14:603–609CrossRefGoogle Scholar
  129. Zheng RY, Chen GQ (1978a) Taxonomic studies on the genus Pleochaeta of China. I. A new species on Salicaceae: Pleochaeta salicicola sp. Nov. Acta Microbiol Sin 18:118–121Google Scholar
  130. Zheng RY, Chen GQ (1978b) Taxonomic studies on the genus Pleochaeta of China: II. The imperfect state of Pleochaeta: Streptopodium gen. nov. Acta Microbiol Sin 18:181–188Google Scholar
  131. Zheng Y, Chen GQ (1980) Taxonomic studies on the genus Erysiphe of China I. New species and new varieties on Caprifoloaceae. Acta Microbiol Sin 20(1):45–49Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Govind Singh Saharan
    • 1
  • Naresh K. Mehta
    • 1
  • Prabhu Dayal Meena
    • 2
  1. 1.Department of Plant PathologyCCS Haryana Agricultural UniversityHisarIndia
  2. 2.Crop Protection Unit, ICAR-Directorate of Rapeseed-Mustard ResearchBharatpurIndia

Personalised recommendations