Bio Mimicking of Extracellular Matrix

  • Moumita Ghosh
  • Michal Halperin-Sternfeld
  • Lihi Adler-AbramovichEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1174)


Biomaterials play a critical role in regenerative strategies such as stem cell-based therapies and tissue engineering, aiming to replace, remodel, regenerate, or support damaged tissues and organs. The design of appropriate three-dimensional (3D) scaffolds is crucial for generating bio-inspired replacement tissues. These scaffolds are primarily composed of degradable or non-degradable biomaterials and can be employed as cells, growth factors, or drug carriers. Naturally derived and synthetic biomaterials have been widely used for these purposes, but the ideal biomaterial remains to be found. Researchers from diversified fields have attempted to design and fabricate novel biomaterials, aiming to find novel theranostic approaches for tissue engineering and regenerative medicine. Since no single biomaterial has been found to possess all the necessary characteristics for an ideal performance, over the years scientists have tried to develop composite biomaterials that complement and combine the beneficial properties of multiple materials into a superior matrix. Herein, we highlight the structural features and performance of various biomaterials and their application in regenerative medicine and for enhanced tissue engineering approaches.


Biomaterials Extracellular matrix Scaffolds Peptides Hydrogels Supramolecular polymers 







Basic fibroblast growth factor


Bone morphogenic protein 2


Calcium phosphate




Extracellular matrix








Glial cell derived neurotrophic factor






Mesenchymal stem cells






Polyethylene glycol


Polyethylene terephthalate


Polyglycolic acid




Polylactic acid










Rapid prototyping




Tricalcium phosphate






Vascular endothelial growth factor







We thank the support of the ISRAEL SCIENCE FOUNDATION (grant No. 1732/17) (L.A.A.). We thank Sharon Tsach for graphical assistance and the members of the Adler-Abramovich group for helpful discussions.


  1. 1.
    Williams DF (2009) On the nature of biomaterials. Biomaterials 30:5897–5909PubMedCrossRefGoogle Scholar
  2. 2.
    Clause KC, Barker TH (2013) Extracellular matrix signaling in morphogenesis and repair. Curr Opin Biotechnol 24:830–833PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Frantz C, Stewart KM, Weaver VM (2010) The extracellular matrix at a glance. J Cell Sci 123:4195–4200PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Theocharis AD, Gialeli C, Hascall VC, Karamanos NK (2012) Extracellular matrix: a functional scaffold. In: Karamanos NK (ed) Extracellular matrix: Pathobiology and signaling. Walter de Gruyter, BerlinGoogle Scholar
  5. 5.
    Daley WP, Peters SB, Larsen M (2008) Extracellular matrix dynamics in development and regenerative medicine. J Cell Sci 121:255–264PubMedCrossRefGoogle Scholar
  6. 6.
    Lu P, Takai K, Weaver VM, Werb Z (2011) Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol 3(12):a005058PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Bissell MJ, Hall HG, Parry G (1982) How does the extracellular matrix direct gene expression? J Theor Biol 99:31–68PubMedCrossRefGoogle Scholar
  8. 8.
    Brown BN, Badylak SF (2014) Extracellular matrix as an inductive scaffold for functional tissue reconstruction. Transl Res 163:268–285PubMedCrossRefGoogle Scholar
  9. 9.
    Hynes RO, Naba A (2012) Overview of the matrisome – an inventory of extracellular matrix constituents and functions. Cold Spring Harb Perspect Biol 4:a004903PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Sharma A, Sharma NL, Lavy CB, Kiltie AE, Hamdy FC, Czernuszka J (2014) Three-dimensional scaffolds: An in vitro strategy for the biomimetic modelling of in vivo tumour biology. J Mater Sci 49:5809–5820CrossRefGoogle Scholar
  11. 11.
    Theocharis AD, Skandalis SS, Gialeli C, Karamanos NK (2016) Extracellular matrix structure. Adv Drug Deliv Rev 97:4–27PubMedCrossRefGoogle Scholar
  12. 12.
    Reilly GC, Engler AJ (2010) Intrinsic extracellular matrix properties regulate stem cell differentiation. J Biomech 43:55–62PubMedCrossRefGoogle Scholar
  13. 13.
    Votteler M, Kluger PJ, Walles H, Schenke-Layland K (2010) Stem cell microenvironments – unveiling the secret of how stem cell fate is defined. Macromol Biosci 10:1302–1315PubMedCrossRefGoogle Scholar
  14. 14.
    Baino F, Novajra G, Vitale-Brovarone C (2015) Bioceramics and scaffolds: a winning combination for tissue engineering. Front Bioeng Biotechnol 3:202PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Cao W, Hench LL (1996) Bioactive materials. Ceram Int 22:493–507CrossRefGoogle Scholar
  16. 16.
    Li HF, Zheng YF (2016) Recent advances in bulk metallic glasses for biomedical applications. Acta Biomater 36:1–20PubMedCrossRefGoogle Scholar
  17. 17.
    Mahapatro A (2015) Bio-functional nano-coatings on metallic biomaterials. Mater Sci Eng C Mater Biol Appl 55:227–251PubMedCrossRefGoogle Scholar
  18. 18.
    Lowe HC, Oesterle SN, Khachigian LM (2002) Coronary in-stent restenosis: current status and future strategies. J Am Coll Cardiol 39:183–193PubMedCrossRefGoogle Scholar
  19. 19.
    Waksman R, Erbel R, Di Mario C, Bartunek J, De Bruyne B, Eberli FR, Erne P, Haude M, Horrigan M, Ilsley C, Bose D, Bonnier H, Koolen J, Luscher TF, Weissman NJ (2009) Early- and long-term intravascular ultrasound and angiographic findings after bioabsorbable magnesium stent implantation in human coronary arteries. JACC Cardiovasc Interv 2:312–320PubMedCrossRefGoogle Scholar
  20. 20.
    Amin Yavari S, Van Der Stok J, Chai YC, Wauthle R, Tahmasebi Birgani Z, Habibovic P, Mulier M, Schrooten J, Weinans H, Zadpoor AA (2014) Bone regeneration performance of surface-treated porous titanium. Biomaterials 35:6172–6181PubMedCrossRefGoogle Scholar
  21. 21.
    Padovani GC, Feitosa VP, Sauro S, Tay FR, Duran G, Paula AJ, Duran N (2015) Advances in dental materials through nanotechnology: facts, perspectives and toxicological aspects. Trends Biotechnol 33:621–636PubMedCrossRefGoogle Scholar
  22. 22.
    Chen Q, Thouas GA (2015) Metallic implant biomaterials. Mater Sci Eng R 87:1–57CrossRefGoogle Scholar
  23. 23.
    Xiao M, Chen YM, Biao MN, Zhang XD, Yang BC (2017) Bio-functionalization of biomedical metals. Mater Sci Eng C Mater Biol Appl 70:1057–1070PubMedCrossRefGoogle Scholar
  24. 24.
    Goodman SB, Yao Z, Keeney M, Yang F (2013) The future of biologic coatings for orthopaedic implants. Biomaterials 34:3174–3183PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Lüdecke C, Bossert J, Roth M, Jandt KD (2013) Physical vapor deposited titanium thin films for biomedical applications: reproducibility of nanoscale surface roughness and microbial adhesion properties. Appl Surf Sci 280:578–589CrossRefGoogle Scholar
  26. 26.
    Kim HM, Miyaji F, Kokubo T, Nakamura T (1996) Preparation of bioactive Ti and its alloys via simple chemical surface treatment. J Biomed Mater Res 32:409–417PubMedCrossRefGoogle Scholar
  27. 27.
    Kim SY, Kim YK, Park IS, Jin GC, Bae TS, Lee MH (2014) Effect of alkali and heat treatments for bioactivity of tio2 nanotubes. Appl Surf Sci 321:412–419CrossRefGoogle Scholar
  28. 28.
    Manivasagam G, Suwas S (2014) Biodegradable mg and mg based alloys for biomedical implants. Mater Sci Technol 30:515–520CrossRefGoogle Scholar
  29. 29.
    Sumner DR, Turner TM, Igloria R, Urban RM, Galante JO (1998) Functional adaptation and ingrowth of bone vary as a function of hip implant stiffness. J Biomech 31:909–917PubMedCrossRefGoogle Scholar
  30. 30.
    Vasconcelos DM, Santos SG, Lamghari M, Barbosa MA (2016) The two faces of metal ions: from implants rejection to tissue repair/regeneration. Biomaterials 84:262–275PubMedCrossRefGoogle Scholar
  31. 31.
    Hort N, Huang Y, Fechner D, Stormer M, Blawert C, Witte F, Vogt C, Drucker H, Willumeit R, Kainer KU, Feyerabend F (2010) Magnesium alloys as implant materials – principles of property design for mg-re alloys. Acta Biomater 6:1714–1725PubMedCrossRefGoogle Scholar
  32. 32.
    Zhao D, Witte F, Lu F, Wang J, Li J, Qin L (2017) Current status on clinical applications of magnesium-based orthopaedic implants: a review from clinical translational perspective. Biomaterials 112:287–302PubMedCrossRefGoogle Scholar
  33. 33.
    Best SM, Porter AE, Thian ES, Huang J (2008) Bioceramics: past, present and for the future. J Eur Ceram Soc 28:1319–1327CrossRefGoogle Scholar
  34. 34.
    Hench LL (1999) Bioactive glasses and glass-ceramics, Materials science forum. Trans Tech Publications, Zurich, pp 37–64Google Scholar
  35. 35.
    Baino F, Vitale-Brovarone C (2011) Three-dimensional glass-derived scaffolds for bone tissue engineering: current trends and forecasts for the future. J Biomed Mater Res A 97:514–535PubMedCrossRefGoogle Scholar
  36. 36.
    Legeros RZ (2002) Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop Relat Res 395:81–98CrossRefGoogle Scholar
  37. 37.
    Anselme K (2000) Osteoblast adhesion on biomaterials. Biomaterials 21:667–681PubMedCrossRefGoogle Scholar
  38. 38.
    Yuan H, Van Den Doel M, Li S, Van Blitterswijk CA, De Groot K, De Bruijn JD (2002) A comparison of the osteoinductive potential of two calcium phosphate ceramics implanted intramuscularly in goats. J Mater Sci Mater Med 13:1271–1275PubMedCrossRefGoogle Scholar
  39. 39.
    Yuan H, Van Blitterswijk CA, De Groot K, De Bruijn JD (2006) Cross-species comparison of ectopic bone formation in biphasic calcium phosphate (BCP) and hydroxyapatite (HA) scaffolds. Tissue Eng 12:1607–1615PubMedCrossRefGoogle Scholar
  40. 40.
    Levy RA, Chu TM, Halloran JW, Feinberg SE, Hollister S (1997) Ct-generated porous hydroxyapatite orbital floor prosthesis as a prototype bioimplant. AJNR Am J Neuroradiol 18:1522–1525PubMedGoogle Scholar
  41. 41.
    Rafieerad AR, Ashra MR, Mahmoodian R, Bushroa AR (2015) Surface characterization and corrosion behavior of calcium phosphate-base composite layer on titanium and its alloys via plasma electrolytic oxidation: a review paper. Mater Sci Eng C Mater Biol Appl 57:397–413PubMedCrossRefGoogle Scholar
  42. 42.
    Xuereb M, Camilleri J, Attard NJ (2015) Systematic review of current dental implant coating materials and novel coating techniques. Int J Prosthodont 28:51–59PubMedCrossRefGoogle Scholar
  43. 43.
    Rahaman MN, Yao A, Bal BS, Garino JP, Ries MD (2007) Ceramics for prosthetic hip and knee joint replacement. J Am Ceram Soc 90:1965–1988CrossRefGoogle Scholar
  44. 44.
    Baino F, Perero S, Ferraris S, Miola M, Balagna C, Verne E, Vitale-Brovarone C, Coggiola A, Dolcino D, Ferraris M (2014) Biomaterials for orbital implants and ocular prostheses: overview and future prospects. Acta Biomater 10:1064–1087PubMedCrossRefGoogle Scholar
  45. 45.
    Jones JR, Gentleman E, Polak J (2007) Bioactive glass scaffolds for bone regeneration. Elements 3:393–399CrossRefGoogle Scholar
  46. 46.
    Vitale-Brovarone C, Novajra G, Lousteau J, Milanese D, Raimondo S, Fornaro M (2012) Phosphate glass fibres and their role in neuronal polarization and axonal growth direction. Acta Biomater 8:1125–1136PubMedCrossRefGoogle Scholar
  47. 47.
    Gu Y, Huang W, Rahaman MN, Day DE (2013) Bone regeneration in rat calvarial defects implanted with fibrous scaffolds composed of a mixture of silicate and borate bioactive glasses. Acta Biomater 9:9126–9136PubMedCrossRefGoogle Scholar
  48. 48.
    Tan A, Romanska H, Lenza R, Jones JR, Hench LL, Polak JM, Bishop A (2003) The effect of 58s bioactive sol-gel derived foams on the growth of murine lung epithelial cells. Key Eng Mater 240–242:719–724CrossRefGoogle Scholar
  49. 49.
    Arcos D, Vallet-Regí M (2013) Bioceramics for drug delivery. Acta Mater 61:890–911CrossRefGoogle Scholar
  50. 50.
    Baino F, Fiorilli S, Vitale-Brovarone C (2016) Bioactive glass-based materials with hierarchical porosity for medical applications: review of recent advances. Acta Biomater 42:18–32PubMedCrossRefGoogle Scholar
  51. 51.
    Miguez-Pacheco V, Hench LL, Boccaccini AR (2015) Bioactive glasses beyond bone and teeth: emerging applications in contact with soft tissues. Acta Biomater 13:1–15PubMedCrossRefGoogle Scholar
  52. 52.
    Tanner K (2010) Bioactive ceramic-reinforced composites for bone augmentation. J R Soc Interface 7:S541–S557PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Day RM, Boccaccini AR, Shurey S, Roether JA, Forbes A, Hench LL, Gabe SM (2004) Assessment of polyglycolic acid mesh and bioactive glass for soft-tissue engineering scaffolds. Biomaterials 25:5857–5866PubMedCrossRefGoogle Scholar
  54. 54.
    Rai R, Boccaccini AR, Knowles JC, Locke IC, Gordge MP, Mccormick A, Salih V, Mordon N, Keshavarz T, Roy I (2010) Fabrication of a novel poly (3-hydroxyoctanoate)/nanoscale bioactive glass composite film with potential as a multifunctional wound dressing. V international conference on times of polymers (top) and composites. AIP Publishing, pp 126–128Google Scholar
  55. 55.
    Tong SY, Wang Z, Lim PN, Wang W, Thian ES (2017) Uniformly-dispersed nanohydroxapatite-reinforced poly(ε-caprolactone) composite films for tendon tissue engineering application. Mater Sci Eng C 70(Part 2):1149–1155CrossRefGoogle Scholar
  56. 56.
    Blum AP, Kammeyer JK, Rush AM, Callmann CE, Hahn ME, Gianneschi NC (2015) Stimuli-responsive nanomaterials for biomedical applications. J Am Chem Soc 137:2140–2154PubMedCrossRefGoogle Scholar
  57. 57.
    Muskovich M, Bettinger CJ (2012) Biomaterials-based electronics: polymers and interfaces for biology and medicine. Adv Healthc Mater 1:248–266PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Theato P, Sumerlin BS, O’Reilly RK, Epps TH 3rd (2013) Stimuli responsive materials. Chem Soc Rev 42:7055–7056PubMedCrossRefGoogle Scholar
  59. 59.
    Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS (2011) Polymeric scaffolds in tissue engineering application: a review. Int J Polym Sci 2011:1–19CrossRefGoogle Scholar
  60. 60.
    Lin HR, Kuo CJ, Yang C-Y, Shaw SY, Wu YJ (2002) Preparation of macroporous biodegradable plga scaffolds for cell attachment with the use of mixed salts as porogen additives. J Biomed Mater Res 63:271–279PubMedCrossRefGoogle Scholar
  61. 61.
    Mano JF, Sousa RA, Boesel LF, Neves NM, Reis RL (2004) Bioinert, biodegradable and injectable polymeric matrix composites for hard tissue replacement: state of the art and recent developments. Compos Sci Technol 64:789–817CrossRefGoogle Scholar
  62. 62.
    Jagur-Grodzinski J (1999) Biomedical application of functional polymers. React Funct Polym 39:99–138CrossRefGoogle Scholar
  63. 63.
    Gentile P, Chiono V, Carmagnola I, Hatton PV (2014) An overview of poly(lactic-co-glycolic) acid (plga)-based biomaterials for bone tissue engineering. Int J Mol Sci 15:3640–3659PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Lanao RPF, Jonker AM, Wolke JG, Jansen JA, Van Hest JC, Leeuwenburgh SC (2013) Physicochemical properties and applications of poly (lactic-co-glycolic acid) for use in bone regeneration. Tissue Eng Part B Rev 19:380–390CrossRefGoogle Scholar
  65. 65.
    Pan Z, Ding J (2012) Poly (lactide-co-glycolide) porous scaffolds for tissue engineering and regenerative medicine. Interface Focus 2:366–377PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Bala I, Hariharan S, Kumar MN (2004) Plga nanoparticles in drug delivery: the state of the art. Crit Rev Ther Drug Carrier Syst 21:387–422PubMedCrossRefGoogle Scholar
  67. 67.
    Griffith L (2000) Polymeric biomaterials. Acta Mater 48:263–277CrossRefGoogle Scholar
  68. 68.
    Song Y, Kamphuis MMJ, Zhang Z, Sterk LMT, Vermes I, Poot AA, Feijen J, Grijpma DW (2010) Flexible and elastic porous poly(trimethylene carbonate) structures for use in vascular tissue engineering. Acta Biomater 6:1269–1277PubMedCrossRefGoogle Scholar
  69. 69.
    Cassinelli C, Morra M, Pavesio A, Renier D (2000) Evaluation of interfacial properties of hyaluronan coated poly(methylmethacrylate) intraocular lenses. J Biomater Sci Polym Ed 11:961–977PubMedCrossRefGoogle Scholar
  70. 70.
    Wang F, Mohammed A, Li C, Ge P, Wang L, King MW (2014) Degradable/non-degradable polymer composites for in-situ tissue engineering small diameter vascular prosthesis application. Biomed Mater Eng 24:2127–2133PubMedGoogle Scholar
  71. 71.
    Ara C, Akbulut S, Ince V, Aydin C, Gonultas F, Kayaalp C, Unal B, Yilmaz S (2015) Circumferential fence with the use of polyethylene terephthalate (Dacron) vascular graft for all-in-one hepatic venous reconstruction in right-lobe living-donor liver transplantation. Transplant Proc 47:1458–1461PubMedCrossRefGoogle Scholar
  72. 72.
    Ding M, Li J, Tan H, Fu Q (2012) Self-assembly of biodegradable polyurethanes for controlled delivery applications. Soft Matter 8:5414–5428CrossRefGoogle Scholar
  73. 73.
    Zhang J, Huang H, Ju R, Chen K, Li S, Wang W, Yan Y (2016) In vivo biocompatibility and hemocompatibility of a polytetrafluoroethylene small diameter vascular graft modified with sulfonated silk fibroin. Am J Surg 213(1):87–93PubMedCrossRefGoogle Scholar
  74. 74.
    Gentile P, Chiono V, Tonda-Turo C, Ferreira AM, Ciardelli G (2011) Polymeric membranes for guided bone regeneration. Biotechnol J 6:1187–1197PubMedCrossRefGoogle Scholar
  75. 75.
    Carson JS, Bostrom MP (2007) Synthetic bone scaffolds and fracture repair. Injury 38(Suppl 1):S33–S37PubMedCrossRefGoogle Scholar
  76. 76.
    Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32:762–798CrossRefGoogle Scholar
  77. 77.
    Alexander H, Brunski JB, Cooper SL, Hench LL, Hergenrother R, Hoffman A, Kohn J, Langer R, Peppas N, Ratner B (1996) Classes of materials used in medicine. In: Biomaterials science: an introduction to materials in medicine. Academic, San Diego, pp 37–130CrossRefGoogle Scholar
  78. 78.
    Nooeaid P, Salih V, Beier JP, Boccaccini AR (2012a) Osteochondral tissue engineering: scaffolds, stem cells and applications. J Cell Mol Med 16:2247–2270PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Laschke MW, Harder Y, Amon M, Martin I, Farhadi J, Ring A, Torio-Padron N, Schramm R, Rücker M, Junker D (2006) Angiogenesis in tissue engineering: breathing life into constructed tissue substitutes. Tissue Eng 12:2093–2104PubMedCrossRefGoogle Scholar
  80. 80.
    Vroman I, Tighzert L (2009) Biodegradable polymers. Materials 2:307PubMedCentralCrossRefPubMedGoogle Scholar
  81. 81.
    Gilbert TW, Sellaro TL, Badylak SF (2006) Decellularization of tissues and organs. Biomaterials 27:3675–3683PubMedGoogle Scholar
  82. 82.
    Chattopadhyay S, Raines RT (2014) Review collagen-based biomaterials for wound healing. Biopolymers 101:821–833PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Lister J (1881) An address on the catgut ligature. Br Med J 1:183–185PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Macewen W (1881) Clinical lectures on some points connected with the treatment of wounds. Br Med J 1:150–151PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Lepisto J, Kujari H, Niinikoski J, Laato M (1994) Effects of heterodimeric isoform of platelet-derived growth factor PDGF-AB on wound healing in the rat. Eur Surg Res 26:267–272PubMedCrossRefGoogle Scholar
  86. 86.
    Marks MG, Doillon C, Silver FH (1991) Effects of fibroblasts and basic fibroblast growth factor on facilitation of dermal wound healing by type I collagen matrices. J Biomed Mater Res 25:683–696PubMedCrossRefGoogle Scholar
  87. 87.
    Rao KP (1995) Recent developments of collagen-based materials for medical applications and drug delivery systems. J Biomater Sci Polym Ed 7:623–645PubMedGoogle Scholar
  88. 88.
    Wachol-Drewek Z, Pfeiffer M, Scholl E (1996) Comparative investigation of drug delivery of collagen implants saturated in antibiotic solutions and a sponge containing gentamicin. Biomaterials 17:1733–1738PubMedCrossRefGoogle Scholar
  89. 89.
    Li X, Xu J, Nicolescu C, Marinelli J, Tien J (2016) Generation, endothelialization, and microsurgical suture anastomosis of strong 1-mm-diameter collagen tubes. Tissue Eng Part A 23(7–8):335–344Google Scholar
  90. 90.
    Stoecklin-Wasmer C, Rutjes AW, Da Costa BR, Salvi GE, Juni P, Sculean A (2013) Absorbable collagen membranes for periodontal regeneration: a systematic review. J Dent Res 92:773–781PubMedCrossRefGoogle Scholar
  91. 91.
    Wessing B, Urban I, Montero E, Zechner W, Hof M, Alandez Chamorro J, Alandez Martin N, Polizzi G, Meloni S, Sanz M (2016) A multicenter randomized controlled clinical trial using a new resorbable non-cross-linked collagen membrane for guided bone regeneration at dehisced single implant sites: interim results of a bone augmentation procedure. Clin Oral Implants Res 28(11):e218–e226PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Pitaru S, Tal H, Soldinger M, Grosskopf A, Noff M (1988) Partial regeneration of periodontal tissues using collagen barriers. Initial observations in the canine. J Periodontol 59:380–386PubMedCrossRefGoogle Scholar
  93. 93.
    An B, Lin YS, Brodsky B (2016) Collagen interactions: drug design and delivery. Adv Drug Deliv Rev 97:69–84PubMedCrossRefGoogle Scholar
  94. 94.
    Wong FS, Wong CC, Chan BP, Lo AC (2016) Sustained delivery of bioactive GDNF from collagen and alginate-based cell-encapsulating gel promoted photoreceptor survival in an inherited retinal degeneration model. PLoS One 11:e0159342PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101:1869–1879PubMedCrossRefGoogle Scholar
  96. 96.
    Ellis DL, Yannas IV (1996) Recent advances in tissue synthesis in vivo by use of collagen-glycosaminoglycan copolymers. Biomaterials 17:291–299PubMedCrossRefGoogle Scholar
  97. 97.
    Wu X, Black L, Santacana-Laffitte G, Patrick CW (2007) Preparation and assessment of glutaraldehyde-crosslinked collagen–chitosan hydrogels for adipose tissue engineering. J Biomed Mater Res A 81A:59–65CrossRefGoogle Scholar
  98. 98.
    Tønnesen HH, Karlsen J (2002) Alginate in drug delivery systems. Drug Dev Ind Pharm 28:621–630PubMedCrossRefGoogle Scholar
  99. 99.
    Kulseng B, Skjåk-Bræk G, Ryan L, Andersson A, King A, Faxvaag A, Espevik T (1999) Transplantation of alginate microcapsules: generation of antibodies against alginates and encapsulated porcine islet-like cell clusters1. Transplantation 67:978–984PubMedCrossRefGoogle Scholar
  100. 100.
    Wee S, Gombotz WR (1998) Protein release from alginate matrices. Adv Drug Deliv Rev 31:267–285PubMedCrossRefGoogle Scholar
  101. 101.
    Queen D, Orsted H, Sanada H, Sussman G (2004) A dressing history. Int Wound J 1:59–77PubMedCrossRefGoogle Scholar
  102. 102.
    Bouhadir KH, Alsberg E, Mooney DJ (2001) Hydrogels for combination delivery of antineoplastic agents. Biomaterials 22:2625–2633PubMedCrossRefGoogle Scholar
  103. 103.
    Lee KY, Peters MC, Mooney DJ (2003) Comparison of vascular endothelial growth factor and basic fibroblast growth factor on angiogenesis in SCID mice. J Control Release 87:49–56PubMedCrossRefGoogle Scholar
  104. 104.
    Silva EA, Mooney DJ (2010) Effects of VEGF temporal and spatial presentation on angiogenesis. Biomaterials 31:1235–1241PubMedCrossRefGoogle Scholar
  105. 105.
    Li Z, Ramay HR, Hauch KD, Xiao D, Zhang M (2005) Chitosan-alginate hybrid scaffolds for bone tissue engineering. Biomaterials 26:3919–3928PubMedCrossRefGoogle Scholar
  106. 106.
    Florczyk SJ, Leung M, Li Z, Huang JI, Hopper RA, Zhang M (2013) Evaluation of three-dimensional porous chitosan-alginate scaffolds in rat calvarial defects for bone regeneration applications. J Biomed Mater Res A 101:2974–2983PubMedCrossRefGoogle Scholar
  107. 107.
    Ghosh M, Halperin-Sternfeld M, Grinberg I, Adler-Abramovich L (2019) Injectable alginate-peptide composite hydrogel as a scaffold for bone tissue regeneration. Nanomaterials (Basel) 9:497PubMedCentralCrossRefPubMedGoogle Scholar
  108. 108.
    Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37:106–126PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Gong X, Branford-White C, Tao L, Li S, Quan J, Nie H, Zhu L (2016) Preparation and characterization of a novel sodium alginate incorporated self-assembled Fmoc-FF composite hydrogel. Mater Sci Eng C Mater Biol Appl 58:478–486PubMedCrossRefGoogle Scholar
  110. 110.
    Petersen N, Gatenholm P (2011) Bacterial cellulose-based materials and medical devices: current state and perspectives. Appl Microbiol Biotechnol 91:1277–1286PubMedCrossRefGoogle Scholar
  111. 111.
    Eo MY, Fan H, Cho YJ, Kim SM, Lee SK (2016) Cellulose membrane as a biomaterial: from hydrolysis to depolymerization with electron beam. Biomater Res 20:16PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Kim SM, Lee JH, Jo J, Lee SC, Lee SK (2005) Development of a bioactive cellulose membrane from sea squirt skin for bone regeneration-a preliminary research. J Korean Assoc Oral Maxillofac Surg 31:440–453Google Scholar
  113. 113.
    Croisier F, Jérôme C (2013) Chitosan-based biomaterials for tissue engineering. Eur Polym J 49:780–792CrossRefGoogle Scholar
  114. 114.
    Lee SH, Lee JB, Bae MS, Balikov DA, Hwang A, Boire TC, Kwon IK, Sung H-J, Yang JW (2015) Current progress in nanotechnology applications for diagnosis and treatment of kidney diseases. Adv Healthc Mater 4:2037–2045PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Behl G, Iqbal J, O’Reilly NJ, Mcloughlin P, Fitzhenry L (2016) Synthesis and characterization of poly(2-hydroxyethylmethacrylate) contact lenses containing chitosan nanoparticles as an ocular delivery system for dexamethasone sodium phosphate. Pharm Res 33:1638–1648PubMedCrossRefGoogle Scholar
  116. 116.
    Silva D, Pinto LF, Bozukova D, Santos LF, Serro AP, Saramago B (2016) Chitosan/alginate based multilayers to control drug release from ophthalmic lens. Colloids Surf B Biointerfaces 147:81–89PubMedCrossRefGoogle Scholar
  117. 117.
    Pérez RA, Won J-E, Knowles JC, Kim H-W (2013) Naturally and synthetic smart composite biomaterials for tissue regeneration. Adv Drug Deliv Rev 65:471–496PubMedCrossRefGoogle Scholar
  118. 118.
    Aviv M, Halperin-Sternfeld M, Grigoriants I, Buzhansky L, Mironi-Harpaz I, Seliktar D, Einav S, Nevo Z, Adler-Abramovich L (2018) Improving the mechanical rigidity of hyaluronic acid by integration of supramolecular peptide matrix. ACS Appl Mater Interfaces 10:41883–41891PubMedCrossRefGoogle Scholar
  119. 119.
    Dou XQ, Feng CL (2017) Amino acids and peptide-based supramolecular hydrogels for three-dimensional cell culture. Adv Mater 29:1604062CrossRefGoogle Scholar
  120. 120.
    Hauser CA, Zhang S (2010) Designer self-assembling peptide nanofiber biological materials. Chem Soc Rev 39(8):2780–2790PubMedCrossRefGoogle Scholar
  121. 121.
    Halperin-Sternfeld M, Ghosh M, Sevostianov R, Grogoriants I, Adler-Abramovich L (2017) Molecular co-assembly as a strategy for synergistic improvement of the mechanical properties of hydrogels. Chem Commun 53:9586–9589CrossRefGoogle Scholar
  122. 122.
    Ghosh M, Halperin-Sternfeld M, Grigoriants I, Lee J, Nam KT, Adler-Abramovich L (2017) Arginine-presenting peptide hydrogels decorated with hydroxyapatite as biomimetic scaffolds for bone regeneration. Biomacromolecules 18:3541–3550PubMedCrossRefGoogle Scholar
  123. 123.
    Benoit DS, Schwartz MP, Durney AR, Anseth KS (2008) Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells. Nat Mater 7:816–823PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Cruise GM, Scharp DS, Hubbell JA (1998) Characterization of permeability and network structure of interfacially photopolymerized poly(ethylene glycol) diacrylate hydrogels. Biomaterials 19:1287–1294PubMedCrossRefGoogle Scholar
  125. 125.
    Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337–4351PubMedCrossRefGoogle Scholar
  126. 126.
    Khetan S, Guvendiren M, Legant WR, Cohen DM, Chen CS, Burdick JA (2013) Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels. Nat Mater 12:458–465PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Liu Y, Chan-Park MB (2009) Hydrogel based on interpenetrating polymer networks of dextran and gelatin for vascular tissue engineering. Biomaterials 30:196–207PubMedCrossRefGoogle Scholar
  128. 128.
    Lopérgolo LC, Lugão AB, Catalani LH (2003) Direct UV photocrosslinking of poly(n-vinyl-2-pyrrolidone) (PVP) to produce hydrogels. Polymer 44:6217–6222CrossRefGoogle Scholar
  129. 129.
    Lutolf MP, Hubbell JA (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23:47–55PubMedCrossRefGoogle Scholar
  130. 130.
    Nicodemus GD, Bryant SJ (2008) Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng Part B Rev 14:149–165PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 18:1345–1360CrossRefGoogle Scholar
  132. 132.
    Tibbitt MW, Anseth KS (2009) Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol Bioeng 103:655–663PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Guilak F, Cohen DM, Estes BT, Gimble JM, Liedtke W, Chen CS (2009) Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 5:17–26PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Guo WH, Frey MT, Burnham NA, Wang YL (2006) Substrate rigidity regulates the formation and maintenance of tissues. Biophys J 90:2213–2220PubMedCrossRefGoogle Scholar
  135. 135.
    Lowe SB, Tan VT, Soeriyadi AH, Davis TP, Gooding JJ (2014) Synthesis and high-throughput processing of polymeric hydrogels for 3d cell culture. Bioconjug Chem 25:1581–1601PubMedCrossRefGoogle Scholar
  136. 136.
    Nemir S, West JL (2010) Synthetic materials in the study of cell response to substrate rigidity. Ann Biomed Eng 38:2–20PubMedCrossRefGoogle Scholar
  137. 137.
    Levengood SKL, Zhang M (2014) Chitosan-based scaffolds for bone tissue engineering. J Mater Chem B 2:3161–3184PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Kloxin AM, Kasko AM, Salinas CN, Anseth KS (2009) Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 324:59–63PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Madihally SV, Matthew HW (1999) Porous chitosan scaffolds for tissue engineering. Biomaterials 20:1133–1142PubMedCrossRefGoogle Scholar
  140. 140.
    Carey SP, Kraning-Rush CM, Williams RM, Reinhart-King CA (2012) Biophysical control of invasive tumor cell behavior by extracellular matrix microarchitecture. Biomaterials 33:4157–4165PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Hayen W, Goebeler M, Kumar S, Riessen R, Nehls V (1999) Hyaluronan stimulates tumor cell migration by modulating the fibrin fiber architecture. J Cell Sci 112(Pt 13):2241–2251PubMedGoogle Scholar
  142. 142.
    Lang NR, Skodzek K, Hurst S, Mainka A, Steinwachs J, Schneider J, Aifantis KE, Fabry B (2015) Biphasic response of cell invasion to matrix stiffness in three-dimensional biopolymer networks. Acta Biomater 13:61–67PubMedCrossRefGoogle Scholar
  143. 143.
    Langer R (1994) Biodegradable polymer scaffolds for tissue engineering. Nat Biotechnol 12:689–693CrossRefGoogle Scholar
  144. 144.
    Deforest CA, Polizzotti BD, Anseth KS (2009) Sequential click reactions for synthesizing and patterning three-dimensional cell microenvironments. Nat Mater 8:659–664PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Kloxin AM, Kloxin CJ, Bowman CN, Anseth KS (2010) Mechanical properties of cellularly responsive hydrogels and their experimental determination. Adv Mater 22:3484–3494PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Kraehenbuehl TP, Zammaretti P, Van Der Vlies AJ, Schoenmakers RG, Lutolf MP, Jaconi ME, Hubbell JA (2008) Three-dimensional extracellular matrix-directed cardioprogenitor differentiation: systematic modulation of a synthetic cell-responsive peg-hydrogel. Biomaterials 29:2757–2766PubMedCrossRefGoogle Scholar
  147. 147.
    Lutolf MP, Lauer-Fields JL, Schmoekel HG, Metters AT, Weber FE, Fields GB, Hubbell JA (2003) Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc Natl Acad Sci U S A 100:5413–5418PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Mckinnon DD, Domaille DW, Brown TE, Kyburz KA, Kiyotake E, Cha JN, Anseth KS (2014) Measuring cellular forces using bis-aliphatic hydrazone crosslinked stress-relaxing hydrogels. Soft Matter 10:9230–9236PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Discher DE, Mooney DJ, Zandstra PW (2009) Growth factors, matrices, and forces combine and control stem cells. Science 324:1673–1677PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Hudalla GA, Murphy WL (2011) Biomaterials that regulate growth factor activity via bioinspired interactions. Adv Funct Mater 21:1754–1768PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Martino MM, Mochizuki M, Rothenfluh DA, Rempel SA, Hubbell JA, Barker TH (2009) Controlling integrin specificity and stem cell differentiation in 2d and 3d environments through regulation of fibronectin domain stability. Biomaterials 30:1089–1097PubMedCrossRefGoogle Scholar
  152. 152.
    Luo Y, Shoichet MS (2004) A photolabile hydrogel for guided three-dimensional cell growth and migration. Nat Mater 3:249–253PubMedCrossRefGoogle Scholar
  153. 153.
    Roberts JN, Sahoo JK, Mcnamara LE, Burgess KV, Yang J, Alakpa EV, Anderson HJ, Hay J, Turner LA, Yarwood SJ, Zelzer M, Oreffo RO, Ulijn RV, Dalby MJ (2016) Dynamic surfaces for the study of mesenchymal stem cell growth through adhesion regulation. ACS Nano 10:6667–6679PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Brubaker CE, Kissler H, Wang LJ, Kaufman DB, Messersmith PB (2010) Biological performance of mussel-inspired adhesive in extrahepatic islet transplantation. Biomaterials 31:420–427PubMedCrossRefGoogle Scholar
  155. 155.
    Wang J, Wei J, Su S, Qiu J, Wang S (2015) Ion-linked double-network hydrogel with high toughness and stiffness. J Mater Sci 50:5458–5465CrossRefGoogle Scholar
  156. 156.
    Landers R, Pfister A, Hübner U, John H, Schmelzeisen R, Mülhaupt R (2002) Fabrication of soft tissue engineering scaffolds by means of rapid prototyping techniques. J Mater Sci 37:3107–3116CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Moumita Ghosh
    • 1
  • Michal Halperin-Sternfeld
    • 1
  • Lihi Adler-Abramovich
    • 1
    Email author
  1. 1.Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael

Personalised recommendations