Dynamics and Control of Peptide Self-Assembly and Aggregation

  • Georg MeislEmail author
  • Thomas C. T. Michaels
  • Paolo Arosio
  • Michele Vendruscolo
  • Christopher M. Dobson
  • Tuomas P. J. Knowles
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1174)


The aggregation of proteins into fibrillar structures is a central process implicated in the onset and development of several devastating neuro-degenerative diseases, but can, in contrast to these pathological roles, also fulfil important biological functions. In both scenarios, an understanding of the mechanisms by which soluble proteins convert to their fibrillar forms represents a fundamental objective for molecular sciences. This chapter details the different classes of microscopic processes responsible for this conversion and discusses how they can be described by a mathematical formulation of the aggregation kinetics. We present easily accessible experimental quantities that allow the determination of the dominant pathways of aggregation, as well as a general strategy to obtain detailed solutions to the kinetic rate laws that yield the microscopic rate constants of the individual processes of nucleation and growth. This chapter discusses a framework for a structured approach to address key questions regarding the dynamics of protein aggregation and shows how the use of chemical kinetics to tackle complex biophysical systems can lead to a deeper understanding of the underlying physical and chemical principles.


Chemical kinetics Aggregation mechanisms Scaling exponent Global analysis 



We would like to thank the Swiss National Science Foundation, Peterhouse College Cambridge, the European Research Council, the BBSRC, the EPSRC, the Newman Foundation and Sidney Sussex College Cambridge.


  1. 1.
    Sawaya MR, Sambashivan S, Nelson R, Ivanova MI, Sievers SA, Apostol MI, Thompson MJ, Balbirnie M, Wiltzius JJW, McFarlane HT, Madsen A, Riekel C, Eisenberg D (2007) Atomic structures of amyloid cross-beta spines reveal varied steric zippers. Nature 447(7143):453–457PubMedCrossRefGoogle Scholar
  2. 2.
    Sunde M, Blake C (1997) The structure of amyloid fibrils by electron microscopy and x-ray diffraction. Adv Protein Chem 50:123–159CrossRefGoogle Scholar
  3. 3.
    Knowles TPJ, Vendruscolo M, Dobson CM (2014) The amyloid state and its association with protein misfolding diseases. Nat Rev Mol Cell Biol 15:384–396CrossRefGoogle Scholar
  4. 4.
    Ciryam P, Tartaglia GG, Morimoto RI, Dobson CM, Vendruscolo M (2013) Widespread aggregation and neurodegenerative diseases are associated with supersaturated proteins. Cell Rep 5(3):781–790PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Boller F, Mizutani T, Roessmann U, Gambetti P (1980) Parkinson disease, dementia, and alzheimer disease: clinicopathological correlations. Ann Neurol 7(4):329–335PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Lansbury PT, Lashuel HA (2006) A century-old debate on protein aggregation and neurodegeneration enters the clinic. Nature 443(7113):774–779PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Bemporad F, Chiti F (2012) Protein misfolded oligomers: experimental approaches, mechanism of formation, and structure-toxicity relationships. Chem Biol 19(3):315–327PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Oosawa F, Kasai M (1962) A theory of linear and helical aggregations of macromolecules. J Mol Biol 4:10–21PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Oosawa F, Asakura S (1975) Thermodynamics of the polymerization of protein. Academic, New YorkGoogle Scholar
  10. 10.
    Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell, 4th edn. Garland Publishing, New YorkGoogle Scholar
  11. 11.
    Hill TL (1987) Linear aggregation theory in cell biology. Springer, New YorkCrossRefGoogle Scholar
  12. 12.
    Fowler DM, Koulov AV, Balch WE, Kelly JW (2007) Functional amyloid–from bacteria to humans. Trends Biochem Sci 32(5):217–224CrossRefGoogle Scholar
  13. 13.
    Kelly JW, Balch WE (2003) Amyloid as a natural product. J Cell Biol 161:461–462PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Fowler DM, Koulov AV, Alory-Jost C, Marks MS, Balch WE, Kelly JW (2006) Functional amyloid formation within mammalian tissue. PLoS Biol 4(1):e6PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Maji SK, Perrin MH, Sawaya MR, Jessberger S, Vadodaria K, Rissman RA, Singru PS, Nilsson KPR, Simon R, Schubert D, Eisenberg D, Rivier J, Sawchenko P, Vale W, Riek R (2009) Functional amyloids as natural storage of peptide hormones in pituitary secretory granules. Science 325(5938):328–332PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Talbot NJ, Kershaw MJ, Wakley GE, De Vries OMH, Wessels JGH, Hamer JE (1996) Mpg1 encodes a fungal hydrophobin involved in surface interactions during infection-related development of magnaporthe grisea. Plant Cell 8(6):985–999PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Romero D, Aguilar C, Losick R, Kolter R (2010) Amyloid fibers provide structural integrity to bacillus subtilis biofilms. Proc Natl Acad Sci U S A 107(5):2230–2234PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Chapman MR, Robinson LS, Pinkner JS, Roth R, Heuser J, Hammar M, Normark S, Hultgren SJ (2002) Role of escherichia coli curli operons in directing amyloid fiber formation. Science 295(5556):851–855PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Mankar S, Anoop A, Sen S, Maji SK (2011) Nanomaterials: amyloids reflect their brighter side. Nano Rev 2:6032. CrossRefGoogle Scholar
  20. 20.
    Bolisetty S, Mezzenga R (2015) Amyloid-carbon hybrid membranes for universal water purification. Nat Nano 11:365–371CrossRefGoogle Scholar
  21. 21.
    Dobson CM (1999) Protein misfolding, evolution and disease. Trends Biochem Sci 24(9):329–332PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Ferrone F (1999) Analysis of protein aggregation kinetics. Methods Enzymol 309:256–274CrossRefGoogle Scholar
  23. 23.
    Knowles TPJ, Waudby CA, Devlin GL, Cohen SIA, Aguzzi A, Vendruscolo M, Terentjev EM, Welland ME, Dobson CM (2009) An analytical solution to the kinetics of breakable filament assembly. Science 326(5959):1533–1537PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Galvagnion C, Buell AK, Meisl G, Michaels TCT, Vendruscolo M, Knowles TPJ, Dobson CM (2015) Lipid vesicles trigger a-synuclein aggregation by stimulating primary nucleation. Nat Chem Biol 11:229–234PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Grigolato F, Colombo C, Ferrari R, Rezabkova L, Arosio P (2017) Mechanistic origin of the combined effect of surfaces and mechanical agitation on amyloid formation. ACS Nano 11(11):11358–11367. PMID: 29045787PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Pham CLL, Rey A, Lo V, Soulès M, Ren Q, Meisl G, Knowles TPJ, Kwan AH, Sunde M (2016) Self-assembly of MPG1, a hydrophobin protein from the rice blast fungus that forms functional amyloid coatings, occurs by a surface-driven mechanism. Sci Rep 6:25288PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Michaels TCT, Garcia GA, Knowles TPJ (2014) Asymptotic solutions of the oosawa model for the length distribution of biofilaments. J Chem Phys 140(19):194906PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Ruschak AM, Miranker AD (2007) Fiber-dependent amyloid formation as catalysis of an existing reaction pathway. Proc Natl Acad Sci U S A 104(30):12341–12346PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Xue W-F, Hellewell AL, Gosal WS, Homans SW, Hewitt EW, Radford SE (2009) Fibril fragmentation enhances amyloid cytotoxicity. J Biol Chem 284(49):34272–34282PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Cohen SIA, Linse S, Luheshi LM, Hellstrand E, White DA, Rajah L, Otzen DE, Vendruscolo M, Dobson CM, Knowles TPJ (2013) Proliferation of amyloid-beta42 aggregates occurs through a secondary nucleation mechanism. Proc Natl Acad Sci 110:9758–9763PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Collins SR, Douglass A, Vale RD, Weissman JS (2004) Mechanism of prion propagation: amyloid growth occurs by monomer addition. PLoS Biol 2(10):e321PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Kunes KC, Cox DL, Singh RRP (2005) One-dimensional model of yeast prion aggregation. Phys Rev E Stat Nonlin Soft Matter Phys 72(5 Pt 1):051915PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Stöhr J, Weinmann N, Wille H, Kaimann T, Nagel-Steger L, Birkmann E, Panza G, Prusiner SB, Eigen M, Riesner D (2008) Mechanisms of prion protein assembly into amyloid. Proc Natl Acad Sci U S A 105(7):2409–2414PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Ferrone FA, Hofrichter J, Eaton WA (1985) Kinetics of sickle hemoglobin polymerization. I. Studies using temperature-jump and laser photolysis techniques. J Mol Biol 183(4):591–610PubMedPubMedCentralGoogle Scholar
  35. 35.
    Ferrone FA, Hofrichter J, Eaton WA (1985) Kinetics of sickle hemoglobin polymerization. II. A double nucleation mechanism. J Mol Biol 183(4):611–631Google Scholar
  36. 36.
    Bishop MF, Ferrone FA (1984) Kinetics of nucleation-controlled polymerization. A perturbation treatment for use with a secondary pathway. Biophys J 46(5):631–644PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Cohen SIA, Vendruscolo M, Dobson CM, Knowles TPJ (2012) From macroscopic measurements to microscopic mechanisms of protein aggregation. J Mol Biol 421(2–3):160–171PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Buell AK, Galvagnion C, Gaspar R, Sparr E, Vendruscolo M, Knowles TPJ, Linse S, Dobson CM (2014) Solution conditions determine the relative importance of nucleation and growth processes in α-synuclein aggregation. Proc Natl Acad Sci 111(21):7671–7676PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Knowles TPJ, Buehler MJ (2011) Nanomechanics of functional and pathological amyloid materials. Nat Nanotechnol 6(8):469–479PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Meisl G, Rajah L, Cohen SAI, Pfammatter M, Saric A, Hellstrand E, Buell AK, Aguzzi A, Linse S, Vendruscolo M, Dobson CM, Knowles TPJ (2017) Scaling behaviour and rate-determining steps in filamentous self-assembly. Chem Sci 8:7087–7097PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Krapivsky PL, Redner S, Ben-Naim E (2010) A kinetic view of statistical physics. Cambridge University Press, LeidenCrossRefGoogle Scholar
  42. 42.
    Xue W-F, Homans SW, Radford SE (2008) Systematic analysis of nucleation-dependent polymerization reveals new insights into the mechanism of amyloid self-assembly. Proc Natl Acad Sci U S A 105(26):8926–8931PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Arosio P, Cedervall T, Knowles TPJ, Linse S (2016) Analysis of the length distribution of amyloid fibrils by centrifugal sedimentation. Anal Biochem 504:7–13PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Nasir I, Linse S, Cabaleiro-Lago C (2015) Fluorescent filter-trap assay for amyloid fibril formation kinetics in complex solutions. ACS Chem Neurosci (8):1436–1444. PMID: 25946560CrossRefGoogle Scholar
  45. 45.
    Gaspar R, Meisl G, Buell AK, Young L, Kaminski CF, Knowles TPJ, Sparr E, Linse S (2017) Secondary nucleation of monomers on fibril surface dominates α-synuclein aggregation and provides autocatalytic amyloid amplification. Q Rev Biophys 50:E6PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Bender CM, Orszag SA (1999) Advanced mathematical methods for scientists and engineers. Springer, New YorkCrossRefGoogle Scholar
  47. 47.
    Meisl G, Kirkegaard JB, Arosio P, Michaels TTC, Vendruscolo M, Dobson CM, Linse S, Knowles TPJ (2016) Molecular mechanisms of protein aggregation from global fitting of kinetic models. Nat Protoc 11(2):252–272PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Cohen SIA, Vendruscolo M, Welland ME, Dobson CM, Terentjev EM, Knowles TPJ (2011) Nucleated polymerization with secondary pathways. I. Time evolution of the principal moments. J Chem Phys 135(6):065105PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Cohen SIA, Vendruscolo M, Dobson CM, Knowles TPJ (2011) Nucleated polymerization with secondary pathways. II. Determination of self-consistent solutions to growth processes described by non-linear master equations. J Chem Phys 135(6):065106PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Arosio P, Knowles TPJ, Linse S (2015) On the lag phase in amyloid fibril formation. Phys Chem Chem Phys 17:7606–7618PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Knowles TPJ, White DA, Abate AR, Agresti JJ, Cohen SIA, Sperling RA, De Genst EJ, Dobson CM, Weitz DA (2011) Observation of spatial propagation of amyloid assembly from single nuclei. Proc Natl Acad Sci U S A 108(36):14746–14751PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Meisl G, Yang X, Hellstrand E, Frohm B, Kirkegaard JB, Cohen SIA, Dobson CM, Linse S, Knowles TPJ (2014) Differences in nucleation behavior underlie the contrasting aggregation kinetics of the aβ40 and aβ42 peptides. Proc Natl Acad Sci 111:9384–9389PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Meisl G, Yang X, Dobson CM, Linse S, Knowles TPJ (2017) Modulation of electrostatic interactions to reveal a reaction network unifying the aggregation behaviour of the aβ42 peptide and its variants. Chem Sci 8:4352–4362PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Knowles TPJ, Vendruscolo M, Dobson CM (2015) The physical basis of protein misfolding disorders. Phys Today 68(3):36CrossRefGoogle Scholar
  55. 55.
    Lee J, Culyba EK, Powers ET, Kelly JW (2011) Amyloid-beta forms fibrils by nucleated conformational conversion of oligomers. Nat Chem Biol 7(9):602–609PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Scheibel T, Bloom J, Lindquist SL (2004) The elongation of yeast prion fibers involves separable steps of association and conversion. Proc Natl Acad Sci U S A 101(8):2287–2292PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Esler WP, Stimson ER, Jennings JM, Vinters HV, Ghilardi JR, Lee JP, Mantyh PW, Maggio JE (2000) Alzheimer’s disease amyloid propagation by a template-dependent dock-lock mechanism. Biochemistry 39(21):6288–6295PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Buell AK, Blundell JR, Dobson CM, Welland ME, Terentjev EM, Knowles TPJ (2010) Frequency factors in a landscape model of filamentous protein aggregation. Phys Rev Lett 104(22):228101PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Michaelis L, Menten M (1913) Die kinetik der invertinwirkung. Biochem Z 49:333Google Scholar
  60. 60.
    Connors KA (1990) Chemical kinetics: study of reaction rates in solution. Wiley, New YorkGoogle Scholar
  61. 61.
    Orte A, Clarke R, Balasubramanian S, Klenerman D (2006) Determination of the fraction and stoichiometry of femtomolar levels of biomolecular complexes in an excess of monomer using single-molecule, two-color coincidence detection. Anal Chem 78(22):7707–7715PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Garcia GA, Cohen SIA, Dobson CM, Knowles TPJ (2014) Nucleation-conversion-polymerization reactions of biological macromolecules with prenucleation clusters. Phys Rev E 89:032712CrossRefGoogle Scholar
  63. 63.
    Meisl G, Yang X, Frohm B, Knowles TPJ, Linse S (2016) Quantitative analysis of intrinsic and extrinsic factors in the aggregation mechanism of alzheimer-associated aβ-peptide. Sci Rep 6:18728PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Saric A, Buell A, Meisl G, Michaels TCT, Dobson CM, Linse S, Knowles TPJ, Frenkel D (2016) Physical determinants of the self-replication of protein fibrils. Nat Phys 12:874–880PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Arosio P, Vendruscolo M, Dobson CM, Knowles TPJ (2014) Chemical kinetics for drug discovery to combat protein aggregation diseases. Trends Pharmacol Sci 35(3):127–135PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Abelein A, Graslund A, Danielsson J (2015) Zinc as chaperone-mimicking agent for retardation of amyloid β peptide fibril formation. Proc Natl Acad Sci U S A 112(17):5407–5412PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Klement K, Wieligmann K, Meinhardt J, Hortschansky P, Richter W, Fändrich M (2007) Effect of different salt ions on the propensity of aggregation and on the structure of Alzheimer’s abeta(1–40) amyloid fibrils. J Mol Biol 373(5):1321–1333PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Buell AK, Hung P, Salvatella X, Welland ME, Dobson CM, Knowles TPJ (2013) Electrostatic effects in filamentous protein aggregation. Biophys J 104:1116–1126PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Flagmeier P, Meisl G, Vendruscolo M, Knowles TPJ, Dobson CM, Buell AK, Galvagnion C (2016) Mutations associated with familial parkinson’s disease alter the initiation and amplification steps of α-synuclein aggregation. Proc Natl Acad Sci U S A 113(37):10328–10333PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Yang X, Meisl G, Frohm B, Thulin E, Knowles TPJ, Linse S (2018) On the role of sidechain size and charge in the aggregation of aβ42 with familial mutations. Proc Natl Acad Sci U S A 115(26):E5849–E5858PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Cohen SIA, Arosio P, Presto J, Kurudenkandy FR, Biverstal H, Dolfe L, Dunning C, Yang X, Frohm B, Vendruscolo M, Johansson J, Dobson CM, Fisahn A, Knowles TPJ, Linse S (2015) The molecular chaperone brichos breaks the catalytic cycle that generates toxic ab oligomers. Nat Struct Mol Biol 22:207–213PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Arosio P, Michaels TCT, Linse S, Månsson C, Emanuelsson C, Presto J, Johansson J, Vendruscolo M, Dobson C, Knowles TPJ (2016) Kinetic analysis reveals the diversity of microscopic mechanisms through which molecular chaperones suppress amyloid formation. Nat Commun 7:10948PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Habchi J, Arosio P, Perni M, Costa AR, Yagi-Utsumi M, Joshi P, Chia S, Cohen SIA, Müller MBD, Linse S, Nollen EAA, Dobson CM, Knowles TPJ, Vendruscolo M (2016) An anticancer drug suppresses the primary nucleation reaction that initiates the production of the toxic aβ42 aggregates linked with alzheimer’s disease. Sci Adv 2(2):e1501244PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Georg Meisl
    • 1
    Email author
  • Thomas C. T. Michaels
    • 1
  • Paolo Arosio
    • 2
  • Michele Vendruscolo
    • 1
  • Christopher M. Dobson
    • 1
  • Tuomas P. J. Knowles
    • 3
    • 4
  1. 1.Department of ChemistryUniversity of CambridgeCambridgeUK
  2. 2.Department of Chemistry and Applied BioscienceETH ZurichZurichSwitzerland
  3. 3.Centre for Misfolding Diseases, Department of ChemistryUniversity of CambridgeCambridgeUK
  4. 4.Cavendish LaboratoryUniversity of CambridgeCambridgeUK

Personalised recommendations