Advertisement

Technology in the Making and the Future of Ophthalmology

  • Sahil Thakur
Chapter
Part of the Current Practices in Ophthalmology book series (CUPROP)

Abstract

Ophthalmology has been at the forefront of adopting cutting edge technology and using it to deliver effective ocular care. This chapter looks at some of the latest developments that are going to propel the standard of eye care in the coming few years. From deep learning AI/big data analysis to precise gene-based treatment strategies, we look at the future of ophthalmology that is already in the making today.

References

  1. 1.
    Zeng L, Li G, Zeng W, Zhu C. Application of bio-artificial cornea and its research progress. Ann Eye Sci. 2017;2(8):62.Google Scholar
  2. 2.
    Gouveia RM, Koudouna E, Jester J, Figueiredo F, Connon CJ. Template curvature influences cell alignment to create improved human corneal tissue equivalents. Adv Biosyst. 2017;1(12):1700135.CrossRefGoogle Scholar
  3. 3.
    Chammas J, Sauer A, Pizzuto J, et al. Da vinci xi robot–assisted penetrating keratoplasty. Transl Vis Sci Technol. 2017;6(3):21.CrossRefGoogle Scholar
  4. 4.
    Keane BP, Kastner S, Paterno D, Silverstein SM. Is 20/20 vision good enough? Visual acuity differences within the normal range predict contour element detection and integration. Psychon Bull Rev. 2015;22(1):121–7.CrossRefGoogle Scholar
  5. 5.
    Moarefi MA, Bafna S, Wiley W. A review of presbyopia treatment with corneal inlays. Ophthalmol Therapy. 2017;6(1):55–65.CrossRefGoogle Scholar
  6. 6.
    Zhao L, Chen X-J, Zhu J, et al. Lanosterol reverses protein aggregation in cataracts. Nature. 2015;523:607.CrossRefGoogle Scholar
  7. 7.
    Chang DF. Adjustable IOLs—disrupting the refractive IOL industry. US Ophthalmic Rev. 2017;10(02):95.CrossRefGoogle Scholar
  8. 8.
    Gao A, Gonenc B, Guo J, et al. 3-DOF force-sensing micro-forceps for robot-assisted membrane peeling: intrinsic actuation force modeling. In: Proceedings of the IEEE/RAS-EMBS international conference on biomedical robotics and biomechatronics, Singapore, 26–29 June 2016. p. 489–94.Google Scholar
  9. 9.
    He X, van Geirt V, Gehlbach P, Taylor R, Iordachita I. IRIS: integrated robotic intraocular snake. IEEE Int Conf Robot Autom. 2015;2015:1764–9.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Gonenc B, Handa J, Gehlbach P, Taylor RH, Iordachita I. A comparative study for robot assisted vitreoretinal surgery: micron vs. the steady-hand robot. IEEE Int Conf Robot Autom. 2013:4832–7.  https://doi.org/10.1109/ICRA.2013.6631266.
  11. 11.
    Seider MI, Carrasco-Zevallos OM, Gunther R, et al. Real-time volumetric imaging of vitreoretinal surgery with a prototype microscope-integrated swept-source OCT device. Ophthalmol Retina. 2018;2(5):401–10.CrossRefGoogle Scholar
  12. 12.
    Huang W, Zhang X. 3D printing: print the future of ophthalmology. Invest Ophthalmol Vis Sci. 2014;55(8):5380–1.CrossRefGoogle Scholar
  13. 13.
    Chen X, Xu L, Wang W, et al. Computer-aided design and manufacturing of surgical templates and their clinical applications: a review. Expert Rev Med Devices. 2016;13(9):853–64.CrossRefGoogle Scholar
  14. 14.
    Wakefield D, McCluskey P, Wildner G, Thurau S. Unmet needs and future directions in inflammatory eye disease. Ocul Immunol Inflamm. 2017;25(1):122–33.CrossRefGoogle Scholar
  15. 15.
    Lee CS, Lee AY, Holland GN, Van Gelder RN, Tufail A. Big data and uveitis. Ophthalmology. 2016;123(11):2273–5.CrossRefGoogle Scholar
  16. 16.
    Gegundez-Fernandez JA, Fernandez-Vigo JI, Diaz-Valle D, et al. Uvemaster: a mobile app-based decision support system for the differential diagnosis of uveitis. Invest Ophthalmol Vis Sci. 2017;58(10):3931–9.CrossRefGoogle Scholar
  17. 17.
    Ciolino JB, Stefanescu CF, Ross AE, et al. In vivo performance of a drug-eluting contact lens to treat glaucoma for a month. Biomaterials. 2014;35(1):432–9.  https://doi.org/10.1016/j.biomaterials.2013.09.032.CrossRefPubMedGoogle Scholar
  18. 18.
    Choi SW, Kim J. Therapeutic contact lenses with polymeric vehicles for ocular drug delivery: a review. Materials. 2018;11(7):1125.CrossRefGoogle Scholar
  19. 19.
    Olson JL, Velez-Montoya R, Bhandari R. Laser activated flow regulator for glaucoma drainage devices. Transl Vis Sci Technol. 2014;3(6):3.CrossRefGoogle Scholar
  20. 20.
    Amoozgar B, Wei X, Hui Lee J, et al. A novel flexible microfluidic meshwork to reduce fibrosis in glaucoma surgery. PLoS One. 2017;12(3):e0172556.CrossRefGoogle Scholar
  21. 21.
    Matsumoto C, Yamao S, Nomoto H, et al. Visual field testing with head-mounted perimeter ‘imo’. PLoS One. 2016;11(8):e0161974.CrossRefGoogle Scholar
  22. 22.
    Kim SJ, Cho KJ, Oh S. Development of machine learning models for diagnosis of glaucoma. PLoS One. 2017;12(5):e0177726.CrossRefGoogle Scholar
  23. 23.
    Fallon M, Valero O, Pazos M, Anton A. Diagnostic accuracy of imaging devices in glaucoma: a meta-analysis. Surv Ophthalmol. 2017;62(4):446–61.CrossRefGoogle Scholar
  24. 24.
    Shen BY, Mukai S. A portable, inexpensive, nonmydriatic fundus camera based on the raspberry Pi(R) computer. J Ophthalmol. 2017;2017:4526243.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Ludwig CA, Murthy SI, Pappuru RR, et al. A novel smartphone ophthalmic imaging adapter: user feasibility studies in Hyderabad. Indian J Ophthalmol. 2016;64(3):191–200.CrossRefGoogle Scholar
  26. 26.
    An G, Omodaka K, Tsuda S, et al. Comparison of machine-learning classification models for glaucoma management. J Healthc Eng. 2018;2018:6874765.CrossRefGoogle Scholar
  27. 27.
    Ittoop SM, SooHoo JR, Seibold LK, Mansouri K, Kahook MY. Systematic review of current devices for 24-h intraocular pressure monitoring. Adv Ther. 2016;33(10):1679–90.CrossRefGoogle Scholar
  28. 28.
    Tarkkanen A, Ulfves K, Ulfves T. Self-tonometry in glaucoma. Graefes Arch Clin Exp Ophthalmol. 2010;248(11):1679–81.CrossRefGoogle Scholar
  29. 29.
    Waisbourd M, Dhami H, Zhou C, et al. The Wills Eye Glaucoma App: interest of patients and their caregivers in a smartphone-based and tablet-based glaucoma application. J Glaucoma. 2016;25(9):e787–91.CrossRefGoogle Scholar
  30. 30.
    Chavent M, Duncan AL, Sansom MSP. Molecular dynamics simulations of membrane proteins and their interactions: from nanoscale to mesoscale. Curr Opin Struct Biol. 2016;40:8–16.CrossRefGoogle Scholar
  31. 31.
    Edington CD, Chen WLK, Geishecker E, et al. Interconnected microphysiological systems for quantitative biology and pharmacology studies. Sci Rep. 2018;8(1):4530.CrossRefGoogle Scholar
  32. 32.
    Pizzorusso T, Medini P, Berardi N, et al. Reactivation of ocular dominance plasticity in the adult visual cortex. Science. 2002;298(5596):1248–51.CrossRefGoogle Scholar
  33. 33.
    Shen HH. Core concept: perineuronal nets gain prominence for their role in learning, memory, and plasticity. Proc Natl Acad Sci U S A. 2018;115(40):9813–5.CrossRefGoogle Scholar
  34. 34.
    Liu D, Auguste DT. Cancer targeted therapeutics: from molecules to drug delivery vehicles. J Control Release. 2015;219:632–43.CrossRefGoogle Scholar
  35. 35.
    He H, Lu Y, Qi J, et al. Adapting liposomes for oral drug delivery. Acta Pharm Sin B. 2019;9(1):36–48.  https://doi.org/10.1016/j.apsb.2018.06.005.CrossRefPubMedGoogle Scholar
  36. 36.
    Senapati S, Mahanta AK, Kumar S, Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Targeted Ther. 2018;3:7.CrossRefGoogle Scholar
  37. 37.
    Tsai C-H, Wang P-Y, Lin IC, et al. Ocular drug delivery: role of degradable polymeric nanocarriers for ophthalmic application. Int J Mol Sci. 2018;19(9):2830.CrossRefGoogle Scholar
  38. 38.
    Shields CL, Mashayekhi A, Au AK, et al. The International Classification of Retinoblastoma predicts chemoreduction success. Ophthalmology. 2006;113(12):2276–80.CrossRefGoogle Scholar
  39. 39.
    Chen Q, Zhang B, Dong Y, et al. Comparison between intravenous chemotherapy and intra-arterial chemotherapy for retinoblastoma: a meta-analysis. BMC Cancer. 2018;18:486.CrossRefGoogle Scholar
  40. 40.
    Baker AT, Aguirre-Hernández C, Halldén G, Parker AL. Designer oncolytic adenovirus: coming of age. Cancers. 2018;10(6):201.CrossRefGoogle Scholar
  41. 41.
    Russell S, Bennett J, Wellman JA, et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with <em>RPE65</em>−mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet. 2017;390(10097):849–60.CrossRefGoogle Scholar
  42. 42.
    Constable IJ, Pierce CM, Lai C-M, et al. Phase 2a randomized clinical trial: safety and post hoc analysis of subretinal rAAV.sFLT-1 for wet age-related macular degeneration. EBioMedicine. 2016;14:168–75.CrossRefGoogle Scholar
  43. 43.
    Constable IJ, Lai CM, Magno AL, et al. Gene therapy in neovascular age-related macular degeneration: three-year follow-up of a phase 1 randomized dose escalation trial. Am J Ophthalmol. 2017;177:150–8.CrossRefGoogle Scholar
  44. 44.
    Lores-Motta L, de Jong EK, den Hollander AI. Exploring the use of molecular biomarkers for precision medicine in age-related macular degeneration. Mol Diagn Ther. 2018;22(3):315–43.CrossRefGoogle Scholar
  45. 45.
    Rand D, Jakešová M, Lubin G, et al. Direct electrical neurostimulation with organic pigment photocapacitors. Adv Mater. 2018;30(25):1707292.CrossRefGoogle Scholar
  46. 46.
    Maya-Vetencourt JF, Ghezzi D, Antognazza MR, et al. A fully organic retinal prosthesis restores vision in a rat model of degenerative blindness. Nat Mater. 2017;16:681.CrossRefGoogle Scholar
  47. 47.
    Ekelman KB. New medical devices: invention, development, and use. Washington, DC: National Academies Press (US) by the National Academy of Sciences; 1988.Google Scholar
  48. 48.
    Broekman ML, Carrière ME, Bredenoord AL. Surgical innovation: the ethical agenda A systematic review. Medicine. 2016;95(25):e3790.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Sahil Thakur
    • 1
  1. 1.Singapore Eye Research InstituteSingaporeSingapore

Personalised recommendations