Newer Technologies for Refractive Surgery: Femtosecond Laser

  • Vardhaman P. Kankariya
  • Ioannis Pallikaris
  • George Kymionis
  • Tanu Singh
Part of the Current Practices in Ophthalmology book series (CUPROP)


Femtosecond (FS) lasers and their applications in refractive surgery are probably the most important recent advance in refractive surgery. The femtosecond laser is a focused infrared laser with a wavelength of 1053 nm. Femtosecond laser works by producing photodisruption and photoionization (laser-induced optical breakdown) of optically transparent tissues using ultrafast pulses with a duration of 100 fs (100, 10−15 s). It is a solid-state Nd:Glass laser and its application generates rapidly expanding cloud of free electrons and ionized molecules (plasma). Small volumes of tissue are vaporized with the formation of cavitation gas bubbles consisting of carbon dioxide and water, which eventually dissipate into the surrounding tissues [1]. In this process, collateral damage seen with a femtosecond laser is 106 times less than an Nd:YAG laser, thus demonstrating its precision and safety when used in corneal surgeries [2]. This chapter traces the journey and place of FS laser in the cataract and refractive surgery armamentarium.


  1. 1.
    Chung SH, Mazur E. Surgical applications of femtosecond laser. J Biophotonics. 2009;2(10):557–72.PubMedCrossRefGoogle Scholar
  2. 2.
    Stern D, Schoenlein RW, Puliafito CA, Dobi ET, Birngruber R, Fujimoto JG. Corneal ablation by nanosecond, picosecond, and femtosecond lasers at 532 and 625 nm. Arch Ophthalmol. 1989;107(4):587–92.PubMedCrossRefGoogle Scholar
  3. 3.
    Ratkay-Traub I, Juhasz T, Horvath C, et al. Ultra-short pulse (femtosecond) laser surgery: initial use in LASIK flap creation. Ophthalmol Clin N Am. 2001;14(2):347–55.Google Scholar
  4. 4.
    Binder PS. Femtosecond applications for anterior segment surgery. Eye Contact Lens. 2010;36(5):282–5.PubMedCrossRefGoogle Scholar
  5. 5.
    Hjortdal J, Nielsen E, Vestergaard A, Søndergaard A. Inverse cutting of posterior lamellar corneal grafts by a femtosecond laser. Open Ophthalmol J. 2012;6:19–22.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Talamo JH, Meltzer J, Gardner J. Reproducibility of flap thickness with IntraLase FS and Moria LSK-1 and M2 microkeratomes. J Refract Surg. 2006;22(6):556–61.PubMedCrossRefGoogle Scholar
  7. 7.
    Slade SG. The use of the femtosecond laser in the customization of corneal flaps in laser in situ keratomileusis. Curr Opin Ophthalmol. 2007;18(4):314–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Rocha KM, Randleman JB, Stulting RD. Analysis of microkeratome thin flap architecture using Fourier-domain optical coherence tomography. J Refract Surg. 2011;27(10):759–63.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Sutton G, Hodge C. Accuracy and precision of LASIK flap thickness using the IntraLase femtosecond laser in 1000 consecutive cases. J Refract Surg. 2008;24(8):802–6.PubMedGoogle Scholar
  10. 10.
    Stahl JE, Durrie DS, Schwendeman FJ, Boghossian AJ. Anterior segment OCT analysis of thin IntraLase femtosecond flaps. J Refract Surg. 2007;23(6):555–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Zhou Y, Tian L, Wang N, Dougherty PJ. Anterior segment optical coherence tomography measurement of LASIK flaps: femto-second laser vs microkeratome. J Refract Surg. 2011;27(6):408–16.PubMedCrossRefGoogle Scholar
  12. 12.
    Kolozsvari L, Nogradi A, Hopp B, Bor Z. UV absorbance of the human cornea in the 240- to 400-nm range. Invest Ophthalmol Vis Sci. 2002;43(7):2165–8.PubMedGoogle Scholar
  13. 13.
    Kim JY, Kim MJ, Kim T-I, Choi HJ, Pak JH, Tchah H. A femto-second laser creates a stronger flap than a mechanical micro-keratome. Invest Ophthalmol Vis Sci. 2006;47(2):599–604.PubMedCrossRefGoogle Scholar
  14. 14.
    Medeiros FW, Stapleton WM, Hammel J, Krueger RR, Netto MV, Wilson SE. Wavefront analysis comparison of LASIK outcomes with the femtosecond laser and mechanical microkeratomes. J Refract Surg. 2007;23(9):880–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Salomão MQ, Ambrosio R Jr, Wilson SE. Dry eye associated with laser in situ keratomileusis: mechanical microkeratome versus femtosecond laser. J Cataract Refract Surg. 2009;35(10):1756–60.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Netto MV, Mohan RR, Medeiros FW, et al. Femtosecond laser and microkeratome corneal flaps: comparison of stromal wound healing and inflammation. J Refract Surg. 2007;23(7):667–76.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Chen S, Feng Y, Stojanovic A, Jankov MR II, Wang Q. IntraLase femtosecond laser vs mechanical microkeratomes in LASIK for myopia: a systematic review and meta-analysis. J Refract Surg. 2012;28(1):15–24.PubMedCrossRefGoogle Scholar
  18. 18.
    Chang JS. Complications of sub-Bowman’s keratomileusis with a femtosecond laser in 3009 eyes. J Cataract Refract Surg. 2008;24(1):S97–S101.CrossRefGoogle Scholar
  19. 19.
    Kaiserman I, Maresky HS, Bahar I, Rootman DS. Incidence, possible risk factors, and potential effects of an opaque bubble layer created by a femtosecond laser. J Cataract Refract Surg. 2008;34(3):417–23.PubMedCrossRefGoogle Scholar
  20. 20.
    Srinivasan S, Rootman DS. Anterior chamber gas bubble formation during femtosecond laser flap creation for LASIK. J Refract Surg. 2007;23(8):828–30.PubMedCrossRefGoogle Scholar
  21. 21.
    Srinivasan S, Herzig S. Sub-epithelial gas breakthrough during femtosecond laser flap creation for LASIK. Br J Ophthalmol. 2007;91(10):1373.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Seider MI, Ide T, Kymionis GD, Culbertson WW, O’Brien TP, Yoo SH. Epithelial breakthrough during IntraLase flap creation for laser in situ keratomileusis. J Cataract Refract Surg. 2008;34(5):859–63.PubMedCrossRefGoogle Scholar
  23. 23.
    Stonecipher KG, Dishler JG, Ignacio TS, Binder PS. Transient light sensitivity after femtosecond laser flap creation: clinical findings and management. J Cataract Refract Surg. 2006;32(1):91–4.PubMedCrossRefGoogle Scholar
  24. 24.
    Muñoz G, Albarrán-Diego C, Sakla HF, Javaloy J, Alió JL. Transient light-sensitivity syndrome after laser in situ keratomileusis with the femtosecond laser incidence and prevention. J Cataract Refract Surg. 2006;32(12):2075–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Krueger RR, Thornton IL, Xu M, Bor Z, van den Berg TJ. Rainbow glare as an optical side effect of IntraLASIK. Ophthalmology. 2008;115(7):1187–95.PubMedCrossRefGoogle Scholar
  26. 26.
    de Paula FH, Khairallah CG, Niziol LM, et al. Diffuse lamellar keratitis after laser in situ keratomileusis with femtosecond laser flap creation. J Cataract Refract Surg. 2012;38(6):1014–9.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Smith RJ, Maloney RK. Diffuse lamellar keratitis: a new syndrome in lamellar refractive surgery. Ophthalmology. 1998;105(9):1721–6.PubMedCrossRefGoogle Scholar
  28. 28.
    Gil-Cazorla R, Teus MA, de Benito-Llopis L, Fuentes I. Incidence of diffuse lamellar keratitis after laser in situ keratomileusis associated with the IntraLase 15 kHz femtosecond laser and Moria M2 microkeratome. J Cataract Refract Surg. 2008;34(1):28–31.PubMedCrossRefGoogle Scholar
  29. 29.
    Hainline BC, Price MO, Choi DM, Price FW Jr. Central flap necrosis after LASIK with microkeratome and femtosecond laser created flaps. J Refract Surg. 2007;23(3):233–42.PubMedCrossRefGoogle Scholar
  30. 30.
    Ide T, Yoo SH, Kymionis GD, Haft P, O’Brien TP. Second femtosecond laser pass for incomplete laser in situ keratomileusis flaps caused by suction loss. J Cataract Refract Surg. 2009;35(1):153–7.PubMedCrossRefGoogle Scholar
  31. 31.
    Santhiago MR, Smadja D, Zaleski K, Espana EM, Armstrong BK, Wilson SE. Flap relift for retreatment after femtosecond laser-assisted LASIK. J Refract Surg. 2012;28(7):482–7.PubMedCrossRefGoogle Scholar
  32. 32.
    Ide T, Kymionis GD, Goldman DA, Yoo SH, O’Brien TP. Sub-conjunctival gas bubble formation during LASIK flap creation using femtosecond laser. J Refract Surg. 2008;24(8):850–1.PubMedGoogle Scholar
  33. 33.
    Rocha KM, Kagan R, Smith SD, Krueger RR. Thresholds for interface haze formation after thin-flap femtosecond laser in situ keratomileusis for myopia. Am J Ophthalmol. 2009;147(6):966–72.PubMedCrossRefGoogle Scholar
  34. 34.
    Kymionis GD, Portaliou DM, Krasia MS, et al. Unintended epithelium-only flap creation using a femtosecond laser during LASIK. J Refract Surg. 2011;27(1):74–6.PubMedCrossRefGoogle Scholar
  35. 35.
    Kymionis GD, Kounis GA, Grentzelos MA, Panagopoulou SI, Kandarakis SA, Krasia MS. Interface corneal stromal irregularities after flap creation using femtosecond laser. Eur J Ophthalmol. 2011;21(2):207–9.CrossRefGoogle Scholar
  36. 36.
    Principe AH, Lin DY, Small KW, Aldave AJ. Macular hemorrhage after laser in situ keratomileusis (LASIK) with femtosecond laser flap creation. Am J Ophthalmol. 2004;138(4):657–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Pinero DP, Alio JL, Uceda-Montanes A, El Kady B, Pascual I. Intracorneal ring segment implantation in corneas with post-laser in situ keratomileusis keratectasia. Ophthalmology. 2009;116(9):1665–74.PubMedCrossRefGoogle Scholar
  38. 38.
    Pinero DP, Alio JL, Morbelli H, et al. Refractive and corneal aberrometric changes after intracorneal ring implantation in corneas with pellucid marginal degeneration. Ophthalmology. 2009;116(9):1656–64.PubMedCrossRefGoogle Scholar
  39. 39.
    Alio JL, Shabayek MH, Belda JI, et al. Analysis of results related to good and bad outcomes of Intacs implantation for keratoconus correction. J Cataract Refract Surg. 2006;32(5):756–61.PubMedCrossRefGoogle Scholar
  40. 40.
    Schanzlin DJ, Asbell PA, Burris TE, Durrie DS. The intrastromal corneal ring segments: phase II results for the correction of myopia. Ophthalmology. 1997;104(7):1067–78.PubMedCrossRefGoogle Scholar
  41. 41.
    Alio JL, Artola A, Ruiz-Moreno JM, Hassanein A, Galal A, Awadalla MA. Changes in keratoconic corneas after intracorneal ring segment explantation and reimplantation. Ophthalmology. 2004;111(4):747–51.PubMedCrossRefGoogle Scholar
  42. 42.
    Patel S, Marshall J, Fitzke FW. Model for deriving the optical performance of the myopic eye corrected with an intracorneal ring. J Refract Surg. 1995;11(4):248–52.PubMedGoogle Scholar
  43. 43.
    Kubaloglu A, Cinar Y, Sari ES, Koytak A, Ozdemir B, Ozertürk Y. Comparison of 2 intrastromal corneal ring segment models in the management of keratoconus. J Cataract Refract Surg. 2010;36(6):978–85.PubMedCrossRefGoogle Scholar
  44. 44.
    Lai MM, Tang M, Andrade EM, et al. Optical coherence tomography to assess intrastromal ring segment depth in keratoconic eyes. J Cataract Refract Surg. 2006;32(11):1860–5.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Pinero D, Alio L. Intracorneal ring segments in ectatic corneal disease: a review. Clin Exp Ophthalmol. 2010;38(2):154–67.PubMedCrossRefGoogle Scholar
  46. 46.
    Rabinowitz YS, Li X, Ignacio TS, Maguen E. Intacs inserts using the femtosecond laser compared to the mechanical spreader in the treatment of keratoconus. J Refract Surg. 2006;22(8):764–71.PubMedCrossRefGoogle Scholar
  47. 47.
    Ertan A, Kamburoglu G, Akgün U. Comparison of outcomes of 2 channel sizes for intrastromal ring segment implantation with a femtosecond laser in eyes with keratoconus. J Cataract Refract Surg. 2007;33(4):648–53.PubMedCrossRefGoogle Scholar
  48. 48.
    Kanellopoulos AJ, Pe LH, Perry HD, Donnenfeld ED. Modified intracorneal ring segment implantations (INTACS) for the management of moderate to advanced keratoconus; efficiency and complications. Cornea. 2006;25(1):29–33.PubMedCrossRefGoogle Scholar
  49. 49.
    Boxer Wachler BS, Christie JP, Chandra NS, Chou B, Korn T, Nepomuceno R. Intacs for keratoconus. Ophthalmology. 2003;110(5):1031–40.PubMedCrossRefGoogle Scholar
  50. 50.
    Coskunseven E, Kymionis GD, Tsiklis NS, et al. Complications of intrastromal corneal ring segment implantation using a femtosecond laser for channel creation: a survey of 850 eyes with keratoconus. Acta Ophthalmol. 2011;89(1):54–7.PubMedCrossRefGoogle Scholar
  51. 51.
    Szentmáry N, Seitz B, Langenbucher A, Naumann GO. Repeat keratoplasty for correction of high or irregular postkeratoplasty astigmatism in clear corneal grafts. Am J Ophthalmol. 2005;139(5):826–30.PubMedCrossRefGoogle Scholar
  52. 52.
    Alió JL, Javaloy J, Osman AA, Galvis V, Tello A, Haroun HE. Laser in situ keratomileusis to correct post-keratoplasty astigmatism: 1-step versus 2-step procedure. J Cataract Refract Surg. 2004;30(11):2303–10.PubMedGoogle Scholar
  53. 53.
    Pedrotti E, Sbado A, Marchini G. Customized transepithelial photorefractive keratectomy for iatrogenic ametropia after penetrating or deep lamellar keratoplasty. J Cataract Refract Surg. 2006;32(8):1288–91.PubMedCrossRefGoogle Scholar
  54. 54.
    Bochmann F, Schipper I. Correction of post-keratoplasty astigmatism with keratotomies in the host cornea. J Cataract Refract Surg. 2006;32(6):923–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Hoffart L, Touzeau O, Borderie V, Laroche L. Mechanized astigmatic arcuate keratotomy with the Hanna arcitome for astigmatism after keratoplasty. J Cataract Refract Surg. 2007;33(5):862–8.PubMedCrossRefGoogle Scholar
  56. 56.
    Wilkins MR, Mehta JS, Larkin DF. Standardized arcuate keratotomy for postkeratoplasty astigmatism. J Cataract Refract Surg. 2005;31(2):297–301.CrossRefGoogle Scholar
  57. 57.
    Hanna KD, Hayward JM, Hagen KB, Simon G, Parel JM, Waring GO III. Keratotomy for astigmatism using an arcuate keratome. Arch Ophthalmol. 1993;111(7):998–1004.PubMedCrossRefGoogle Scholar
  58. 58.
    Abbey A, Ide T, Kymionis GD, Yoo SH. Femtosecond laser-assisted astigmatic keratotomy in naturally occurring high astigmatism. Br J Ophthalmol. 2009;93(12):1566–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Hoffart L, Proust H, Matonti F, Conrath J, Ridings B. Correction of postkeratoplasty astigmatism by femtosecond laser compared with mechanized astigmatic keratotomy. Am J Ophthalmol. 2009;147(5):779–87.CrossRefGoogle Scholar
  60. 60.
    Buzzonetti L, Petrocelli G, Laborante A, Mazzilli E, Gaspari M, Valente P. Arcuate keratotomy for high postoperative keratoplasty astigmatism performed with the IntraLase femtosecond laser. J Refract Surg. 2009;25(8):709–14.PubMedCrossRefGoogle Scholar
  61. 61.
    Levinger E, Bahar I, Rootman DS. IntraLase-enabled astigmatic keratotomy for correction of astigmatism after Descemet stripping automated endothelial keratoplasty: a case report. Cornea. 2009;28(9):1074–6.PubMedCrossRefGoogle Scholar
  62. 62.
    Bahar I, Levinger E, Kaiserman I, Sansanayudh W, Rootman DS. IntraLase-enabled astigmatic keratotomy for postkeratoplasty astigmatism. Am J Ophthalmol. 2008;146(6):897–904.CrossRefGoogle Scholar
  63. 63.
    Kymionis GD, Yoo SH, Ide T, Culbertson WW. Femtosecond-assisted astigmatic keratotomy for post-keratoplasty irregular astigmatism. J Cataract Refract Surg. 2009;35(1):11–3.CrossRefGoogle Scholar
  64. 64.
    Nubile M, Carpineto P, Lanzini M, et al. Femtosecond laser arcuate keratotomy for the correction of high astigmatism after keratoplasty. Ophthalmology. 2009;116(6):1083–92.CrossRefGoogle Scholar
  65. 65.
    Yoo SH, Kymionis GD, Ide T, Diakonis VF. Overcorrection after femtosecond assisted astigmatic keratotomy in a post-Descemet-stripping automated endothelial keratoplasty patient. J Cataract Refract Surg. 2009;35(10):1833–4.PubMedCrossRefGoogle Scholar
  66. 66.
    Mulet ME, Alio JL, Knorz MC. Hydrogel intracorneal inlays for the correction of hyperopia: outcomes and complications after 5 years of follow-up. Ophthalmology. 2009;116(8):1455–60.PubMedCrossRefGoogle Scholar
  67. 67.
    Yilmaz OF, Bayraktar S, Agca A, Yilmaz B, McDonald MB, van de Pol C. Intracorneal inlay for the surgical correction of presbyopia. J Cataract Refract Surg. 2008;34(11):1921–7.PubMedCrossRefGoogle Scholar
  68. 68.
    Kymionis GD, Bouzoukis DI, Pallikaris IG. Corneal inlays: a surgical correction of presbyopia. J Cataract Refract Surg Today Eur. 2007;3:48–50.Google Scholar
  69. 69.
    Seyeddain O, Riha W, Hohensinn M, Nix G, Dexl AK, Grabner G. Refractive surgical correction of presbyopia with the AcuFocus small aperture corneal inlay: two-year follow-up. J Refract Surg. 2010;26(10):707–15.PubMedCrossRefGoogle Scholar
  70. 70.
    Verity SM, McCulley JP, Bowman RW, Cavanagh HD, Petroll WM. Outcomes of PermaVision intracorneal implants for the correction of hyperopia. Am J Ophthalmol. 2009;147(6):973–7.PubMedCrossRefGoogle Scholar
  71. 71.
    Bouzoukis DI, Kymionis GD, Panagopoulou SI, et al. Visual outcomes and safety of a small diameter intrastromal refractive inlay for the corneal compensation of presbyopia. J Refract Surg. 2012;28(3):168–73.PubMedCrossRefGoogle Scholar
  72. 72.
    Ruiz LA, Cepeda LM, Fuentes VC. Intrastromal correction of presbyopia using a femtosecond laser system. J Refract Surg. 2009;25(10):847–54.PubMedCrossRefGoogle Scholar
  73. 73.
    Holzer MP, Knorz MC, Tomalla M, Neuhann TM, Auffarth GU. Intrastromal femtosecond laser presbyopia correction: 1-year results of a multicenter study. J Refract Surg. 2012;28(3):182–8.PubMedCrossRefGoogle Scholar
  74. 74.
    Holzer MP, Mannsfeld A, Ehmer A, Auffarth GU. Early outcomes of INTRACOR femtosecond laser treatment for presbyopia. J Refract Surg. 2009;25(10):855–61.PubMedCrossRefGoogle Scholar
  75. 75.
    Menassa N, Fitting A, Auffarth GU, Holzer MP. Visual outcomes and corneal changes after intrastromal femtosecond laser correction of presbyopia. J Cataract Refract Surg. 2012;38(5):765–73.PubMedCrossRefGoogle Scholar
  76. 76.
    Fitting A, Menassa N, Auffarth GU, Holzer MP. Effect of intrastromal correction of presbyopia with femtosecond laser (INTRACOR) on mesopic contrast sensitivity [German]. Ophthalmologe. 2012;109(10):1001–7.PubMedCrossRefGoogle Scholar
  77. 77.
    Ito M, Quantock AJ, Malhan S, Schanzlin DJ, Krueger RR. Picosecond laser in situ keratomileusis with a 1053-nm Nd:YLF laser. J Refract Surg. 1996;12(6):721–8.PubMedGoogle Scholar
  78. 78.
    Krueger RR, Juhasz T, Gualano A, Marchi V. The picosecond laser for nonmechanical laser in situ keratomileusis. J Refract Surg. 1998;14(4):467–9.PubMedGoogle Scholar
  79. 79.
    Kurtz RM, Horvath C, Liu HH, Krueger RR, Juhasz T. Lamellar refractive surgery with scanned intrastromal picosecond and femtosecond laser pulses in animal eyes. J Refract Surg. 1998;14(5):541–8.PubMedGoogle Scholar
  80. 80.
    Heisterkamp A, Mamom T, Kermani O, et al. Intrastromal refractive surgery with ultrashort laser pulses: in vivo study on the rabbit eye. Graefes Arch Clin Exp Ophthalmol. 2003;241(6):511–7.PubMedCrossRefGoogle Scholar
  81. 81.
    Ratkay-Traub I, Ferincz IE, Juhasz T, Kurtz RM, Krueger RR. First clinical results with the femtosecond neodynium-glass laser in refractive surgery. J Refract Surg. 2003;19(2):94–103.PubMedGoogle Scholar
  82. 82.
    Reinstein DZ, Archer TJ, Gobbe M, Johnson N. Accuracy and reproducibility of Artemis central flap thickness and visual outcomes of LASIK with the Carl Zeiss Meditec VisuMax femtosecond laser and MEL 80 excimer laser platforms. J Refract Surg. 2010;26(2):107–19.PubMedCrossRefGoogle Scholar
  83. 83.
    Sekundo W, Kunert K, Russmann C, et al. First efficacy and safety study of femtosecond lenticule extraction for the correction of myopia: six-month results. J Cataract Refract Surg. 2008;34(9):1513–20.PubMedCrossRefGoogle Scholar
  84. 84.
    Blum M, Kunert KS, Engelbrecht C, Dawczynski J, Sekundo W. Femtosecond lenticule extraction (FLEx): results after 12 months in myopic astigmatism [German]. Klin Monatsbl Augenheilkd. 2010;227(12):961–5.PubMedCrossRefGoogle Scholar
  85. 85.
    Dougherty PJ, Wellish KL, Maloney RK. Excimer laser ablation rate and corneal hydration. Am J Ophthalmol. 1994;118(2):169–76.PubMedCrossRefGoogle Scholar
  86. 86.
    Mrochen M, Seiler T. Influence of corneal curvature on calculation of ablation patterns used in photorefractive laser surgery. J Refract Surg. 2001;17(5):S584–7.PubMedGoogle Scholar
  87. 87.
    Arba-Mosquera S, de Ortueta D. Geometrical analysis of the loss of ablation efficiency at non-normal incidence. Opt Express. 2008;16(6):3877–95.PubMedCrossRefGoogle Scholar
  88. 88.
    Schena E, Silvestri S, Franzesi GT, Cupo G, Carito P, Ghinelli E. Theoretical model and design of a device to reduce the influence of environmental factors on refractive surgery outcomes. Conf Proc IEEE Eng Med Biol Soc. 2006;1:343–6.PubMedCrossRefGoogle Scholar
  89. 89.
    Shah R, Shah S. Effect of scanning patterns on the results of femtosecond laser lenticule extraction refractive surgery. J Cataract Refract Surg. 2011;37(9):1636–47.PubMedCrossRefGoogle Scholar
  90. 90.
    Riau AK, Angunawela RI, Chaurasia SS, Tan DT, Mehta JS. Effect of different femtosecond laser-firing patterns on collagen disruption during refractive lenticule extraction. J Cataract Refract Surg. 2012;38(8):1467–75.PubMedCrossRefGoogle Scholar
  91. 91.
    Randleman JB, Dawson DG, Grossniklaus HE, McCarey BE, Edelhauser HF. Depth-dependent cohesive tensile strength in human donor corneas: implications for refractive surgery. J Refract Surg. 2008;24(1):S85–9.PubMedCrossRefGoogle Scholar
  92. 92.
    Sekundo W, Kunert KS, Blum M. Small incision corneal refractive surgery using the small incision lenticule extraction (SMILE) procedure for the correction of myopia and myopic astigmatism: results of a 6 month prospective study. Br J Ophthalmol. 2011;95(3):335–9.PubMedCrossRefGoogle Scholar
  93. 93.
    Shah R, Shah S, Sengupta S. Results of small incision lenticule extraction: all-in-one femtosecond laser refractive surgery. J Cataract Refract Surg. 2011;37(1):127–37.PubMedCrossRefGoogle Scholar
  94. 94.
    Dong Z, Zhou X, Wu J, Zhang Z, Li T, Zhou Z, Zhang S, Li G. Small incision lenticule extraction (SMILE) and femtosecond laser LASIK: comparison of corneal wound healing and inflammation. Br J Ophthalmol. 2014;98(2):263–9.CrossRefGoogle Scholar
  95. 95.
    Siedlecki J, Luft N, Kook D, Wertheimer C, Mayer WJ, Bechmann M, et al. Enhancement after myopic small incision lenticule extraction (SMILE) using surface ablation. J Refract Surg. 2017;33:513–8.PubMedCrossRefGoogle Scholar
  96. 96.
    Filkorn T, Kovács I, Takács A, Horváth E, Knorz MC, Nagy ZZ. Comparison of IOL power calculation and refractive outcome after laser refractive cataract surgery with a femtosecond laser versus conventional phacoemulsification. J Refract Surg. 2012;28(8):540–4.PubMedCrossRefGoogle Scholar
  97. 97.
    Ganesh S, Brar S, Arra RR. Refractive lenticule extraction small incision lenticule extraction: a new refractive surgery paradigm. Indian J Ophthalmol. 2018;66:10–9.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Farid M, Steinert RF. Femtosecond laser-assisted corneal surgery. Curr Opin Ophthalmol. 2010;21(4):288–92.PubMedGoogle Scholar
  99. 99.
    Callou TP, Garcia R, Mukai A, Giacomin NT, de Souza RG, Bechara SJ. Advances in femtosecond laser technology. Clin Ophthalmol. 2016;10:697–703.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Vardhaman P. Kankariya
    • 1
    • 2
  • Ioannis Pallikaris
    • 2
  • George Kymionis
    • 2
  • Tanu Singh
    • 3
  1. 1.Asian Eye HospitalPuneIndia
  2. 2.University of CreteHeraklionGreece
  3. 3.Government Medical College and HospitalChandigarhIndia

Personalised recommendations