Bacterial Amyloids: Biogenesis and Biomaterials

  • Line Friis Bakmann Christensen
  • Nicholas Schafer
  • Adriana Wolf-Perez
  • Daniel Jhaf Madsen
  • Daniel E. OtzenEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1174)


Functional amyloid (FuBA) is produced by a large fraction of all bacterial species and represents a constructive use of the stable amyloid fold, in contrast to the pathological amyloid seen in neurodegenerative diseases. When assembled into amyloid, FuBA is unusually robust and withstands most chemicals including denaturants and SDS. Uses include strengthening of bacterial biofilms, cell-to-cell communication, cell wall construction and even bacterial warfare. Biogenesis is under tight spatio-temporal control, thanks to a simple but efficient secretion system which in E. coli, Pseudomonas and other well-studied bacteria includes a major amyloid component that is kept unfolded in the periplasm thanks to chaperones, threaded through the outer membrane via a pore protein and anchored to the cell surface through a nucleator and possibly other helper proteins. In these systems, amyloid formation is promoted through imperfect repeats, but other evolutionarily unrelated proteins either have no or only partially conserved repeats or simply consist of small peptides with multiple structural roles. This makes bioinformatics analysis challenging, though the sophisticated amyloid prediction tools developed from research in pathological amyloid together with the steady increase in identification of further examples of amyloid will strengthen genomic data mining. Functional amyloid represents an intriguing source of robust yet biodegradable materials with new properties, when combining the optimized self-assembly properties of the amyloid component with e.g. peptides with different binding properties or surface-reactive protein binders. Sophisticated patterns can also be obtained by co-incubating bacteria producing different types of amyloid, while amyloid inclusion bodies may lead to slow-release nanopills.


Curli Functional amyloid in Pseudomonas Sequence analysis Fusion proteins with binding properties Screening systems 


  1. 1.
    Sawaya MR, Sambashivan S, Nelson R, Ivanova MI, Sievers SA et al (2007) Atomic structures of amyloid cross-beta spines reveal varied steric zippers. Nature 447:453–457PubMedCrossRefGoogle Scholar
  2. 2.
    Larsen P, Nielsen JL, Otzen D, Nielsen PH (2008) Amyloid-like adhesins produced by floc-forming and filamentous bacteria in activated sludge. Appl Environ Microbiol 74:1517–1526PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Larsen P, Nielsen JL, Dueholm MS, Wetzel R, Otzen D et al (2007) Amyloid adhesins are abundant in natural biofilms. Environ Microbiol 9:3077–3090PubMedCrossRefGoogle Scholar
  4. 4.
    Hung C, Zhou Y, Pinkner JS, Dodson KW, Crowley JR et al (2013) Escherichia coli biofilms have an organized and complex extracellular matrix structure. MBio 4:e00645–e00613PubMedPubMedCentralGoogle Scholar
  5. 5.
    Hammer ND, Schmidt JC, Chapman MR (2007) The curli nucleator protein, CsgB, contains an amyloidogenic domain that directs CsgA polymerization. Proc Natl Acad Sci U S A 104:12494–12499PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Chapman MR, Robinson LS, Pinkner JS, Roth R, Heuser J et al (2002) Role of Escherichia coli curli operons in directing amyloid fiber formation. Science 295:851–855PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Zhou Y, Smith D, Leong BJ, Brannstrom K, Almqvist F et al (2012) Promiscuous cross-seeding between bacterial amyloids promotes interspecies biofilms. J Biol Chem 287:35092–35103PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Dueholm MS, Petersen SV, Sonderkaer M, Larsen P, Christiansen G et al (2010) Functional amyloid in pseudomonas. Mol Microbiol 77:1009–1020PubMedGoogle Scholar
  9. 9.
    Schwartz K, Syed AK, Stephenson RE, Rickard AH, Boles BR (2012) Functional amyloids composed of phenol soluble modulins stabilize Staphylococcus aureus biofilms. PLoS Pathog 8:e1002744PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Dueholm MS, Larsen P, Finster K, Stenvang MR, Christiansen G et al (2015) The tubular sheaths encasing methanosaeta thermophila filaments are functional amyloids. J Biol Chem 290:20590–20600PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Romero D, Aguilar C, Losick R, Kolter R (2010) Amyloid fibers provide structural integrity to Bacillus subtilis biofilms. Proc Natl Acad Sci U S A 107:2230–2234PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    White AP, Collinson SK, Banser PA, Gibson DL, Paetzel M et al (2001) Structure and characterization of AgfB from Salmonella enteritidis thin aggregative fimbriae. J Mol Biol 311:735–749PubMedCrossRefGoogle Scholar
  13. 13.
    Gophna U, Barlev M, Seijffers R, Oelschlager TA, Hacker J et al (2001) Curli fibers mediate internalization of Escherichia coli by eukaryotic cells. Infect Immun 69:2659–2665PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Barnhart MM, Chapman MR (2006) Curli biogenesis and function. Annu Rev Microbiol 60:131–147PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Austin JW, Sanders G, Kay WW, Collinson SK (1998) Thin aggregative fimbriae enhance Salmonella enteritidis biofilm formation. FEMS Microbiol Lett 162:295–301PubMedCrossRefGoogle Scholar
  16. 16.
    Zogaj X, Bokranz W, Nimtz M, Romling U (2003) Production of cellulose and Curli fimbriae by members of the family Enterobacteriaceae isolated from the human gastrointestinal tract. Infect Immun 71:4151–4158PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Hammar M, Arnqvist A, Bian Z, Olsén A, Normark S (1995) Expression of two csg operons is required for production of fibronectin- and Congo red-binding curli polymers in Escherichia coli K-12. Mol Microbiol 18:661–670PubMedCrossRefGoogle Scholar
  18. 18.
    Blanco LP, Evans ML, Smith DR, Badtke MP, Chapman MR (2012) Diversity, biogenesis and function of microbial amyloids. Trends Microbiol 20:66–73PubMedCrossRefGoogle Scholar
  19. 19.
    Romling U, Sierralta WD, Eriksson K, Normark S (1998) Multicellular and aggregative behaviour of Salmonella typhimurium strains is controlled by mutations in the agfD promoter. Mol Microbiol 28:249–264PubMedCrossRefGoogle Scholar
  20. 20.
    Collinson SK, Emody L, Muller KH, Trust TJ, Kay WW (1991) Purification and characterization of thin, aggregative fimbriae from Salmonella enteritidis. J Bacteriol 173:4773–4781PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Dueholm MS, Albertsen M, Otzen D, Nielsen PH (2012) Curli functional amyloid systems are phylogenetically widespread and display large diversity in operon and protein structure. PLoS One 7:e51274PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Jordal PB, Dueholm MS, Larsen P, Petersen SV, Enghild JJ et al (2009) Widespread abundance of functional bacterial amyloid in mycolata and other gram-positive bacteria. Appl Environ Microbiol 75:4101–4110PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Otzen D (2010) Functional amyloid – turning swords into plowshares. Prion 4:256–264PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Winner B, Jappelli R, Maji SK, Desplats PA, Boyer L et al (2011) In vivo demonstration that alpha-synuclein oligomers are toxic. Proc Natl Acad Sci U S A 108:4194–4199PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Shahnawaz M, Soto C (2012) Microcin amyloid fibrils a are reservoir of toxic oligomeric species. J Biol Chem 287:11665–11676PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    He Y, Zheng MM, Ma Y, Han XJ, Ma XQ et al (2012) Soluble oligomers and fibrillar species of amyloid beta-peptide differentially affect cognitive functions and hippocampal inflammatory response. Biochem Biophys Res Commun 429:125–130PubMedCrossRefGoogle Scholar
  27. 27.
    Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW, Glabe CG (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300:486–489CrossRefGoogle Scholar
  28. 28.
    Kayed R, Sokolov Y, Edmonds B, McIntire TM, Milton SC et al (2004) Permeabilization of lipid bilayers is a common conformation-dependent activity of soluble amyloid oligomers in protein misfolding diseases. J Biol Chem 279:46363–46366PubMedCrossRefGoogle Scholar
  29. 29.
    Evans ML, Chorell E, Taylor JD, Aden J, Gotheson A et al (2015) The bacterial curli system possesses a potent and selective inhibitor of amyloid formation. Mol Cell 57:445–455PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Nenninger AA, Robinson LS, Hammer ND, Epstein EA, Badtke MP et al (2011) CsgE is a curli secretion specificity factor that prevents amyloid fibre aggregation. Mol Microbiol 81:486–499PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Wright CF, Teichmann SA, Clarke J, Dobson CM (2005) The importance of sequence diversity in the aggregation and evolution of proteins. Nature 438:878–881CrossRefGoogle Scholar
  32. 32.
    Ross ED, Minton A, Wickner RB (2005) Prion domains: sequences, structures and interactions. Nat Cell Biol 7:1039–1044PubMedCrossRefGoogle Scholar
  33. 33.
    Wang X, Chapman MR (2008) Sequence determinants of bacterial amyloid formation. J Mol Biol 380:570–580PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Wang X, Smith DR, Jones JW, Chapman MR (2007) In vitro polymerization of a functional Escherichia coli amyloid protein. J Biol Chem 282:3713–3719PubMedCrossRefGoogle Scholar
  35. 35.
    Hammer ND, McGuffie BA, Zhou Y, Badtke MP, Reinke AA et al (2012) The C-terminal repeating units of CsgB direct bacterial functional amyloid nucleation. J Mol Biol 422:376–389PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Hammar M, Bian Z, Normark S (1996) Nucleator-dependent intercellular assembly of adhesive curli organelles in Escherichia coli. Proc Natl Acad Sci U S A 93:6562–6566PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Dueholm MS, Nielsen SB, Hein KL, Nissen P, Chapman M et al (2011) Fibrillation of the major curli subunit CsgA under a wide range of conditions implies a robust design of aggregation. Biochemistry 50:8281–8290PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Shewmaker F, McGlinchey RP, Thurber KR, McPhie P, Dyda F et al (2009) The functional curli amyloid is not based on in-register parallel beta-sheet structure. J Biol Chem 284:25065–25076PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Rochet JC, Lansbury PT Jr (2000) Amyloid fibrillogenesis: themes and variations. Curr Opin Struct Biol 10:60–68PubMedCrossRefGoogle Scholar
  40. 40.
    Taylor JD, Hawthorne WJ, Lo J, Dear A, Jain N et al (2016) Electrostatically-guided inhibition of Curli amyloid nucleation by the CsgC-like family of chaperones. Sci Rep 6:24656PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Loferer H, Hammar M, Normark S (1997) Availability of the fibre subunit CsgA and the nucleator protein CsgB during assembly of fibronectin-binding curli is limited by the intracellular concentration of the novel lipoprotein CsgG. Mol Microbiol 26:11–23PubMedCrossRefGoogle Scholar
  42. 42.
    Tian P, Boomsma W, Wang Y, Otzen DE, Jensen MH et al (2015) Structure of a functional amyloid protein subunit computed using sequence variation. J Am Chem Soc 137:22–25PubMedCrossRefGoogle Scholar
  43. 43.
    Robinson LS, Ashman EM, Hultgren SJ, Chapman MR (2006) Secretion of curli fibre subunits is mediated by the outer membrane-localized CsgG protein. Mol Microbiol 59:870–881PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Epstein EA, Reizian MA, Chapman MR (2009) Spatial clustering of the curlin secretion lipoprotein requires curli fiber assembly. J Bacteriol 191:608–615PubMedCrossRefGoogle Scholar
  45. 45.
    Goyal P, Krasteva PV, Van Gerven N, Gubellini F, Van den Broeck I et al (2014) Structural and mechanistic insights into the bacterial amyloid secretion channel CsgG. Nature 516:250–253PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Cao B, Zhao Y, Kou Y, Ni D, Zhang XC et al (2014) Structure of the nonameric bacterial amyloid secretion channel. Proc Natl Acad Sci U S A 111:E5439–E5444PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Geibel S, Procko E, Hultgren SJ, Baker D, Waksman G (2013) Structural and energetic basis of folded-protein transport by the FimD usher. Nature 496:243–246PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Van Gerven N, Klein RD, Hultgren SJ, Remaut H (2015) Bacterial amyloid formation: structural insights into curli biogensis. Trends Microbiol 23:693–706PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Van Gerven N, Goyal P, Vandenbussche G, De Kerpel M, Jonckheere W et al (2014) Secretion and functional display of fusion proteins through the curli biogenesis pathway. Mol Microbiol 91:1022–1035PubMedCrossRefGoogle Scholar
  50. 50.
    Sivanathan V, Hochschild A (2012) Generating extracellular amyloid aggregates using E. coli cells. Genes Dev 26:2659–2667PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Andersson EK, Bengtsson C, Evans ML, Chorell E, Sellstedt M et al (2013) Modulation of curli assembly and pellicle biofilm formation by chemical and protein chaperones. Chem Biol 20:1245–1254PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Nenninger AA, Robinson LS, Hultgren SJ (2009) Localized and efficient curli nucleation requires the chaperone-like amyloid assembly protein CsgF. Proc Natl Acad Sci U S A 106:900–905PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Dueholm MS, Otzen D, Nielsen PH (2013) Evolutionary insight into the functional amyloids of the pseudomonads. PLoS One 8:e76630PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Dueholm MS, Sondergaard MT, Nilsson M, Christiansen G, Stensballe A et al (2013) Expression of Fap amyloids in Pseudomonas aeruginosa, P. fluorescens, and P. putida results in aggregation and increased biofilm formation. Microbiology 2:365–382Google Scholar
  55. 55.
    Zeng G, Vad BS, Dueholm MS, Christiansen G, Nilsson M et al (2015) Functional bacterial amyloid increases Pseudomonas biofilm hydrophobicity and stiffness. Front Microbiol 6:1099PubMedPubMedCentralGoogle Scholar
  56. 56.
    Herbst FA, Sondergaard MT, Kjeldal H, Stensballe A, Nielsen PH et al (2015) Major proteomic changes associated with amyloid-induced biofilm formation in Pseudomonas aeruginosa PAO1. J Proteome Res 14:72–81PubMedCrossRefGoogle Scholar
  57. 57.
    Wiehlmann L, Munder A, Adams T, Juhas M, Kolmar H et al (2007) Functional genomics of Pseudomonas aeruginosa to identify habitat-specific determinants of pathogenicity. Int J Med Microbiol 297:615–623PubMedCrossRefGoogle Scholar
  58. 58.
    Olsen A, Jonsson A, Normark S (1989) Fibronectin binding mediated by a novel class of surface organelles on Escherichia coli. Nature 338:652–655PubMedCrossRefGoogle Scholar
  59. 59.
    Olsen A, Arnqvist A, Hammar M, Sukupolvi S, Normark S (1993) The RpoS sigma factor relieves H-NS-mediated transcriptional repression of csgA, the subunit gene of fibronectin-binding curli in Escherichia coli. Mol Microbiol 7:523–536PubMedCrossRefGoogle Scholar
  60. 60.
    Collinson SK, Doig PC, Doran JL, Clouthier S, Trust TJ et al (1993) Thin, aggregative fimbriae mediate binding of Salmonella enteritidis to fibronectin. J Bacteriol 175:12–18PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Collinson SK, Parker JM, Hodges RS, Kay WW (1999) Structural predictions of AgfA, the insoluble fimbrial subunit of Salmonella thin aggregative fimbriae. J Mol Biol 290:741–756PubMedCrossRefGoogle Scholar
  62. 62.
    Gazit E (2002) A possible role for pi-stacking in the self-assembly of amyloid fibrils. FASEB J 16:77–83PubMedCrossRefGoogle Scholar
  63. 63.
    Azriel R, Gazit E (2001) Analysis of the minimal amyloid-forming fragment of the islet amyloid polypeptide. An experimental support for the key role of the phenylalanine residue in amyloid formation. J Biol Chem 276:34156–34161PubMedCrossRefGoogle Scholar
  64. 64.
    Dueholm M, Nielsen PH (2016) Amyloids – a neglected child of the slime. In: Flemming H-C, Neu T, Wingender J (eds) The perfect slime. IWA Publishing, LondonGoogle Scholar
  65. 65.
    Gibson DL, White AP, Rajotte CM, Kay WW (2007) AgfC and AgfE facilitate extracellular thin aggregative fimbriae synthesis in Salmonella enteritidis. Microbiology 153:1131–1140PubMedCrossRefGoogle Scholar
  66. 66.
    Manara A, DalCorso G, Baliardini C, Farinati S, Cecconi D et al (2012) Pseudomonas putida response to cadmium: changes in membrane and cytosolic proteomes. J Proteome Res 11:4169–4179PubMedCrossRefGoogle Scholar
  67. 67.
    Lewenza S, Gardy JL, Brinkman FS, Hancock RE (2005) Genome-wide identification of Pseudomonas aeruginosa exported proteins using a consensus computational strategy combined with a laboratory-based PhoA fusion screen. Genome Res 15:321–329PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Bian Z, Normark S (1997) Nucleator function of CsgB for the assembly of adhesive surface organelles in Escherichia coli. EMBO J 16:5827–5836PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Taylor JD, Zhou Y, Salgado PS, Patwardhan A, McGuffie M et al (2011) Atomic resolution insights into curli fiber biogenesis. Structure 19:1307–1316PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Collinson SK, Clouthier SC, Doran JL, Banser PA, Kay WW (1996) Salmonella enteritidis agfBAC operon encoding thin, aggregative fimbriae. J Bacteriol 178:662–667PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Dueholm MS, Søndergaard MT, Nilsson M, Christiansen G, Stensballe A, Overgaard MT, Givskov M, Tolker-Nielsen T, Otzen DE, Nielsen PH (2013) Expression of Fap amyloids in Pseudomonas aeruginosa, P. fluorescens, and P. putida results in aggregation and increased biofilm formation. MicrobiologyOpen 2:365–382PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Seviour T, Hansen SH, Yang L, Yau YH, Wang VB et al (2015) Functional amyloids keep quorum-sensing molecules in check. J Biol Chem 290:6457–6469PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Chai L, Romero D, Kayatekin C, Akabayov B, Vlamakis H et al (2013) Isolation, characterization, and aggregation of a structured bacterial matrix precursor. J Biol Chem 288:17559–17568PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Terra R, Stanley-Wall NR, Cao G, Lazazzera BA (2012) Identification of Bacillus subtilis SipW as a bifunctional signal peptidase that controls surface-adhered biofilm formation. J Bacteriol 194:2781–2790PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Romero D, Vlamakis H, Losick R, Kolter R (2011) An accessory protein required for anchoring and assembly of amyloid fibres in B. subtilis biofilms. Mol Microbiol 80:1155–1168PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Stover AG, Driks A (1999) Secretion, localization, and antibacterial activity of TasA, a Bacillus subtilis spore-associated protein. J Bacteriol 181:1664–1672PubMedPubMedCentralGoogle Scholar
  77. 77.
    Oh J, Kim JG, Jeon E, Yoo CH, Moon JS et al (2007) Amyloidogenesis of type III-dependent harpins from plant pathogenic bacteria. J Biol Chem 282:13601–13609PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Kim JG, Park BK, Yoo CH, Jeon E, Oh J et al (2003) Characterization of the Xanthomonas axonopodis pv. glycines Hrp Pathogenicity Island. J Bacteriol 185:3155–3166PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    de Jong W, Wosten HA, Dijkhuizen L, Claessen D (2009) Attachment of Streptomyces coelicolor is mediated by amyloidal fimbriae that are anchored to the cell surface via cellulose. Mol Microbiol 73:1128–1140PubMedCrossRefGoogle Scholar
  80. 80.
    Claessen D, Rink R, de Jong W, Siebring J, de Vreugd P et al (2003) A novel class of secreted hydrophobic proteins is involved in aerial hyphae formation in Streptomyces coelicolor by forming amyloid-like fibrils. Genes Dev 17:1714–1726PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Sawyer EB, Claessen D, Haas M, Hurgobin B, Gras SL (2011) The assembly of individual chaplin peptides from Streptomyces coelicolor into functional amyloid fibrils. PLoS One 6:e18839PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Bokhove M, Claessen D, de Jong W, Dijkhuizen L, Boekema EJ et al (2013) Chaplins of Streptomyces coelicolor self-assemble into two distinct functional amyloids. J Struct Biol 184:301–309PubMedCrossRefGoogle Scholar
  83. 83.
    Elliot MA, Karoonuthaisiri N, Huang J, Bibb MJ, Cohen SN et al (2003) The chaplins: a family of hydrophobic cell-surface proteins involved in aerial mycelium formation in Streptomyces coelicolor. Genes Dev 17:1727–1740PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Di Berardo C, Capstick DS, Bibb MJ, Findlay KC, Buttner MJ et al (2008) Function and redundancy of the chaplin cell surface proteins in aerial hypha formation, rodlet assembly, and viability in Streptomyces coelicolor. J Bacteriol 190:5879–5889PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Alteri CJ, Xicohtencatl-Cortes J, Hess S, Caballero-Olin G, Giron JA et al (2007) Mycobacterium tuberculosis produces pili during human infection. Proc Natl Acad Sci U S A 104:5145–5150PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Ramsugit S, Guma S, Pillay B, Jain P, Larsen MH et al (2013) Pili contribute to biofilm formation in vitro in Mycobacterium tuberculosis. Antonie Van Leeuwenhoek 104:725–735PubMedCrossRefGoogle Scholar
  87. 87.
    Velayati AA, Farnia P, Masjedi MR (2012) Pili in totally drug resistant Mycobacterium Tuberculosis (TDR-TB). Int J Mycobacteriol 1:57–58PubMedCrossRefGoogle Scholar
  88. 88.
    Oli MW, Otoo HN, Crowley PJ, Heim KP, Nascimento MM et al (2012) Functional amyloid formation by Streptococcus mutans. Microbiology 158:2903–2916PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Bieler S, Estrada L, Lagos R, Baeza M, Castilla J et al (2005) Amyloid formation modulates the biological activity of a bacterial protein. J Biol Chem 280:26880–26885PubMedCrossRefGoogle Scholar
  90. 90.
    Lagos R, Villanueva JE, Monasterio O (1999) Identification and properties of the genes encoding microcin E492 and its immunity protein. J Bacteriol 181:212–217PubMedPubMedCentralGoogle Scholar
  91. 91.
    de Lorenzo V (1984) Isolation and characterization of microcin E492 from Klebsiella pneumoniae. Arch Microbiol 139:72–75PubMedCrossRefGoogle Scholar
  92. 92.
    de Lorenzo V, Martinez JL, Asensio C (1984) Microcin-mediated interactions between Klebsiella pneumoniae and Escherichia coli strains. J Gen Microbiol 130:391–400PubMedGoogle Scholar
  93. 93.
    Gekara NO, Jacobs T, Chakraborty T, Weiss S (2005) The cholesterol-dependent cytolysin listeriolysin O aggregates rafts via oligomerization. Cell Microbiol 7:1345–1356PubMedCrossRefGoogle Scholar
  94. 94.
    Bavdek A, Kostanjšek R, Antonini V, Lakey JH, Dalla Serra M et al (2012) pH dependence of listeriolysin O aggregation and pore-forming ability. FEBS J 279:126–141PubMedCrossRefGoogle Scholar
  95. 95.
    Vazquez-Boland JA, Dominguez-Bernal G, Gonzalez-Zorn B, Kreft J, Goebel W (2001) Pathogenicity islands and virulence evolution in Listeria. Microbes Infect 3:571–584PubMedCrossRefGoogle Scholar
  96. 96.
    Vuong C, Durr M, Carmody AB, Peschel A, Klebanoff SJ et al (2004) Regulated expression of pathogen-associated molecular pattern molecules in Staphylococcus epidermidis: quorum-sensing determines pro-inflammatory capacity and production of phenol-soluble modulins. Cell Microbiol 6:753–759PubMedCrossRefGoogle Scholar
  97. 97.
    Periasamy S, Joo HS, Duong AC, Bach TH, Tan VY et al (2012) How Staphylococcus aureus biofilms develop their characteristic structure. Proc Natl Acad Sci U S A 109:1281–1286PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Moreno-Del Alamo M, de la Espina SM, Fernandez-Tresguerres ME, Giraldo R (2015) Pre-amyloid oligomers of the proteotoxic RepA-WH1 prionoid assemble at the bacterial nucleoid. Sci Rep 5:14669PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Molina-Garcia L, Gasset-Rosa F, Moreno-Del Alamo M, Fernandez-Tresguerres ME, Moreno-Diaz de la Espina S et al (2016) Functional amyloids as inhibitors of plasmid DNA replication. Sci Rep 6:25425PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Diehl A, Roske Y, Ball L, Chowdhury A, Hiller M et al (2018) Structural changes of TasA in biofilm formation of Bacillus subtilis. Proc Natl Acad Sci U S A 115:3237–3242CrossRefGoogle Scholar
  101. 101.
    Nagorska K, Ostrowski A, Hinc K, Holland IB, Obuchowski M (2010) Importance of eps genes from Bacillus subtilis in biofilm formation and swarming. J Appl Genet 51:369–381PubMedCrossRefGoogle Scholar
  102. 102.
    Dueholm MS, Petersen SV, Sønderkær M, Larsen P, Christiansen G et al (2010) Functional amyloid in Pseudomonas. Mol Microbiol 77:1009–1020PubMedGoogle Scholar
  103. 103.
    Dueholm MS, Larsen P, Finster K, Stenvang MR, Christiansen G et al (2015) The tubular sheaths encasing Methanosaeta thermophila are functional amyloids. J Biol Chem 290:20590–20600PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Oh J, Kim J-G, Jeon E, Yo C-H, Moon JS et al (2007) Amyloidogenesis of type III-dependent harpins from plant pathogenic bacteria. J Biol Chem 282:13601–13609PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Volles MJ, Lee SJ, Rochet JC, Shtilerman MD, Ding TT et al (2001) Vesicle permeabilization by protofibrillar α-synuclein: implications for the pathogenesis and treatment of Parkinson’s disease. Biochemistry 40:7812–7819PubMedCrossRefGoogle Scholar
  106. 106.
    Claessen D, Rink R, de Jong W, Siebring J, de Vreughd P et al (2003) A novel class of secreted hydrophobic proteins is involved in aerial hyphae formation in Streptomyces coelicolor by forming amyloid-like fibrils. Genes Dev 17:1714–1726PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Elliot MA, Karoonuthaisir N, Huang J, Bibb MJ, Cohen SN et al (2003) The chaplins: a family of hydrophobic cell-surface proteins involved in aerial mycelium formation in Streptomyces coelicolor. Genes Dev 17:1727–1740PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Schwartz K, Ganesan M, Payne DE, Solomon MJ, Boles BR (2015) Extracellular DNA facilitates the formation of functional amyloids in Staphylococcus aureus biofilms. Mol Microbiol 99(1):123–134PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Maurer-Stroh S, Debulpaep M, Kuemmerer N, de la Paz ML, Martins IC et al (2010) Exploring the sequence determinants of amyloid structure using position-specific scoring matrices (vol 7, pg 237, 2010). Nat Methods 7:855–855Google Scholar
  110. 110.
    Emily M, Talvas A, Delamarche C (2013) MetAmyl: a METa-predictor for AMYLoid proteins. PLoS One 8:e79722PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Ahmed AB, Znassi N, Chateau MT, Kajava AV (2015) A structure-based approach to predict predisposition to amyloidosis. Alzheimers Dement 11:681–690PubMedCrossRefGoogle Scholar
  112. 112.
    Stanislawski J, Kotulska M, Unold O (2013) Machine learning methods can replace 3D profile method in classification of amyloidogenic hexapeptides. BMC Bioinformatics 14:21PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Walsh I, Seno F, Tosatto SCE, Trovato A (2014) PASTA 2.0: an improved server for protein aggregation prediction. Nucleic Acids Res 42:W301–W307PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Conchillo-Sole O, de Groot NS, Aviles FX, Vendrell J, Daura X et al (2007) AGGRESCAN: a server for the prediction and evaluation of “hot spots” of aggregation in polypeptides. BMC Bioinformatics 8:65PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Garbuzynskiy SO, Lobanov MY, Galzitskaya OV (2010) FoldAmyloid: a method of prediction of amyloidogenic regions from protein sequence. Bioinformatics 26:326–332PubMedCrossRefGoogle Scholar
  116. 116.
    Tartaglia GG, Vendruscolo M (2008) The Zyggregator method for predicting protein aggregation propensities. Chem Soc Rev 37:1395–1401PubMedCrossRefGoogle Scholar
  117. 117.
    Fernandez-Escamilla AM, Rousseau F, Schymkowitz J, Serrano L (2004) Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nat Biotechnol 22:1302–1306PubMedCrossRefGoogle Scholar
  118. 118.
    Bryan AW, Menke M, Cowen LJ, Lindquist SL, Berger B (2009) BETASCAN: probable beta-amyloids identified by pairwise probabilistic analysis. PLoS Comput Biol 5:e1000333PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Thompson MJ, Sievers SA, Karanicolas J, Ivanova MI, Baker D et al (2006) The 3D profile method for identifying fibril-forming segments of proteins. Proc Natl Acad Sci U S A 103:4074–4078PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Kim C, Choi J, Lee SJ, Welsh WJ, Yoon S (2009) NetCSSP: web application for predicting chameleon sequences and amyloid fibril formation. Nucleic Acids Res 37:W469–W473PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Hamodrakas SJ (2011) Protein aggregation and amyloid fibril formation prediction software from primary sequence: towards controlling the formation of bacterial inclusion bodies. FEBS J 278:2428–2435PubMedCrossRefGoogle Scholar
  122. 122.
    Ahmed AB, Kajava AV (2013) Breaking the amyloidogenicity code: methods to predict amyloids from amino acid sequence. FEBS Lett 587:1089–1095PubMedCrossRefGoogle Scholar
  123. 123.
    Hamodrakas SJ (1988) A protein secondary structure prediction scheme for the Ibm Pc and compatibles. Comput Appl Biosci 4:473–477PubMedGoogle Scholar
  124. 124.
    Zibaee S, Makin OS, Goedert M, Serpell LC (2007) A simple algorithm locates beta-strands in the amyloid fibril core of alpha-synuclein, a beta, and tau using the amino acid sequence alone. Protein Sci 16:1242–1242CrossRefGoogle Scholar
  125. 125.
    Dubay KF, Pawar AP, Chiti F, Zurdo J, Dobson CM et al (2004) Prediction of the absolute aggregation rates of amyloidogenic polypeptide chains. J Mol Biol 341:1317–1326PubMedCrossRefGoogle Scholar
  126. 126.
    Galzitskaya OV, Garbuzynskiy SO, Lobanov MY (2006) Prediction of amyloidogenic and disordered regions in protein chains. PLoS Comput Biol 2:1639–1648CrossRefGoogle Scholar
  127. 127.
    Galzitskaya OV, Garbuzynskiy SO, Lobanov MY (2007) Expected packing density allows prediction of both amyloidogenic and disordered regions in protein chains. J Phys Condens Matter 19:285225CrossRefGoogle Scholar
  128. 128.
    Trovato A, Chiti F, Maritan A, Seno F (2006) Insight into the structure of amyloid fibrils from the analysis of globular proteins. PLoS Comput Biol 2:1608–1618CrossRefGoogle Scholar
  129. 129.
    Zhang ZQ, Chen H, Lai LH (2007) Identification of amyloid fibril-forming segments based on structure and residue-based statistical potential. Bioinformatics 23:2218–2225PubMedCrossRefGoogle Scholar
  130. 130.
    Thangakani AM, Kumar S, Nagarajan R, Velmurugan D, Gromiha MM (2014) GAP: towards almost 100 percent prediction for beta-strand-mediated aggregating peptides with distinct morphologies. Bioinformatics 30:1983–1990PubMedCrossRefGoogle Scholar
  131. 131.
    O’Donnell CW, Waldispuhl J, Lis M, Halfmann R, Devadas S et al (2011) A method for probing the mutational landscape of amyloid structure. Bioinformatics 27:I34–I42PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    de la Paz ML, Serrano L (2004) Sequence determinants of amyloid fibril formation. Proc Natl Acad Sci U S A 101:87–92CrossRefGoogle Scholar
  133. 133.
    de Groot NS, Aviles FX, Vendrell J, Ventura S (2006) Mutagenesis of the central hydrophobic cluster in A beta 42 Alzheimer’s pepticle – side-chain properties correlate with aggregation propensities. FEBS J 273:658–668PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    de Groot NS, Pallares I, Aviles FX, Vendrell J, Ventura S (2005) Prediction of “hot spots” of aggregation in disease-linked polypeptides. BMC Struct Biol 5:1–15CrossRefGoogle Scholar
  135. 135.
    Tian J, Wu NF, Guo J, Fan YL (2009) Prediction of amyloid fibril-forming segments based on a support vector machine. BMC Bioinformatics 10:S45PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    David MPC, Concepcion GP, Padlan EA (2010) Using simple artificial intelligence methods for predicting amyloidogenesis in antibodies. BMC Bioinformatics 11:1–13CrossRefGoogle Scholar
  137. 137.
    Nair SSK, Reddy NVS, Hareesha KS (2011) Exploiting heterogeneous features to improve in silico prediction of peptide status – amyloidogenic or non-amyloidogenic. BMC Bioinformatics 12:S21PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Gasior P, Kotulska M (2014) FISH Amyloid – a new method for finding amyloidogenic segments in proteins based on site specific co-occurence of aminoacids. BMC Bioinformatics 15:1–8CrossRefGoogle Scholar
  139. 139.
    Famlia C, Dennison SR, Quintas A, Phoenix DA (2015) Prediction of peptide and protein propensity for amyloid formation. PLoS One 10:e0134679CrossRefGoogle Scholar
  140. 140.
    Tsolis AC, Papandreou NC, Iconomidou VA, Hamodrakas SJ (2013) A consensus method for the prediction of ‘Aggregation-Prone’ peptides in globular proteins. PLoS One 8:e54175PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Frousios KK, Iconomidou VA, Karletidi CM, Hamodrakas SJ (2009) Amyloidogenic determinants are usually not buried. BMC Struct Biol 9:44PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Kallberg Y, Gustafsson M, Persson B, Thyberg J, Johansson J (2001) Prediction of amyloid fibril-forming proteins. J Biol Chem 276:12945–12950PubMedCrossRefGoogle Scholar
  143. 143.
    Yoon S, Welsh WJ (2004) Detecting hidden sequence propensity for amyloid fibril formation. Protein Sci 13:2149–2160PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Kawashima S, Ogata H, Kanehisa M (1999) AAindex: amino acid index database. Nucleic Acids Res 27:368–369PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Bowie JU, Eisenberg D (1993) Inverted protein-structure prediction. Curr Opin Struct Biol 3:437–444CrossRefGoogle Scholar
  146. 146.
    Zheng WH, Schafer NP, Wolynes PG (2013) Frustration in the energy landscapes of multidomain protein misfolding. Proc Natl Acad Sci U S A 110:1680–1685PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Zheng WH, Schafer NP, Wolynes PG (2013) Free energy landscapes for initiation and branching of protein aggregation. Proc Natl Acad Sci U S A 110:20515–20520PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Jain AK, Duin RPW, Mao JC (2000) Statistical pattern recognition: a review. IEEE Trans Pattern Anal Mach Intell 22:4–37CrossRefGoogle Scholar
  149. 149.
    Beerten J, Van Durme J, Gallardo R, Capriotti E, Serpell L et al (2015) WALTZ-DB: a benchmark database of amyloidogenic hexapeptides. Bioinformatics 31:1698–1700PubMedCrossRefGoogle Scholar
  150. 150.
    Lembre P, Vendrely C, Di Martino P (2014) Identification of an Amyloidogenic peptide from the bap protein of Staphylococcus epidermidis. Protein Pept Lett 21:75–79PubMedCrossRefGoogle Scholar
  151. 151.
    Bezsonov EE, Groenning M, Galzitskaya OV, Gorkovskii AA, Semisotnov GV et al (2013) Amyloidogenic peptides of yeast cell wall glucantransferase Bgl2p as a model for the investigation of its pH-dependent fibril formation. Prion 7:175–184PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Hardy GG, Allen RC, Toh E, Long M, Brown PJB et al (2010) A localized multimeric anchor attaches the Caulobacter holdfast to the cell pole. Mol Microbiol 76:409–427PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Iglesias V, de Groot NS, Ventura S (2015) Computational analysis of candidate prion-like proteins in bacteria and their role. Front Microbiol 6:1123PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Louros NN, Bolas GMP, Tsiolaki PL, Hamodrakas SJ, Iconomidou VA (2016) Intrinsic aggregation propensity of the CsgB nucleator protein is crucial for curli fiber formation. J Struct Biol 195:179–189PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Romero D, Vlamakis H, Losick R, Kolter R (2014) Functional analysis of the accessory protein TapA in Bacillus subtilis amyloid fiber assembly. J Bacteriol 196:1505–1513PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Ivanova N, Sikorski J, Jando M, Munk C, Lapidus A et al (2010) Complete genome sequence of Geodermatophilus obscurus type strain (G-20(T)). Stand Genomic Sci 2:158–167PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Althani AA, Marei HE, Hamdi WS, Nasrallah GK, El Zowalaty ME et al (2016) Human microbiome and its association with health and diseases. J Cell Physiol 231:1688–1694PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    Eloe-Fadrosh EA, Paez-Espino D, Jarett J, Dunfield PF, Hedlund BP et al (2016) Global metagenomic survey reveals a new bacterial candidate phylum in geothermal springs. Nat Commun 7:10476PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Alberti S, Halfmann R, King O, Kapila A, Lindquist S (2009) A systematic survey identifies prions and illuminates sequence features of prionogenic proteins. Cell 137:146–158PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Hobley L, Harkins C, MacPhee CE, Stanley-Wall NR (2015) Giving structure to the biofilm matrix: an overview of individual strategies and emerging common themes. FEMS Microbiol Rev 39:649–669PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Louros NN, Baltoumas FA, Hamodrakas SJ, Iconomidou VA (2016) A beta-solenoid model of the Pmel17 repeat domain: insights to the formation of functional amyloid fibrils. J Comput Aided Mol Des 30:153–164PubMedCrossRefPubMedCentralGoogle Scholar
  162. 162.
    De Vries SJ, van Dijk M, Bonvin AMJJ (2010) The HADDOCK web server for data-driven biomolecular docking. Nat Protoc 5:883–897PubMedCrossRefPubMedCentralGoogle Scholar
  163. 163.
    Tian PF, Lindorff-Larsen K, Boomsma W, Jensen MH, Otzen DE (2016) A Monte Carlo Study of the early steps of functional amyloid formation. PLoS One 11:e0146096PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Chen MC, Zheng WH, Wolynes PG (2016) Energy landscapes of a mechanical prion and their implications for the molecular mechanism of long-term memory. Proc Natl Acad Sci U S A 113:5006–5011PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Si K, Lindquist S, Kandel ER (2003) A neuronal isoform of the Aplysia CPEB has prion-like properties. Cell 115:879–891PubMedCrossRefPubMedCentralGoogle Scholar
  166. 166.
    Wang F, Wang X, Yuan CG, Ma J (2010) Generating a prion with bacterially expressed recombinant prion protein. Science 327:1132–1135PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Knight JD, Miranker AD (2004) Phospholipid catalysis of diabetic amyloid assembly. J Mol Biol 341:1175–1187PubMedCrossRefPubMedCentralGoogle Scholar
  168. 168.
    Derkatch IL, Bradley ME, Zhou P, Chernoff YO, Liebman SW (1997) Genetic and environmental factors affecting the de novo appearance of the [PSI+] prion in Saccharomyces cerevisiae. Genetics 147:507–519PubMedPubMedCentralGoogle Scholar
  169. 169.
    Sivanathan V, Hochschild A (2013) A bacterial export system for generating extracellular amyloid aggregates. Nat Protoc 8:1381–1390PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Khurana R, Uversky VN, Nielsen L, Fink AL (2001) Is Congo Red an amyloid-specific dye? J Biol Chem 276:22715–22721PubMedCrossRefPubMedCentralGoogle Scholar
  171. 171.
    Nguyen PQ, Botyanszki Z, Tay PK, Joshi NS (2014) Programmable biofilm-based materials from engineered curli nanofibres. Nat Commun 5:4945PubMedCrossRefPubMedCentralGoogle Scholar
  172. 172.
    Zakeri B, Fierer JO, Celik E, Chittock EC, Schwarz-Linek U et al (2012) Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. Proc Natl Acad Sci U S A 109:E690–E697PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Teather RM, Wood PJ (1982) Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol 43:777–780PubMedPubMedCentralGoogle Scholar
  174. 174.
    Vidal O, Longin R, Prigent-Combaret C, Dorel C, Hooreman M et al (1998) Isolation of an Escherichia coli K-12 mutant strain able to form biofilms on inert surfaces: involvement of a new ompR allele that increases curli expression. J Bacteriol 180:2442–2449PubMedPubMedCentralGoogle Scholar
  175. 175.
    Zhong C, Gurry T, Cheng AA, Downey J, Deng Z et al (2014) Strong underwater adhesives made by self-assembling multi-protein nanofibres. Nat Nanotechnol 9:858–866PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Brubaker CE, Messersmith PB (2012) The present and future of biologically inspired adhesive interfaces and materials. Langmuir 28:2200–2205PubMedCrossRefGoogle Scholar
  177. 177.
    Barlow DE, Dickinson GH, Orihuela B, Kulp JL, Rittschof D et al (2010) Characterization of the adhesive plaque of the barnacle Balanus amphitrite: amyloid-like nanofirils are a major component. Langmuir 26:6549–6556PubMedCrossRefGoogle Scholar
  178. 178.
    Chen AY, Deng Z, Billings AN, Seker UO, Lu MY et al (2014) Synthesis and patterning of tunable multiscale materials with engineered cells. Nat Mater 13:515–523PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Callura JM, Cantor CR, Collins JJ (2012) Genetic switchboard for synthetic biology applications. Proc Natl Acad Sci U S A 109:5850–5855PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Polman A, Atwater HA (2012) Photonic design principles for ultrahigh efficiency photovoltaics. Nat Mater 11:174–177PubMedCrossRefGoogle Scholar
  181. 181.
    Zhang L, Conway JF, Thibodeau PH (2012) Calcium-induced folding and stabilization of the Pseudomonas aeruginosa alkaline protease. J Biol Chem 287:4311–4322PubMedCrossRefGoogle Scholar
  182. 182.
    Zhang L, Franks J, Stolz DB, Conway JF, Thibodeau PH (2014) Inducible polymerization and two-dimensional assembly of the repeats-in-toxin (RTX) domain from the Pseudomonas aeruginosa alkaline protease. Biochemistry 53:6452–6462PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Lilie H, Haehnel W, Rudolph R, Baumann U (2000) Folding of a synthetic parallel beta-roll protein. FEBS Lett 470:173–177PubMedCrossRefGoogle Scholar
  184. 184.
    Welch RA, Forestier C, Lobo A, Pellett S, Thomas W Jr et al (1992) The synthesis and function of the Escherichia coli hemolysin and related RTX exotoxins. FEMS Microbiol Immunol 5:29–36PubMedCrossRefGoogle Scholar
  185. 185.
    Villaverde A, Carrio MM (2003) Protein aggregation in recombinant bacteria: biological role of inclusion bodies. Biotechnol Lett 25:1385–1395PubMedCrossRefGoogle Scholar
  186. 186.
    Marston FAO (1986) The purification of eukaryotic polypeptides synthesized in Escherichia coli. Biochem J 240:1–12PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Carrió M, González-Montalbán N, Vera A, Villaverde A, Ventura S (2005) Amyloid-like properties of bacterial inclusion bodies. J Mol Biol 347:1025–1037PubMedCrossRefGoogle Scholar
  188. 188.
    Morell M, Bravo R, Espargaro A, Sisquella X, Aviles FX et al (2008) Inclusion bodies: specificity in their aggregation process and amyloid-like structure. Biochim Biophys Acta 1783:1815–1825PubMedCrossRefGoogle Scholar
  189. 189.
    Garcia-Fruitos E, Gonzalez-Montalban N, Morell M, Vera A, Ferraz RM et al (2005) Aggregation as bacterial inclusion bodies does not imply inactivation of enzymes and fluorescent proteins. Microb Cell Factories 4:27CrossRefGoogle Scholar
  190. 190.
    Mitraki A (2010) Protein aggregation from inclusion bodies to amyloid and biomaterials. Adv Protein Chem Struct Biol 79:89–125PubMedCrossRefGoogle Scholar
  191. 191.
    Peternel S, Grdadolnik J, Gaberc-Porekar V, Komel R (2008) Engineering inclusion bodies for non denaturing extraction of functional proteins. Microb Cell Factories 7:34CrossRefGoogle Scholar
  192. 192.
    Vazquez E, Corchero JL, Burgueno JF, Seras-Franzoso J, Kosoy A et al (2012) Functional inclusion bodies produced in bacteria as naturally occurring nanopills for advanced cell therapies. Adv Mater 24:1742–1747PubMedCrossRefGoogle Scholar
  193. 193.
    Cano-Garrido O, Rodriguez-Carmona E, Diez-Gil C, Vazquez E, Elizondo E et al (2013) Supramolecular organization of protein-releasing functional amyloids solved in bacterial inclusion bodies. Acta Biomater 9:6134–6142PubMedCrossRefGoogle Scholar
  194. 194.
    Maji SK, Perrin MH, Sawaya MR, Jessberger S, Vadodaria K et al (2009) Functional amyloids as natural storage of peptide hormones in pituitary secretory granules. Science 325:328–332PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Maji SK, Schubert D, Rivier C, Lee S, Rivier JE et al (2008) Amyloid as a depot for the formulation of long-acting drugs. PLoS Biol 6:e17PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Peralta MD, Karsai A, Ngo A, Sierra C, Fong KT et al (2015) Engineering amyloid fibrils from beta-solenoid proteins for biomaterials applications. ACS Nano 9:449–463PubMedCrossRefGoogle Scholar
  197. 197.
    Greer AM, Huang Z, Oriakhi A, Lu Y, Lou J et al (2009) The Drosophila transcription factor ultrabithorax self-assembles into protein-based biomaterials with multiple morphologies. Biomacromolecules 10:829–837PubMedCrossRefGoogle Scholar
  198. 198.
    Gosal WS, Clark AH, Ross-Murphy SB (2004) Fibrillar beta-lactoglobulin gels: part 1. Fibril formation and structure. Biomacromolecules 5:2408–2419PubMedCrossRefGoogle Scholar
  199. 199.
    Li C, Born AK, Schweizer T, Zenobi-Wong M, Cerruti M et al (2014) Amyloid-hydroxyapatite bone biomimetic composites. Adv Mater 26:3207–3212PubMedCrossRefGoogle Scholar
  200. 200.
    Ling S, Li C, Adamcik J, Shao Z, Chen X et al (2014) Modulating materials by orthogonally oriented beta-strands: composites of amyloid and silk fibroin fibrils. Adv Mater 26:4569–4574PubMedCrossRefGoogle Scholar
  201. 201.
    Jacob RS, Ghosh D, Singh PK, Basu SK, Jha NN et al (2015) Self healing hydrogels composed of amyloid nano fibrils for cell culture and stem cell differentiation. Biomaterials 54:97–105PubMedCrossRefGoogle Scholar
  202. 202.
    Reynolds NP, Charnley M, Mezzenga R, Hartley PG (2014) Engineered lysozyme amyloid fibril networks support cellular growth and spreading. Biomacromolecules 15:599–608PubMedCrossRefGoogle Scholar
  203. 203.
    Reynolds NP, Charnley M, Bongiovanni MN, Hartley PG, Gras SL (2015) Biomimetic topography and chemistry control cell attachment to amyloid fibrils. Biomacromolecules 16:1556–1565PubMedCrossRefGoogle Scholar
  204. 204.
    Malisauskas M, Meskys R, Morozova-Roche LA (2008) Ultrathin silver nanowires produced by amyloid biotemplating. Biotechnol Prog 24:1166–1170PubMedCrossRefGoogle Scholar
  205. 205.
    Reches M, Gazit E (2003) Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 300:625–627PubMedPubMedCentralCrossRefGoogle Scholar
  206. 206.
    Scheibel T, Parthasarathy R, Sawicki G, Lin XM, Jaeger H et al (2003) Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition. Proc Natl Acad Sci U S A 100:4527–4532PubMedPubMedCentralCrossRefGoogle Scholar
  207. 207.
    Knowles TP, Oppenheim TW, Buell AK, Chirgadze DY, Welland ME (2010) Nanostructured films from hierarchical self-assembly of amyloidogenic proteins. Nat Nanotechnol 5:204–207PubMedPubMedCentralCrossRefGoogle Scholar
  208. 208.
    Men D, Guo YC, Zhang ZP, Wei HP, Zhou YF et al (2009) Seeding-induced self-assembling protein nanowires dramatically increase the sensitivity of immunoassays. Nano Lett 9:2246–2250PubMedCrossRefGoogle Scholar
  209. 209.
    Men D, Zhang ZP, Guo YC, Zhu DH, Bi LJ et al (2010) An auto-biotinylated bifunctional protein nanowire for ultra-sensitive molecular biosensing. Biosens Bioelectron 26:1137–1141PubMedCrossRefGoogle Scholar
  210. 210.
    Silva RF, Araujo DR, Silva ER, Ando RA, Alves WA (2013) L-diphenylalanine microtubes as a potential drug-delivery system: characterization, release kinetics, and cytotoxicity. Langmuir 29:10205–10212PubMedCrossRefGoogle Scholar
  211. 211.
    Loo Y, Wong YC, Cai EZ, Ang CH, Raju A et al (2014) Ultrashort peptide nanofibrous hydrogels for the acceleration of healing of burn wounds. Biomaterials 35:4805–4814PubMedCrossRefGoogle Scholar
  212. 212.
    Ikezoe Y, Washino G, Uemura T, Kitagawa S, Matsui H (2012) Autonomous motors of a metal-organic framework powered by reorganization of self-assembled peptides at interfaces. Nat Mater 11:1081–1085PubMedPubMedCentralCrossRefGoogle Scholar
  213. 213.
    Silva GA, Czeisler C, Niece KL, Beniash E, Harrington DA et al (2004) Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303:1352–1355PubMedCrossRefGoogle Scholar
  214. 214.
    Kisiday J, Jin M, Kurz B, Hung H, Semino C et al (2002) Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: implications for cartilage tissue repair. Proc Natl Acad Sci U S A 99:9996–10001PubMedPubMedCentralCrossRefGoogle Scholar
  215. 215.
    Holmes TC, de Lacalle S, Su X, Liu G, Rich A et al (2000) Extensive neurite outgrowth and active synapse formation on self-assembling peptide scaffolds. Proc Natl Acad Sci U S A 97:6728–6733PubMedPubMedCentralCrossRefGoogle Scholar
  216. 216.
    Reynolds NP, Styan KE, Easton CD, Li Y, Waddington L et al (2013) Nanotopographic surfaces with defined surface chemistries from amyloid fibril networks can control cell attachment. Biomacromolecules 14:2305–2316PubMedCrossRefGoogle Scholar
  217. 217.
    Baxa U, Speransky V, Steven AC, Wickner RB (2002) Mechanism of inactivation on prion conversion of the Saccharomyces cerevisiae Ure2 protein. Proc Natl Acad Sci U S A 99:5253–5260PubMedPubMedCentralCrossRefGoogle Scholar
  218. 218.
    Gras SL, Tickler AK, Squires AM, Devlin GL, Horton MA et al (2008) Functionalised amyloid fibrils for roles in cell adhesion. Biomaterials 29:1553–1562PubMedCrossRefGoogle Scholar
  219. 219.
    Bongiovanni MN, Scanlon DB, Gras SL (2011) Functional fibrils derived from the peptide TTR1-cycloRGDfK that target cell adhesion and spreading. Biomaterials 32:6099–6110PubMedCrossRefGoogle Scholar
  220. 220.
    Yang Z, Liang G, Wang L, Xu B (2006) Using a kinase/phosphatase switch to regulate a supramolecular hydrogel and forming the supramolecular hydrogel in vivo. J Am Chem Soc 128:3038–3043PubMedCrossRefGoogle Scholar
  221. 221.
    Koffie RM, Meyer-Luehmann M, Hashimoto T, Adams KW, Mielke ML et al (2009) Oligomeric amyloid beta associates with postsynaptic densities and correlates with excitatory synapse loss near senile plaques. Proc Natl Acad Sci U S A 106:4012–4017PubMedPubMedCentralCrossRefGoogle Scholar
  222. 222.
    Collins SR, Douglass A, Vale RD, Weissman JS (2004) Mechanism of prion propagation: amyloid growth occurs by monomer addition. PLoS Biol 2:e321PubMedPubMedCentralCrossRefGoogle Scholar
  223. 223.
    Chen SG, Stribinskis V, Rane MJ, Demuth DR, Gozal E et al (2016) Exposure to the functional bacterial amyloid protein Curli enhances alpha-Synuclein aggregation in aged Fischer 344 rats and Caenorhabditis elegans. Sci Rep 6:34477PubMedPubMedCentralCrossRefGoogle Scholar
  224. 224.
    Solomon A, Richey T, Murphy CL, Weiss DT, Wall JS et al (2007) Amyloidogenic potential of foie gras. Proc Natl Acad Sci U S A 104:10998–11001PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Line Friis Bakmann Christensen
    • 1
  • Nicholas Schafer
    • 1
  • Adriana Wolf-Perez
    • 1
  • Daniel Jhaf Madsen
    • 1
  • Daniel E. Otzen
    • 1
    Email author
  1. 1.iNANO and Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark

Personalised recommendations