Advertisement

Ultrafast Vibrational Dynamics at Aqueous Interfaces Studied by 2D Heterodyne-Detected Vibrational Sum Frequency Generation Spectroscopy

  • Ken-ichi Inoue
  • Satoshi Nihonyanagi
  • Tahei TaharaEmail author
Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 226)

Abstract

In this article, we review our recent studies on the ultrafast vibrational dynamics at aqueous interfaces carried out with two-dimensional (2D) heterodyne-detected vibrational sum frequency generation (HD-VSFG) spectroscopy. Compared to the wealth of knowledge about bulk water, molecular-level understanding of interfacial water is still poor due to the technical difficulty in selectively observing molecules at the interfaces. HD-VSFG spectroscopy is based on the second-order optical process and thus intrinsically interface-selective. 2D HD-VSFG spectroscopy is its extension to the time-resolved measurement, and it is an interfacial analog of 2D IR spectroscopy which has been extensively utilized for bulk studies. This novel interface-selective ultrafast spectroscopy has enabled us to investigate ultrafast vibrational dynamics at aqueous interfaces at the high level equivalent to the bulk studies. We describe the principle and instrumentation of 2D HD-VSFG spectroscopy as well as several selected examples of 2D HD-VSFG studies that provided new insights into aqueous interfaces. At the air/neat water interface, 2D HD-VSFG indicated high similarity of hydrogen-bonded OH of interfacial water to that of bulk water while unique non-hydrogen bonded OH is present at the interface. At the charged surfactant/water interfaces, 2D HD-VSFG enabled us to clearly observe ultrafast spectral diffusion in the OH stretch band and demonstrated the importance of isotopic dilution for unambiguous observation of vibrational dynamics. At model membrane lipid/water interfaces, it was found that the hydrogen-bonded dynamics is greatly affected by the interaction between the interfacial water and the head group of the lipids and that the effects of coexisting head groups cannot simply be summed up but they are highly cooperative.

References

  1. 1.
    E.T.J. Nibbering, T. Elsaesser, Ultrafast vibrational dynamics of hydrogen bonds in the condensed phase. Chem. Rev. 104(4), 1887–1914 (2004)CrossRefGoogle Scholar
  2. 2.
    S. Nihonyanagi, J.A. Mondal, S. Yamaguchi, T. Tahara, Structure and dynamics of interfacial water studied by heterodyne-detected vibrational sum-frequency generation. Annu. Rev. Phys. Chem. 64(1), 579–603 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    Y.R. Shen, Phase-sensitive sum-frequency spectroscopy. Annu. Rev. Phys. Chem. 64(1), 129–150 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    S. Nihonyanagi, S. Yamaguchi, T. Tahara, Ultrafast dynamics at water interfaces studied by vibrational sum frequency generation spectroscopy. Chem. Rev. 117(16), 10665–10693 (2017)CrossRefGoogle Scholar
  5. 5.
    Y.R. Shen, V. Ostroverkhov, Sum-frequency vibrational spectroscopy on water interfaces: polar orientation of water molecules at interfaces. Chem. Rev. 106(4), 1140–1154 (2006)CrossRefGoogle Scholar
  6. 6.
    C.S. Tian, Y.R. Shen, Sum-frequency vibrational spectroscopic studies of water/vapor interfaces. Chem. Phys. Lett. 470(1), 1–6 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    S. Nihonyanagi, S. Yamaguchi, T. Tahara, Direct evidence for orientational flip-flop of water molecules at charged interfaces: a heterodyne-detected vibrational sum frequency generation study. J. Chem. Phys. 130(20), 204704 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    R. Superfine, J.Y. Huang, Y.R. Shen, Phase measurement for surface infrared visible sum-frequency generation. Opt. Lett. 15(22), 1276–1278 (1990)ADSCrossRefGoogle Scholar
  9. 9.
    J.A. McGuire, Y.R. Shen, Ultrafast vibrational dynamics at water interfaces. Science 313(5795), 1945–1948 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    M. Smits, A. Ghosh, M. Sterrer, M. Müller, M. Bonn, Ultrafast vibrational energy transfer between surface and bulk water at the air-water interface. Phys. Rev. Lett. 98(9), 098302 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    A. Ghosh, M. Smits, J. Bredenbeck, M. Bonn, membrane-bound water is energetically decoupled from nearby bulk water: an ultrafast surface-specific investigation. J. Am. Chem. Soc. 129(31), 9608–9609 (2007)CrossRefGoogle Scholar
  12. 12.
    P.C. Singh, S. Nihonyanagi, S. Yamaguchi, T. Tahara, Ultrafast vibrational dynamics of water at a charged interface revealed by two-dimensional heterodyne-detected vibrational sum frequency generation. J. Chem. Phys. 137(9), 094706 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    P. Hamm, M. Zanni, Concepts and Methods of 2D Infrared Spectroscopy. Cambridge University Press (2011)Google Scholar
  14. 14.
    K. Inoue, S. Nihonyanagi, P.C. Singh, S. Yamaguchi, T. Tahara, 2D heterodyne-detected sum frequency generation study on the ultrafast vibrational dynamics of H2O and HOD water at charged interfaces. J. Chem. Phys. 142(21), 212431 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    P. Hamm, M. Lim, R.M. Hochstrasser, Structure of the amide I band of peptides measured by femtosecond nonlinear-infrared spectroscopy. J. Phys. Chem. B 102(31), 6123–6138 (1998)CrossRefGoogle Scholar
  16. 16.
    S. Yamaguchi, T. Tahara, Heterodyne-detected electronic sum frequency generation: “Up” versus “down” alignment of interfacial molecules. J. Chem. Phys. 129(10), 101102 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    M. Cho, Coherent two-dimensional optical spectroscopy. Chem. Rev. 108(4), 1331–1418 (2008)CrossRefGoogle Scholar
  18. 18.
    W. Xiong, J.E. Laaser, R.D. Mehlenbacher, M.T. Zanni, Adding a dimension to the infrared spectra of interfaces using heterodyne detected 2D sum-frequency generation (HD 2D SFG) spectroscopy. Proc. Natl. Acad. Sci. U.S.A. 108(52), 20902–20907 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    M. Schleeger, M. Grechko, M. Bonn, Background-free fourth-order sum frequency generation spectroscopy. J. Phys. Chem. Lett. 6(11), 2114–2120 (2015)CrossRefGoogle Scholar
  20. 20.
    H. Vanselous, A.M. Stingel, P.B. Petersen, Interferometric 2D sum frequency generation spectroscopy reveals structural heterogeneity of catalytic monolayers on transparent materials. J. Phys. Chem. Lett. 8(4), 825–830 (2017)CrossRefGoogle Scholar
  21. 21.
    S. Nihonyanagi, R. Kusaka, K. Inoue, A. Adhikari, S. Yamaguchi, T. Tahara, Accurate determination of complex χ(2) spectrum of the air/water interface. J. Chem. Phys. 143(12), 124707 (2015)Google Scholar
  22. 22.
    S. Yamaguchi, Development of single-channel heterodyne-detected sum frequency generation spectroscopy and its application to the water/vapor interface. J. Chem. Phys. 143(3), 034202 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    Q. Du, R. Superfine, E. Freysz, Y.R. Shen, Vibrational spectroscopy of water at the vapor/water interface. Phys. Rev. Lett. 70(15), 2313–2316 (1993)ADSCrossRefGoogle Scholar
  24. 24.
    P.C. Singh, S. Nihonyanagi, S. Yamaguchi, T. Tahara, Communication: ultrafast vibrational dynamics of hydrogen bond network terminated at the air/water interface: a two-dimensional heterodyne-detected vibrational sum frequency generation study. J. Chem. Phys. 139(16), 161101 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    Z. Zhang, L. Piatkowski, H.J. Bakker, M. Bonn, Ultrafast vibrational energy transfer at the water/air interface revealed by two-dimensional surface vibrational spectroscopy. Nat. Chem. 3(11), 888–893 (2011)CrossRefGoogle Scholar
  26. 26.
    C.-S. Hsieh, R.K. Campen, M. Okuno, E.H.G. Backus, Y. Nagata, M. Bonn, Mechanism of vibrational energy dissipation of free OH groups at the air–water interface. Proc. Natl. Acad. Sci. USA 110(47), 18780–18785 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    X. Wei, Y.R. Shen, Motional effect in surface sum-frequency vibrational spectroscopy. Phys. Rev. Lett. 86(21), 4799–4802 (2001)ADSCrossRefGoogle Scholar
  28. 28.
    T. Ishiyama, A. Morita, T. Tahara, Molecular dynamics study of two-dimensional sum frequency generation spectra at vapor/water interface. J. Chem. Phys. 142(21), 212407 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    C.-S. Hsieh, M. Okuno, J. Hunger, E.H.G. Backus, Y. Nagata, M. Bonn, Aqueous heterogeneity at the air/water interface revealed by 2D-HD-SFG spectroscopy. Angew. Chem. Int. Ed. 53(31), 8146–8149 (2014)CrossRefGoogle Scholar
  30. 30.
    S.T. van der Post, C.S. Hsieh, M. Okuno, Y. Nagata, H.J. Bakker, M. Bonn, J. Hunger, Strong frequency dependence of vibrational relaxation in bulk and surface water reveals sub-picosecond structural heterogeneity. Nat. Commun. 6, 8384 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    K. Inoue, T. Ishiyama, S. Nihonyanagi, S. Yamaguchi, A. Morita, T. Tahara, Efficient spectral diffusion at the air/water interface revealed by femtosecond time-resolved heterodyne-detected vibrational sum frequency generation spectroscopy. J. Phys. Chem. Lett. 7(10), 1811–1815 (2016)CrossRefGoogle Scholar
  32. 32.
    A.J. Lock, H.J. Bakker, Temperature dependence of vibrational relaxation in liquid H2O. J. Chem. Phys. 117(4), 1708–1713 (2002)ADSCrossRefGoogle Scholar
  33. 33.
    K. Ramasesha, L. De Marco, A. Mandal, A. Tokmakoff, Water vibrations have strongly mixed intra- and intermolecular character. Nat. Chem. 5(11), 935–940 (2013)CrossRefGoogle Scholar
  34. 34.
    D.E. Gragson, G.L. Richmond, Investigations of the structure and hydrogen bonding of water molecules at liquid surfaces by vibrational sum frequency spectroscopy. J. Phys. Chem. B 102(20), 3847–3861 (1998)CrossRefGoogle Scholar
  35. 35.
    M.R. Watry, T.L. Tarbuck, G.L. Richmond, Vibrational sum-frequency studies of a series of phospholipid monolayers and the associated water structure at the vapor/water interface. J. Phys. Chem. B 107(2), 512–518 (2003)CrossRefGoogle Scholar
  36. 36.
    M.C. Gurau, S.-M. Lim, E.T. Castellana, F. Albertorio, S. Kataoka, P.S. Cremer, On the mechanism of the Hofmeister effect. J. Am. Chem. Soc. 126(34), 10522–10523 (2004)CrossRefGoogle Scholar
  37. 37.
    G. Ma, X. Chen, H.C. Allen, Dangling OD confined in a Langmuir monolayer. J. Am. Chem. Soc. 129(45), 14053–14057 (2007)CrossRefGoogle Scholar
  38. 38.
    X. Chen, W. Hua, Z. Huang, H.C. Allen, Interfacial water structure associated with phospholipid membranes studied by phase-sensitive vibrational sum frequency generation spectroscopy. J. Am. Chem. Soc. 132(32), 11336–11342 (2010)CrossRefGoogle Scholar
  39. 39.
    Y.-C. Wen, S. Zha, X. Liu, S. Yang, P. Guo, G. Shi, H. Fang, Y.R. Shen, C. Tian, Unveiling microscopic structures of charged water interfaces by surface-specific vibrational spectroscopy. Phys. Rev. Lett. 116(1), 016101 (2016)ADSCrossRefGoogle Scholar
  40. 40.
    S. Strazdaite, K. Meister, H.J. Bakker, Orientation of polar molecules near charged protein interfaces. Phys. Chem. Chem. Phys. 18(10), 7414–7418 (2016)CrossRefGoogle Scholar
  41. 41.
    S. Devineau, K. Inoue, R. Kusaka, S.-H. Urashima, S. Nihonyanagi, D. Baigl, A. Tsuneshige, T. Tahara, Change of the isoelectric point of hemoglobin at the air/water interface probed by the orientational flip-flop of water molecules. Phys. Chem. Chem. Phys. 19(16), 10292–10300 (2017)CrossRefGoogle Scholar
  42. 42.
    N. Takeshita, M. Okuno, T.-A. Ishibashi, Molecular conformation of DPPC phospholipid Langmuir and Langmuir-Blodgett monolayers studied by heterodyne-detected vibrational sum frequency generation spectroscopy. Phys. Chem. Chem. Phys. 19(3), 2060–2066 (2017)CrossRefGoogle Scholar
  43. 43.
    S. Nihonyanagi, S. Yamaguchi, T. Tahara, Water hydrogen bond structure near highly charged interfaces is not like ice. J. Am. Chem. Soc. 132(20), 6867–6869 (2010)CrossRefGoogle Scholar
  44. 44.
    G.L. Richmond, Molecular bonding and interactions at aqueous surfaces as probed by vibrational sum frequency spectroscopy. Chem. Rev. 102(8), 2693–2724 (2002)CrossRefGoogle Scholar
  45. 45.
    M. Sovago, R.K. Campen, G.W.H. Wurpel, M. Müller, H.J. Bakker, M. Bonn, Vibrational response of hydrogen-bonded interfacial water is dominated by intramolecular coupling. Phys. Rev. Lett. 100(17), 173901 (2008)ADSCrossRefGoogle Scholar
  46. 46.
    R.A. Livingstone, Y. Nagata, M. Bonn, E.H.G. Backus, Two types of water at the water—surfactant interface revealed by time resolved vibrational spectroscopy. J. Am. Chem. Soc. 137(47), 14912–14919 (2015)CrossRefGoogle Scholar
  47. 47.
    P.C. Singh, K. Inoue, S. Nihonyanagi, S. Yamaguchi, T. Tahara, Femtosecond hydrogen bond dynamics of bulk-like and bound water at positively and negatively charged lipid interfaces revealed by 2D HD-VSFG spectroscopy. Angew. Chem. Int. Ed. 55(36), 10621–10625 (2016)CrossRefGoogle Scholar
  48. 48.
    K. Kwak, S. Park, I.J. Finkelstein, M.D. Fayer, Frequency-frequency correlation functions and apodization in two-dimensional infrared vibrational echo spectroscopy: a new approach. J. Chem. Phys. 127(12), 124503 (2007)ADSCrossRefGoogle Scholar
  49. 49.
    C.J. Fecko, J.D. Eaves, J.J. Loparo, A. Tokmakoff, P.L. Geissler, Ultrafast hydrogen-bond dynamics in the infrared spectroscopy of water. Science 301(5640), 1698–1702 (2003)ADSCrossRefGoogle Scholar
  50. 50.
    S. Roy, S.M. Gruenbaum, J.L. Skinner, Theoretical vibrational sum-frequency generation spectroscopy of water near lipid and surfactant monolayer interfaces. II. Two-dimensional spectra. Two-dimensional spectra. J. Chem. Phys. 141(22), 22D505 (2014)Google Scholar
  51. 51.
    K. Inoue, M. Ahmed, S. Nihonyanagi, T. Tahara, Effect of hydrogen-bond on ultrafast spectral diffusion dynamics of water at charged monolayer interfaces. J. Chem. Phys. 150(5), 054705 (2019)ADSCrossRefGoogle Scholar
  52. 52.
    K. Inoue, P.C. Singh, S. Nihonyanagi, S. Yamaguchi, T. Tahara, Cooperative hydrogen-bond dynamics at a zwitterionic lipid/water interface revealed by 2D HD-VSFG spectroscopy. J. Phys. Chem. Lett. 8(20), 5160–5165 (2017)CrossRefGoogle Scholar
  53. 53.
    J.A. Mondal, S. Nihonyanagi, S. Yamaguchi, T. Tahara, Three distinct water structures at a zwitterionic lipid/water interface revealed by heterodyne-detected vibrational sum frequency generation. J. Am. Chem. Soc. 134(18), 7842–7850 (2012)CrossRefGoogle Scholar
  54. 54.
    S. Re, W. Nishima, T. Tahara, Y. Sugita, Mosaic of water orientation structures at a neutral zwitterionic lipid/water interface revealed by molecular dynamics simulations. J. Phys. Chem. Lett. 5(24), 4343–4348 (2014)CrossRefGoogle Scholar
  55. 55.
    T. Ishiyama, D. Terada, A. Morita, Hydrogen-bonding structure at zwitterionic lipid/water interface. J. Phys. Chem. Lett. 7(2), 216–220 (2016)CrossRefGoogle Scholar
  56. 56.
    Y. Nagata, S. Mukamel, Vibrational sum-frequency generation spectroscopy at the water/lipid interface: molecular dynamics simulation study. J. Am. Chem. Soc. 132(18), 6434–6442 (2010)CrossRefGoogle Scholar
  57. 57.
    S. Roy, S.M. Gruenbaum, J.L. Skinner, Theoretical vibrational sum-frequency generation spectroscopy of water near lipid and surfactant monolayer interfaces. J. Chem. Phys. 141(18), 18C502 (2014)CrossRefGoogle Scholar
  58. 58.
    T. Ohto, E.H.G. Backus, C.-S. Hsieh, M. Sulpizi, M. Bonn, Y. Nagata, Lipid carbonyl groups terminate the hydrogen bond network of membrane-bound water. J. Phys. Chem. Lett. 6, 4499–4503 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Ken-ichi Inoue
    • 1
    • 3
  • Satoshi Nihonyanagi
    • 1
    • 2
  • Tahei Tahara
    • 1
    • 2
    Email author
  1. 1.Molecular Spectroscopy LaboratoryRIKENSaitamaJapan
  2. 2.Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP)SaitamaJapan
  3. 3.Department of Chemistry, Graduate School of ScienceTohoku UniversitySendaiJapan

Personalised recommendations