Newer Technologies for Cataract Surgeries

  • Roberto Bellucci
Part of the Current Practices in Ophthalmology book series (CUPROP)


Cataract surgery continues to evolve in several technological aspects. Optical coherence tomography has improved both preoperative biometry and diagnosis. It has been used intra-operatively for particular purposes, and is useful in many postoperative conditions. Automation has entered cataract surgery both through the femtosecond laser and through other mechanized methods of achieving a perfect capsulotomy, with robotic surgery in the pipeline. Feed-back irrigation control during phacoemulsification has been proven effective in stabilizing the anterior chamber and is a leap forward in improving the safety of the surgical procedure. Image-guided toric IOL implantation and refraction-guided power selection are further technical steps in the way to precision. New IOLs have been developed: trifocal IOLs are now the standard of care for multifocality; extended-depth-of-focus IOLs are gaining acceptance and clinical use; pinhole IOLs are also available to improve pseudoaccommodation and to help patients with irregular corneas; supplementary IOLs are challenging the very concept of IOL selection and will be more and more accepted in the near future.


Financial Disclosure

Consultant: Alcon, Bausch & Lomb, Sifitech

Research Fees: PhysIOL, Zeiss

Travel expenses: Hanita, Thea


  1. 1.
    Gollogly HE, Hodge DO, St Sauver JL, Erie JC. Increasing incidence of cataract surgery: population-based study. J Cataract Refract Surg. 2013;39:1383–9.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Huang D, Swanson EA, Lin CP, Schuman JS, et al. Optical coherence tomography. Science. 1991;254(5035):1178–81.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Miller AR, Roisman L, Zhang Q, Zheng F, et al. Comparison between spectral-domain and swept-source optical coherence tomography angiographic imaging of choroidal neovascularization. Invest Ophthalmol Vis Sci. 2017;58:1499–505.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Salouti R, Nowroozzadeh MH, Zamani M, Ghoreyshi M, Salouti R. Comparison of the ultrasonographic method with 2 partial coherence interferometry methods for intraocular lens power calculation. Optometry. 2011;82:140–7.CrossRefGoogle Scholar
  5. 5.
    Goebels S, Pattmöller M, Eppig T, Cayless A, et al. Comparison of 3 biometry devices in cataract patients. J Cataract Refract Surg. 2015;41(11):2387–239.CrossRefGoogle Scholar
  6. 6.
    Güler E, Kulak AE, Totan Y, Yuvarlak A, Hepşen İF. Comparison of a new optical biometry with an optical low coherence reflectometry for ocular biometry. Cont Lens Anterior Eye. 2016;39(5):336–41.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Li J, Chen H, Savini G, Lu W, et al. Measurement agreement between a new biometer based on partial coherence interferometry and a validated biometer based on optical low-coherence reflectometry. J Cataract Refract Surg. 2016;42:68–75.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Kunert KS, Peter M, Blum M, Haigis W, et al. Repeatability and agreement in optical biometry of a new swept source optical coherence tomography-based biometer versus partial coherence interferometry and optical low-coherence reflectometry. J Cataract Refract Surg. 2016;42:76–83.CrossRefGoogle Scholar
  9. 9.
    Shammas HJ, Ortiz S, Shammas MC, Kim SH, Chong C. Biometry measurements using a new large-coherence-length swept-source optical coherence tomographer. J Cataract Refract Surg. 2016;42:50–61.CrossRefGoogle Scholar
  10. 10.
    Wang W, Miao Y, Savini G, McAlinden C. Precision of a new ocular biometer in eyes with cataract using swept source optical coherence tomography combined with Placido-disk corneal topography. Sci Rep. 2017;7(1):13736.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    McAlinden C, Wang Q, Gao R, Zhao W, et al. Axial length measurement failure rates with biometers using swept-source optical coherence tomography compared to partial-coherence interferometry and optical low-coherence interferometry. Am J Ophthalmol. 2017;173:64–9.CrossRefGoogle Scholar
  12. 12.
    Savini G, Hoffer KJ, Barboni P, Balducci N, et al. Accuracy of optical biometry combined with Placido disc corneal topography for intraocular lens power calculation. PLoS One. 2017;12(2):e0172634.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Calvo-Sanz JA, Portero-Benito A, Arias-Puente A. Efficiency and measurements agreement between swept-source OCT and low-coherence interferometry biometry systems. Graefes Arch Clin Exp Ophthalmol. 2018;256:559–66.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Higashiyama T, Mori H, Nakajima F, Ohji M. Comparison of a new biometer using swept-source optical coherence tomography and a conventional biometer using partial coherence interferometry. PLoS One. 2018;13(4):e0196401.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Whang WJ, Yoo YS, Kang MJ, Joo CK. Predictive accuracy of partial coherence interferometry and swept-source optical coherence tomography for intraocular lens power calculation. Sci Rep. 2018;8(1):13732.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Bertelmann T, Blum M, Kunert K, Haigis W, et al. Foveal pit morphology evaluation during optical biometry measurements using a full-eye-length swept-source OCT scan biometer prototype. Eur J Ophthalmol. 2015;25(6):552–8.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Asena L, Akman A, Güngör SG, Dursun Altınörs D. Comparison of keratometry obtained by a swept source OCT-based biometer with a standard optical biometer and Scheimpflug imaging. Curr Eye Res. 2018;43:882–8.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Martinez-Enriquez E, Pérez-Merino P, Durán-Poveda S, Jiménez-Alfaro I, Marcos S. Measurement agreement between a new biometer based on partial coherence interferometry and a validated biometer based on optical low-coherence reflectometry. Estimation of intraocular lens position from full crystalline lens geometry: towards a new generation of intraocular lens power calculation formulas. Sci Rep. 2018;8(1):9829.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Sel S, Stange J, Kaiser D, Kiraly L. Repeatability and agreement of Scheimpflug-based and swept-source optical biometry measurements. Cont Lens Anterior Eye. 2017;40:318–22.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Nakakura S, Mori E, Nagatomi N, Tabuchi H, Kiuchi Y. Comparison of anterior chamber depth measurements by 3-dimensional optical coherence tomography, partial coherence interferometry biometry, Scheimpflug rotating camera imaging, and ultrasound biomicroscopy. J Cataract Refract Surg. 2012;38:1207–13.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Wang Q, Ding X, Savini G, Chen H, et al. Anterior chamber depth measurements using Scheimpflug imaging and optical coherence tomography: repeatability, reproducibility, and agreement. J Cataract Refract Surg. 2015;41:178–85.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Özyol P, Özyol E. Agreement between swept-source optical biometry and Scheimpflug-based topography measurements of anterior segment parameters. Am J Ophthalmol. 2016;169:73–8.CrossRefGoogle Scholar
  23. 23.
    Mansouri M, Ramezani F, Moghimi S, Tabatabaie A, et al. Anterior segment optical coherence tomography parameters in phacomorphic angle closure and mature cataracts. Invest Ophthalmol Vis Sci. 2014;55(11):7403–9.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Martinez-Enriquez E, Sun M, Velasco-Ocana M, Birkenfeld J, et al. Optical coherence tomography based estimates of crystalline lens volume, equatorial diameter, and plane position. Invest Ophthalmol Vis Sci. 2016;57(9):OCT600–10.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Shoji T, Kato N, Ishikawa S, Ibuki H, et al. In vivo crystalline lens measurements with novel swept-source optical coherent tomography: an investigation on variability of measurement. BMJ Open Ophthalmol. 2017;1(1):e000058.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    de Castro A, Benito A, Manzanera S, Mompeán J, et al. Three-dimensional cataract crystalline lens imaging with swept-source optical coherence tomography. Invest Ophthalmol Vis Sci. 2018;59(2):897–903.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Siedlecki D, de Castro A, Gambra E, Ortiz S, et al. Distortion correction of OCT images of the crystalline lens: gradient index approach. Optom Vis Sci. 2012;89(5):E709–18.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Kymionis GD, Diakonis VF, Liakopoulos DA, Tsoulnaras KI, et al. Anterior segment optical coherence tomography for demonstrating posterior capsular rent in posterior polar cataract. Clin Ophthalmol. 2014;8:215–7.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Chan TC, Li EY, Yau JC. Application of anterior segment optical coherence tomography to identify eyes with posterior polar cataract at high risk for posterior capsule rupture. J Cataract Refract Surg. 2014;40:2076–81.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Pavan Kumar G, Krishnamurthy P, Nath M, Baskaran P, et al. Can preoperative anterior segment optical coherence tomography predict posterior capsule rupture during phacoemulsification in patients with posterior polar cataract? J Cataract Refract Surg. 2018;44(12):1441–5.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Tabatabaei A, Hasanlou N, Kheirkhah A, Mansouri M, et al. Accuracy of 3 imaging modalities for evaluation of the posterior lens capsule in traumatic cataract. J Cataract Refract Surg. 2014;40:1092–6.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Das S, Kummelil MK, Kharbanda V, Arora V, et al. Microscope integrated intraoperative spectral domain optical tomography for cataract surgery: uses and applications. Curr Eye Res. 2016;41:643–52.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Hirnschall N, Amir-Asgari S, Maedel S, Findl O. Predicting the postoperative intraocular lens position using continuous intraoperative optical coherence tomography measurements. Invest Ophthalmol Vis Sci. 2013;54(8):5196–203.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Lytvynchuk LM, Glittenberg CG, Falkner-Radler CI, Neumaier-Ammerer B, et al. Evaluation of intraocular lens position during phacoemulsification using intraoperative spectral-domain optical coherence tomography. J Cataract Refract Surg. 2016;42:694–702.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Tassignon MJ, Ní Dhubhghaill S. Real-time intraoperative optical coherence tomography imaging confirms older concepts about the berger space. Ophthalmic Res. 2016;56:222–6.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Kim M, Park KH, Kim TW, Kim DM. Changes in anterior chamber configuration after cataract surgery as measured by anterior segment optical coherence tomography. Korean J Ophthalmol. 2011;25:77–83.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Nagy ZZ, Filkorn T, Takács AI, Kránitz K, et al. Anterior segment OCT imaging after femtosecond laser cataract surgery. J Refract Surg. 2013;29:110–2.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Teixeira A, Salaroli C, Filho FR, Pinto FT, et al. Architectural analysis of clear corneal incision techniques in cataract surgery using Fourier-domain OCT. Ophthalmic Surg Lasers Imaging. 2012;43(6 Suppl):S103–8.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Wang X, Zhang Z, Li X, Xie L, Zhang H, et al. Evaluation of femtosecond laser versus manual clear corneal incisions in cataract surgery using spectral-domain optical coherence tomography. J Refract Surg. 2018;34:17–22.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Wang L, Jiang L, Hallahan K, Al-Mohtaseb ZN, Koch DD. Evaluation of femtosecond laser intrastromal incision location using optical coherence tomography. Ophthalmology. 2017;124:1120–5.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Kanellopoulos AJ, Asimellis G. Corneal epithelial remodeling following cataract surgery: three-dimensional investigation with anterior-segment optical coherence tomography. J Refract Surg. 2014;30:348–53.CrossRefGoogle Scholar
  42. 42.
    Sacu S, Findl O, Linnola RJ. Optical coherence tomography assessment of capsule closure after cataract surgery. J Cataract Refract Surg. 2005;31:330–6.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Neri A, Pieri M, Olcelli F, Leaci R, et al. Swept-source anterior segment optical coherence tomography in late-onset capsular block syndrome: high-resolution imaging and morphometric modifications after posterior capsulotomy. J Cataract Refract Surg. 2013;39:1722–8.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Wang L, Guimaraes de Souza R, Weikert M, Koch DD. Evaluation of crystalline lens and intraocular lens tilt using a swept-source optical coherence tomography biometer. J Cataract Refract Surg. 2019;45(1):35–40.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Luft N, Hirnschall N, Farrokhi S, Findl O. Comparability of anterior chamber depth measurements with partial coherence interferometry and optical low-coherence reflectometry in pseudophakic eyes. J Cataract Refract Surg. 2015;41:1678–84.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Doganay S, Bozgul Firat P, Emre S, Yologlu S. Evaluation of anterior segment parameter changes using the Pentacam after uneventful phacoemulsification. Acta Ophthalmol. 2010;88:601–6.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Robert MC, Harasymowycz P. Intraocular lens position following in-the-bag implantation of single-piece versus three-piece acrylic intraocular lenses. Ophthalmic Surg Lasers Imaging. 2012;43:472–8.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Kanellopoulos AJ, Asimellis G. Clear-cornea cataract surgery: pupil size and shape changes, along with anterior chamber volume and depth changes. A Scheimpflug imaging study. Clin Ophthalmol. 2014;8:2141–50.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Zhu X, He W, Yang J, Hooi M, et al. Adhesion of the posterior capsule to different intraocular lenses following cataract surgery. Acta Ophthalmol. 2016;94:e16–25.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Nagy ZZ, McAlinden C. Femtosecond laser cataract surgery. Eye Vis (Lond). 2015;2:11.CrossRefGoogle Scholar
  51. 51.
    Mencucci R, Matteoli S, Corvi A, Terracciano L, et al. Investigating the ocular temperature rise during femtosecond laser lens fragmentation: an in vitro study. Graefes Arch Clin Exp Ophthalmol. 2015;253:2203–10.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Lubatschowski H. Update on fs laser technology in ophthalmology. Klin Monatsbl Augenheilkd. 2013;230:1207–12.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Grewal DS, Schultz T, Basti S, Dick HB. Femtosecond laser-assisted cataract surgery--current status and future directions. Surv Ophthalmol. 2016;61:103–31.CrossRefGoogle Scholar
  54. 54.
    Kránitz K, Takács AI, Gyenes A, Filkorn T, Gergely R, Kovács I, Nagy ZZ. Femtosecond laser-assisted cataract surgery in management of phacomorphic glaucoma. J Refract Surg. 2013;29:645–8.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Abell RG, Davies PEJ, Phelan D, Goemann K, et al. Anterior capsulotomy integrity after femtosecond laser-assisted cataract surgery. Ophthalmology. 2014;121:17–24.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Schojai M, Schultz T, Burkhard Dick H. Capsule-fixated intraocular lens implantation in small pupil cases. J Refract Surg. 2017;33:568–70.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Hooshmand J, Vote BJ. Femtosecond laser-assisted cataract surgery, technology, outcome, future directions and modern applications. Asia Pac J Ophthalmol (Phila). 2017;6:393–400.Google Scholar
  58. 58.
    Day AC, Gore DM, Bunce C, Evans JR. Laser-assisted cataract surgery versus standard ultrasound phacoemulsification cataract surgery. Cochrane Database Syst Rev. 2016;7:CD010735.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Daya SM, Nanavaty MA, Espinosa-Lagana MM. Translenticular hydrodissection, lens fragmentation, and influence on ultrasound power in femtosecond laser-assisted cataract surgery and refractive lens exchange. J Cataract Refract Surg. 2014;40:37–43.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Roberts TV, Lawless M, Sutton G, Hodge C. Hydrodissection techniques during femtosecond laser-assisted cataract surgery. J Cataract Refract Surg. 2014;40:692–3.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Yoon CH, Kim MK. Improving the toric intraocular lens calculation by considering posterior corneal astigmatism and surgically-induced corneal astigmatism. Korean J Ophthalmol. 2018;32:265–72.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Nagy Z, Takacs A, Filkorn T, Sarayba M. Initial clinical evaluation of an intraocular femtosecond laser in cataract surgery. J Refract Surg. 2009;25:1053–60.CrossRefGoogle Scholar
  63. 63.
    Roberts TV, Lawless M, Bali SJ, Hodge C, Sutton G. Surgical outcomes and safety of femtosecond laser cataract surgery: a prospective study of 1500 consecutive cases. Ophthalmology. 2013;120:227–33.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Popovic M, Campos-Möller X, Schlenker MB, Ahmed II. Efficacy and safety of femtosecond laser-assisted cataract surgery compared with manual cataract surgery: a meta-analysis of 14 567 eyes. Ophthalmology. 2016;123:2113–26.CrossRefGoogle Scholar
  65. 65.
    Kiss HJ, Takacs AI, Kranitz K, Sandor GL, et al. One-day use of preoperative topical nonsteroidal anti-inflammatory drug prevents intraoperative prostaglandin level elevation during femtosecond laser-assisted cataract surgery. Curr Eye Res. 2016;41:1064–7.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Agarwal A, Jacob S. Current and effective advantages of femto phacoemulsification. Curr Opin Ophthalmol. 2017;28:49–57.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Berk TA, Schlenker MB, Campos-Möller X, Pereira AM, Ahmed IIK. Visual and refractive outcomes in manual versus femtosecond laser-assisted cataract surgery: a Single-Center Retrospective Cohort Analysis of 1838 eyes. Ophthalmology. 2018;125:1172–80.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Chen X, Chen K, He J, Yao K. Comparing the curative effects between femtosecond laser-assisted cataract surgery and conventional phacoemulsification surgery: a meta-analysis. PLoS One. 2016;11(3):e0152088.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Wang J, Zhao J, Xu J, Zhang J. Evaluation of the effectiveness of combined femtosecond laser-assisted cataract surgery and femtosecond laser astigmatic keratotomy in improving post-operative visual outcomes. BMC Ophthalmol. 2018;18(1):161.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Levitz L, Reich J, Hodge C. Posterior capsular complication rates with femtosecond laser-assisted cataract surgery: a consecutive comparative cohort and literature review. Clin Ophthalmol. 2018;12:1701–6.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Lawless M, Levitz L, Hodge C. Reviewing the visual benefits of femtosecond laser-assisted cataract surgery: can we improve our outcomes? Indian J Ophthalmol. 2017;65:1314–22.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Manning S, Barry P, Henry Y, Rosen P, Stenevi U, Young D, Lundström M. Femtosecond laser-assisted cataract surgery versus standard phacoemulsification cataract surgery: study from the European Registry of Quality Outcomes for Cataract and Refractive Surgery. J Cataract Refract Surg. 2016;42:1779–90.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Gerten G, Schultz M, Oberheide U. Treating capsule contraction syndrome with a femtosecond laser. J Cataract Refract Surg. 2016;42(9):1255–61.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Nguyen J, Werner L, Ludlow J, Aliancy J, et al. Intraocular lens power adjustment by a femtosecond laser: in vitro evaluation of power change, modulation transfer function, light transmission, and light scattering in a blue light-filtering lens. J Cataract Refract Surg. 2018;44:226–30.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Anisimova NS, Malyugin BE, Arbisser LB, Sobolev NP, et al. Femtosecond laser-assisted intraocular lens fragmentation: low energy transection. J Refract Surg. 2017;33:646–8.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Chang D. Zepto precision pulse capsulotomy: a new automated and disposable capsulotomy technology. Indian J Ophthalmol. 2017;65:1411–4.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Thompson VM, Berdahl JP, Solano JM, Chang DF. Comparison of manual, femtosecond laser, and precision pulse capsulotomy edge tear strength in paired human cadaver eyes. Ophthalmology. 2016;123:265–74.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Waltz K, Thompson VM, Quesada G. Precision pulse capsulotomy: initial clinical experience in simple and challenging cataract surgery cases. J Cataract Refract Surg. 2017;43:606–14.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Pandey SK, Sharma VD. Zepto-rhexis: a new surgical technique of capsulorhexis using precision nano-pulse technology in difficult cataract cases. Indian J Ophthalmol. 2018;66:1165–8.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Hooshmand J, Abell RG, Allen P, Goemann K, Vote BJ. Intraoperative performance and ultrastructural integrity of human capsulotomies created by the improved precision pulse capsulotomy device. J Cataract Refract Surg. 2018;44(11):1333–5.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Kelkar A, Metha M, Kelkar S, Agarwal AA, et al. Precision pulse capsulotomy in phacoemulsification: clinical experience in Indian eyes. Indian J Ophthalmol. 2018;66:1272–7.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Thompson V. Streamlined method for anchoring cataract surgery and intraocular lens centration on the patient’s visual axis. J Cataract Refract Surg. 2018;44:528–33.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Stephenson M. New devices in cataract surgery. Eye World. 2018 January.Google Scholar
  84. 84.
    Packard R. A new approach to laser capsulotomy. CRS Today Europe. 2015 October.Google Scholar
  85. 85.
    Chen CW, Lee YH, Gerber MJ, Cheng H, et al. Intraocular robotic interventional surgical system (IRISS): semi-automated OCT-guided cataract removal. Int J Med Robotics Comput Assist Surg. 2018;14(6):e1949.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Nicoli CM, Dimalanta R, Miller KM. Experimental anterior chamber maintenance in active versus passive phacoemulsification fluidics systems. J Cataract Refract Surg. 2016;42:157–62.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Sharif-Kashani P, Fanney D, Injev V. Comparison of occlusion break responses and vacuum rise times of phacoemulsification systems. BMC Ophthalmol. 2014;14:96.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Solomon KD, Lorente R, Fanney D, Cionni RJ. Clinical study using a new phacoemulsification system with surgical intraocular pressure control. J Cataract Refract Surg. 2016;42:542–9.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Gonzalez-Salinas R, Garza-Leon M, Saenz-de-Viteri M, Solis-S JC, et al. Comparison of cumulative dissipated energy delivered by active-fluidic pressure control phacoemulsification system versus gravity-fluidics. Int Ophthalmol. 2018;38:1907–13.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Boulter T, Christensen MD, Jensen JD, Robinson M, et al. Optimization and comparison of a 0.7 mm tip with the 0.9 mm tip on an active-fluidics phacoemulsification platform. J Cataract Refract Surg. 2017;43:1591–5.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Khokhar S, Aron N, Sen S, Pillay G, Agarwal E. Effect of balanced phacoemulsification tip on the outcomes of torsional phacoemulsification using an active-fluidics system. J Cataract Refract Surg. 2017;43:22–8.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Malik PK, Dewan T, Patidar AK, Sain E. Effect of IOP based infusion system with and without balanced phaco tip on cumulative dissipated energy and estimated fluid usage in comparison to gravity fed infusion in torsional phacoemulsification. Eye Vis (Lond). 2017;4:22.CrossRefGoogle Scholar
  93. 93.
    Dasgupta S, Mehra R. Comparative studies between longitudinal and torsional modes in phacoemulsification, using active fluidics technology along with the intrepid balanced tip. Indian J Ophthalmol. 2018;66:1417–22.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Chang JS, Ng JC, Chan VK, Law AK. Cataract surgery with a new fluidics control phacoemulsification system in nanophthalmic eyes. Case Rep Ophthalmol. 2016;7(3):218–26.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Hida WT, Tzelikis PF, Vilar C, Chaves MAPD, et al. Outcomes study between femtosecond laser-assisted cataract surgery and conventional phacoemulsification surgery using an active fluidics system. Clin Ophthalmol. 2017;11:1735–9.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Kessel L, Andresen J, Tendal B, Erngaard D, et al. Toric intraocular lenses in the correction of astigmatism during cataract surgery. Ophthalmology. 2016;123:275–86.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Kaur M, Shaikh F, Falera R, Titiyal JS, et al. Optimizing outcomes with toric intraocular lenses. Indian J Ophthalmol. 2017;65:1301–13.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Titiyal JS, Kaur M, Jose CP, Falera R, et al. Comparative evaluation of toric intraocular lens alignment and visual quality with image-guided surgery and conventional three-step manual marking. Clin Ophthalmol. 2018;12:747–53.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Elhofi AH, Helaly HA. Comparison between digital and manual marking for toric intraocular lenses: a randomized trial. Medicine (Baltimore). 2015;94(38):e1618.CrossRefGoogle Scholar
  100. 100.
    Schultz M, Oberheide U, Kermani O. Comparability of an image-guided system with other instruments in measuring corneal keratometry and astigmatism. J Cataract Refract Surg. 2016;42:904–12.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Webers VSC, Bauer NJC, Visser N, Berendschot TTJM, et al. Image-guided system versus manual marking for toric intraocular lens alignment in cataract surgery. J Cataract Refract Surg. 2017;43:781–78.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Raucau M, El Chehab H, Agard E, Lagenaite C, Dot C. Toric lens implantation in cataract surgery: automated versus manual horizontal axis marking, analysis of 50 cases. J Fr Ophtalmol. 2018;41:e1–9.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Hura AS, Osher RH. Comparing the Zeiss Callisto Eye and the Alcon Verion Image Guided System toric lens alignment technologies. J Refract Surg. 2017;33:482–7.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Ianchulev T, Hoffer KJ, Yoo SH, et al. Intraoperative refractive biometry for predicting intraocular lens power calculation after prior myopic refractive surgery. Ophthalmology. 2014;121:56–60.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Stringham J, Pettey J, Olson RJ. Evaluation of variables affecting intraoperative aberrometry. J Cataract Refract Surg. 2012;38:470–4.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Hatch KM, Woodcock EC, Talamo JH. Intraocular lens power selection and positioning with and without intraoperative aberrometry. J Refract Surg. 2015;31:237–42.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Woodcock MG, Lehmann R, Cionni RJ, Breen M, Scott MC. Intraoperative aberrometry versus standard preoperative biometry and a toric IOL calculator for bilateral toric IOL implantation with a femtosecond laser: one-month results. J Cataract Refract Surg. 2016;42:817–25.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Fram NR, Masket S, Wang L. Comparison of intraoperative aberrometry, OCT-based IOL formula, Haigis-L, and Masket formulae for IOL power calculation after laser vision correction. Ophthalmology. 2015;122:1096–101.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Yesilirmak N, Palioura S, Culbertson W, Yoo SH, Donaldson K. Intraoperative wavefront aberrometry for toric intraocular lens placement in eyes with a history of refractive surgery. J Refract Surg. 2016;32:69–70.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Hill DC, Sudhakar S, Hill CS, King TS, et al. Intraoperative aberrometry versus preoperative biometry for intraocular lens power selection in axial myopia. J Cataract Refract Surg. 2017;43:505–10.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Davison JA, Potvin R. Preoperative measurement vs intraoperative aberrometry for the selection of intraocular lens sphere power in normal eyes. Clin Ophthalmol. 2017;11:923–9.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Zhang Z, Thomas LW, Leu SY, Carter S, Garg S. Refractive outcomes of intraoperative wavefront aberrometry versus optical biometry alone for intraocular lens power calculation. Indian J Ophthalmol. 2017;65:813–7.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Cionni RJ, Dimalanta R, Breen M, Hamilton C. A large retrospective database analysis comparing outcomes of intraoperative aberrometry with conventional preoperative planning. J Cataract Refract Surg. 2018;44:1230–5.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Plaza-Puche AB, Alió JL, MacRae S, Zheleznyak L, et al. Correlating optical bench performance with clinical defocus curves in varifocal and trifocal intraocular lenses. J Refract Surg. 2015;31:300–7.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Hansen TE, Corydon L, Krag S, Thim K. New multifocal intraocular lens design. J Cataract Refract Surg. 1990;16:38–41.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Portney V. Light distribution in diffractive multifocal optics and its optimization. J Cataract Refract Surg. 2011;37:2053–9.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Gatinel D, Pagnoulle C, Houbrechts Y, Gobin L. Design and qualification of a diffractive trifocal optical profile for intraocular lenses. J Cataract Refract Surg. 2011;37:2060–7.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Lee S, Choi M, Xu Z, Zhao Z, et al. Optical bench performance of a novel trifocal intraocular lens compared with a multifocal intraocular lens. Clin Ophthalmol. 2016;10:1031–8.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Gatinel D, Houbrechts Y. Comparison of bifocal and trifocal diffractive and refractive intraocular lenses using an optical bench. J Cataract Refract Surg. 2013;39:1093–9.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Vega F, Alba-Bueno F, Millán MS, Varón C, et al. Halo and through-focus performance of four diffractive multifocal intraocular lenses. Invest Ophthalmol Vis Sci. 2015;56:3967–75.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Carson D, Xu Z, Alexander E, Choi M, et al. Optical bench performance of 3 trifocal intraocular lenses. J Cataract Refract Surg. 2016;42:1361–7.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Son HS, Tandogan T, Liebing S, Merz P, et al. In vitro optical quality measurements of three intraocular lens models having identical platform. BMC Ophthalmol. 2017;17(1):108.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Alió JL, Montalbán R, Peña-García P, Soria FA, Vega-Estrada A. Visual outcomes of a trifocal aspheric diffractive intraocular lens with microincision cataract surgery. J Refract Surg. 2013;29:756–61.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Sheppard AL, Shah S, Bhatt U, Bhogal G, Wolffsohn JS. Visual outcomes and subjective experience after bilateral implantation of a new diffractive trifocal intraocular lens. J Cataract Refract Surg. 2013;39:343–9.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Cochener B, Vryghem J, Rozot P, Lesieur G, et al. Clinical outcomes with a trifocal intraocular lens: a multicenter study. J Refract Surg. 2014;30:762–8.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Mojzis P, Peña-García P, Liehneova I, Ziak P, Alió JL. Outcomes of a new diffractive trifocal intraocular lens. J Cataract Refract Surg. 2014;40:60–9.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Kretz FT, Choi CY, Müller M, Gerl M, et al. Visual outcomes, patient satisfaction and spectacle independence with a trifocal diffractive intraocular lens. Korean J Ophthalmol. 2016;30:180–91.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Kohnen T, Titke C, Böhm M. Trifocal intraocular lens implantation to treat visual demands in various distances following lens removal. Am J Ophthalmol. 2016;161:71–7.PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Lawless M, Hodge C, Reich J, Levitz L, et al. Visual and refractive outcomes following implantation of a new trifocal intraocular lens. Eye Vis (Lond). 2017;4:10.CrossRefGoogle Scholar
  130. 130.
    Kohnen T, Herzog M, Hemkeppler E, Schonbrunn S, et al. Visual performance of a quadrifocal (trifocal) intraocular lens following removal of the crystalline lens. Am J Ophthalmol. 2017;184:52–62.PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Steinwender G, Schwarz L, Böhm M, Slavík-Lenčová A, et al. Visual results after implantation of a trifocal intraocular lens in high myopes. J Cataract Refract Surg. 2018;44:680–5.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Chow SSW, Chan TCY, ALK N, Kwok AKH. Outcomes of presbyopia-correcting intraocular lenses after laser in situ keratomileusis. Int Ophthalmol. 2019;39(5):1199–204.PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Wang W, Ni S, Li X, Chen X, et al. Femtosecond laser-assisted cataract surgery with implantation of a diffractive trifocal intraocular lens after laser in situ keratomileusis: a case report. BMC Ophthalmol. 2018;18(1):160.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Gerl M, Breyer DRH, Hagen P, Koss MJ. Clinical comparison of a trifocal and a trifocal-toric intraocular lens based on the same diffractive platform. Klin Monatsbl Augenheilkd. 2017;234:1276–82.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Xue S, Zhao G, Yin X, Lin J. Effect of incision on visual outcomes after implantation of a trifocal diffractive IOL. BMC Ophthalmol. 2018;18(1):171.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Gundersen KG, Makari S, Ostenstad S, Potvin R. Retreatments after multifocal intraocular lens implantation: an analysis. Clin Ophthalmol. 2016;10:365–71.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Alba-Bueno F, Vega F, Millán MS. Halos and multifocal intraocular lenses: origin and interpretation. Arch Soc Esp Oftalmol. 2014;89:397–404.PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Brezna W, Lux K, Dragostinoff N, Krutzler C, et al. Psychophysical vision simulation of diffractive bifocal and trifocal intraocular lenses. Transl Vis Sci Technol. 2016;5(5):13.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Jonker SMR, Bauer NJC, Makhotkina NY, Berendschot TTJM, et al. Comparison of a trifocal intraocular lens with a +3.0 D bifocal IOL: results of a prospective randomized clinical trial. J Cataract Refract Surg. 2015;41:1631–40.CrossRefGoogle Scholar
  140. 140.
    Cochener B. Prospective clinical comparison of patient outcomes following implantation of trifocal or bifocal intraocular lenses. J Refract Surg. 2016;32:146–51.PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Shen Z, Lin Y, Zhu Y, Liu X, et al. Clinical comparison of patient outcomes following implantation of trifocal or bifocal intraocular lenses: a systematic review and metaanalysis. Sci Rep. 2017;7:45337.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Kaymak H, Breyer D, Alió JL, Cochener B. Visual performance with bifocal and trifocal diffractive intraocular lenses: a prospective three-armed randomized multicenter clinical trial. J Refract Surg. 2017;33:655–62.PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Mojzis P, Kukuckova L, Majerova K, Ziak P, Piñero DP. Postoperative visual performance with a bifocal and trifocal diffractive intraocular lens during a 1-year follow-up. Int J Ophthalmol. 2017;10(10):1528–33.PubMedPubMedCentralGoogle Scholar
  144. 144.
    Yang JJ, Liu QP, Li JM, Qin L. Comparison of visual outcomes with implantation of trifocal versus bifocal intraocular lens after phacoemulsification: a meta-analysis. Int J Ophthalmol. 2018;11:484–92.PubMedPubMedCentralGoogle Scholar
  145. 145.
    Alba-Bueno F, Garzón N, Vega F, Poyales F, Millán MS. Patient-perceived and laboratory-measured halos associated with diffractive bifocal and trifocal intraocular lenses. Curr Eye Res. 2018;43:35–42.PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Xu Z, Cao D, Chen X, Wu S, et al. Comparison of clinical performance between trifocal and bifocal intraocular lenses: a meta-analysis. PLoS One. 2017;12(10):e0186522.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Plaza-Puche AB, Alio JL. Analysis of defocus curves of different modern multifocal intraocular lenses. Eur J Ophthalmol. 2016;26:412–7.PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Kim M, Kim JH, Lim TH, Cho BJ. Comparison of reading speed after bilateral bifocal and trifocal intraocular lens implantation. Korean J Ophthalmol. 2018;32:77–82.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Escandón-García S, Ribeiro FJ, McAlinden C, Queirós A, González-Méijome JM. Through-focus vision performance and light disturbances of 3 new intraocular lenses for presbyopia correction. J Ophthalmol. 2018;2018:6165493.PubMedPubMedCentralGoogle Scholar
  150. 150.
    Monaco G, Gari M, Di Censo F, Poscia A. Visual performance after bilateral implantation of 2 new presbyopia-correcting intraocular lenses: trifocal versus extended range of vision. J Cataract Refract Surg. 2017;43:737–47.PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Mencucci R, Favuzza E, Caporossi O, Savastano A, Rizzo S. Comparative analysis of visual outcomes, reading skills, contrast sensitivity, and patient satisfaction with two models of trifocal diffractive intraocular lenses and an extended range of vision intraocular lens. Graefes Arch Clin Exp Ophthalmol. 2018;256:1913–22.PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Ruiz-Mesa R, Abengózar-Vela A, Ruiz-Santos M. A comparative study of the visual outcomes between a new trifocal and an extended depth of focus intraocular lens. Eur J Ophthalmol. 2018;28:182–7.PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Cochener B, Boutillier G, Lamard M, Auberger-Zagnoli C. A comparative evaluation of a new generation of diffractive trifocal and extended depth of focus intraocular lenses. J Refract Surg. 2018;34:507–14.PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    Martinez-de-la-Casa JM, Carballo-Alvarez J, Garcia-Bella J, Vazquez-Molini JM, et al. Photopic and mesopic performance of 2 different trifocal diffractive intraocular lenses. Eur J Ophthalmol. 2017;27:26–30.PubMedCrossRefGoogle Scholar
  155. 155.
    Gundersen KG, Potvin R. Trifocal intraocular lenses: a comparison of the visual performance and quality of vision provided by two different lens designs. Clin Ophthalmol. 2017;11:1081–7.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Rosa AM, Miranda ÂC, Patrício MM, McAlinden C. Functional magnetic resonance imaging to assess neuroadaptation to multifocal intraocular lenses. J Cataract Refract Surg. 2017;43:1287–96.PubMedCrossRefGoogle Scholar
  157. 157.
    Nistad K, Göransson F, Støle E, Shams H, Gjerdrum B. The use of capsular tension rings to reduce refractive shift in patients with implantation of trifocal intraocular lenses. J Refract Surg. 2017;33:802–6.PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    Qi Y, Lin J, Leng L, Zhao G, et al. Role of angle κ in visual quality in patients with a trifocal diffractive intraocular lens. J Cataract Refract Surg. 2018;44:949–54.PubMedCrossRefGoogle Scholar
  159. 159.
    Breyer DRH, Kaymak H, Ax T, Kretz FTA, et al. Multifocal intraocular lenses and extended depth of focus intraocular lenses. Asia Pac J Ophthalmol (Phila). 2017;6:339–49.Google Scholar
  160. 160.
    Weeber HA, Meijer ST, Piers PA. Extending the range of vision using diffractive intraocular lens technology. J Cataract Refract Surg. 2015;41:2746–54.PubMedCrossRefGoogle Scholar
  161. 161.
    Bellucci R, Curatolo MC. A new extended depth of focus intraocular lens based on spherical aberration. J Refract Surg. 2017;33:389–94.PubMedCrossRefPubMedCentralGoogle Scholar
  162. 162.
    Yoo YS, Whang WJ, Byun YS, Piao JJ, et al. Through-focus optical bench performance of extended depth-of-focus and bifocal intraocular lenses compared to amonofocal lens. J Refract Surg. 2018;34:236–43.PubMedCrossRefPubMedCentralGoogle Scholar
  163. 163.
    Sachdev GS, Ramamurthy S, Sharma U, Dandapani R. Visual outcomes of patients bilaterally implanted with the extended range of vision intraocular lens: a prospective study. Indian J Ophthalmol. 2018;66:407–10.PubMedPubMedCentralGoogle Scholar
  164. 164.
    Hogarty DT, Russell DJ, Ward BM, Dewhurst N, Burt P. Comparing visual acuity, range of vision and spectacle independence in the extended range of vision and monofocal intraocular lens. Clin Exp Ophthalmol. 2018;46(8):854–60.PubMedCrossRefPubMedCentralGoogle Scholar
  165. 165.
    Ganesh S, Brar S, Pawar A, Relekar KJ. Visual and refractive outcomes following bilateral implantation of extended range of vision intraocular lens with micromonovision. J Ophthalmol. 2018;2018:7321794.PubMedPubMedCentralGoogle Scholar
  166. 166.
    Attia MSA, Auffarth GU, Kretz FTA, Tandogan T, et al. Clinical evaluation of an extended depth of focus intraocular lens with the salzburg reading desk. J Refract Surg. 2017;33:664–9.PubMedCrossRefPubMedCentralGoogle Scholar
  167. 167.
    Gundersen KG. Rotational stability and visual performance 3 months after bilateral implantation of a new toric extended range of vision intraocular lens. Clin Ophthalmol. 2018;12:1269–78.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Camps VJ, Tolosa A, Piñero DP, de Fez D, et al. In vitro aberrometric assessment of a multifocal intraocular lens and two extended depth of focus IOLs. J Ophthalmol. 2017;2017:7095734.PubMedPubMedCentralGoogle Scholar
  169. 169.
    Domínguez-Vicent A, Esteve-Taboada JJ, Del Águila-Carrasco AJ, Ferrer-Blasco T, Montés-Micó R. In vitro optical quality comparison between the Mini WELL Ready progressive multifocal and the TECNIS Symfony. Graefes Arch Clin Exp Ophthalmol. 2016;254:1387–139.PubMedCrossRefPubMedCentralGoogle Scholar
  170. 170.
    Savini G, Balducci N, Carbonara C, Rossi S, et al. Functional assessment of a new extended depth-of-focus intraocular lens. Eye (Lond). 2019;33(3):404–10.CrossRefGoogle Scholar
  171. 171.
    Savini G, Schiano-Lomoriello D, Balducci N, Barboni P. Visual performance of a new extended depth-of-focus intraocular lens compared to a distance-dominant diffractive multifocal intraocular lens. J Refract Surg. 2018;34:228–35.PubMedCrossRefPubMedCentralGoogle Scholar
  172. 172.
    Eppig T, Spira C, Seitz B, Szentmáry N, Langenbucher A. A comparison of small aperture implants providing increased depth of focus in pseudophakic eyes. Z Med Phys. 2016;26:159–67.PubMedCrossRefPubMedCentralGoogle Scholar
  173. 173.
    Grabner G, Ang RE, Vilupuru S. The small-aperture IC-8 intraocular lens: a new concept for added depth of focus in cataract patients. Am J Ophthalmol. 2015;160:1176–84.PubMedCrossRefGoogle Scholar
  174. 174.
    Dick HB, Elling M, Schultz T. Binocular and monocular implantation of small-aperture intraocular lenses in cataract surgery. J Refract Surg. 2018;34:629–31.PubMedCrossRefPubMedCentralGoogle Scholar
  175. 175.
    Dick HB, Piovella M, Vukich J, Vilupuru S, Lin L. Prospective multicenter trial of a small-aperture intraocular lens in cataract surgery. J Cataract Refract Surg. 2017;43:956–68.PubMedCrossRefPubMedCentralGoogle Scholar
  176. 176.
    Ang RE. Small-aperture intraocular lens tolerance to induced astigmatism. Clin Ophthalmol. 2018;12:1659–64.PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Agarwal S, Thornell EM. Cataract surgery with a small-aperture intraocular lens after previous corneal refractive surgery: visual outcomes and spectacle independence. J Cataract Refract Surg. 2018;44:1150–4.PubMedCrossRefPubMedCentralGoogle Scholar
  178. 178.
    Barnett V, Barsam A, Than J, Srinivasan S. Small-aperture intraocular lens combined with secondary piggyback intraocular lens during cataract surgery after previous radial keratotomy. J Cataract Refract Surg. 2018;44:1042–5.PubMedCrossRefPubMedCentralGoogle Scholar
  179. 179.
    Schultz T, Dick HB. Small-aperture intraocular lens implantation in a patient with an irregular cornea. J Refract Surg. 2016;32:706–8.PubMedCrossRefPubMedCentralGoogle Scholar
  180. 180.
    Trindade CC, Trindade BC. Novel pinhole intraocular implant for the treatment of irregular corneal astigmatism and severe light sensitivity after penetrating keratoplasty. JCRS Online Case Rep. 2015;3:4–7.CrossRefGoogle Scholar
  181. 181.
    Trindade CC, Trindade BC, Trindade FC, Werner L, et al. New pinhole sulcus implant for the correction of irregular corneal astigmatism. J Cataract Refract Surg. 2017;43:1297–306.PubMedCrossRefPubMedCentralGoogle Scholar
  182. 182.
    Tsaousis KT, Werner L, Trindade CLC, Guan J, et al. Assessment of a novel pinhole supplementary implant for sulcus fixation in pseudophakic cadaver eyes. Eye (Lond). 2018;32:637–45.CrossRefGoogle Scholar
  183. 183.
    Trindade BLC, Trindade FC, Trindade CLC, Santhiago MR. Phacoemulsification with intraocular pinhole implantation associated with Descemet membrane endothelial keratoplasty to treat failed full-thickness graft with dense cataract. J Cataract Refract Surg. 2018;44:1280–3.PubMedCrossRefPubMedCentralGoogle Scholar
  184. 184.
    Manzouri B, Dari M, Claoué C. Supplementary IOLs: monofocal and multifocal, their applications and limitations. Asia Pac J Ophthalmol (Phila). 2017;6:358–63.Google Scholar
  185. 185.
    Gayton JL, Apple DJ, Peng Q, Visessook N, et al. Interlenticular opacification: clinicopathological correlation of a complication of posterior chamber piggyback intraocular lenses. J Cataract Refract Surg. 2000;26:330–6.PubMedCrossRefPubMedCentralGoogle Scholar
  186. 186.
    Prager F, Amon M, Wiesinger J, Wetzel B, Kahraman G. Capsular bag-fixated and ciliary sulcus-fixated intraocular lens centration after supplementary intraocular lens implantation in the same eye. J Cataract Refract Surg. 2017;43:643–7.PubMedCrossRefPubMedCentralGoogle Scholar
  187. 187.
    Reiter N, Werner L, Guan J, Li J, Tsaousis KT, et al. Assessment of a new hydrophilic acrylic supplementary IOL for sulcus fixation in pseudophakic cadaver eyes. Eye (Lond). 2017;31:802–9.CrossRefGoogle Scholar
  188. 188.
    Amon M. Enhancement of refractive results after cataract surgery and IOL-implantation with a supplementary IOL implanted in the ciliary sulcus. Oftalmologia. 2009;53:91–5.PubMedPubMedCentralGoogle Scholar
  189. 189.
    Kahraman G, Amon M. New supplementary intraocular lens for refractive enhancement in pseudophakic patients. J Cataract Refract Surg. 2010;36:1090–4.PubMedCrossRefPubMedCentralGoogle Scholar
  190. 190.
    Meyer JJ, McGhee CN. Supplementary, sulcus-fixated intraocular lens in the treatment of spherical and astigmatic refractive errors in pseudophakic eyes after keratoplasty. Cornea. 2015;34:1052–6.PubMedCrossRefPubMedCentralGoogle Scholar
  191. 191.
    Makhotkina NY, Berendschot TT, Beckers HJ, Nuijts RM. Treatment of negative dysphotopsia with supplementary implantation of a sulcus-fixated intraocular lens. Graefes Arch Clin Exp Ophthalmol. 2015;253:973–7.PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Makhotkina NY, Dugrain V, Purchase D, Berendschot TTJM, Nuijts RMMA. Effect of supplementary implantation of a sulcus-fixated intraocular lens in patients with negative dysphotopsia. J Cataract Refract Surg. 2018;44:209–18.PubMedCrossRefPubMedCentralGoogle Scholar
  193. 193.
    Liekfeld A, Ehmer A, Schröter U. Visual function and reading speed after bilateral implantation of 2 types of diffractive multifocal intraocular lenses: add-on versus capsular bag design. J Cataract Refract Surg. 2015;41:2107–14.PubMedCrossRefPubMedCentralGoogle Scholar
  194. 194.
    Schrecker J, Feith A, Langenbucher A. Comparison of additional pseudophakic multifocal lenses and multifocal intraocular lens in the capsular bag. Br J Ophthalmol. 2014;98:915–9.PubMedCrossRefPubMedCentralGoogle Scholar
  195. 195.
    Muñoz G, Albarrán-Diego C, Belda L, Rohrweck S. Add-on sulcus-based versus primary in-the-bag multifocal intraocular lens: intraindividual study. J Refract Surg. 2014;30:320–5.PubMedCrossRefPubMedCentralGoogle Scholar
  196. 196.
    Ferreira TB, Pinheiro J. Clinical results with a supplementary toric intraocular lens for the correction of astigmatism in pseudophakic patients. Eur J Ophthalmol. 2015;25:302–8.PubMedCrossRefPubMedCentralGoogle Scholar
  197. 197.
    Meyer JJ, Kim BZ, Ziaei M, McGhee CN. Postoperative rotation of supplementary sulcus-supported toric intraocular lenses. J Cataract Refract Surg. 2017;43:285–8.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Roberto Bellucci
    • 1
  1. 1.Department of OphthalmologyUniversity HospitalVeronaItaly

Personalised recommendations